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ABSTRACT We present an original Probabilistic Monte Carlo (PMC) model for pricing
European discrete barrier options and compound real options. On the basis of Monte Carlo
(MC) simulation, for barrier options the PMC model computes the probability of not
crossing the barrier for knock-out options and crossing the barrier for knock-in options.
This probability is then multiplied by an average sample discounted payoff of a plain vanilla
option that has the same inputs as the barrier option but barrier-free, and to which we have
applied a filter. We test the consistency of our model with an analytical solution (Merton,
1973; Reiner and Rubinstein, 1991) adjusted for discretization by Broadie et al (1997) and a
naïve numerical model using MC simulation presented by Clewlow and Strickland (2000).
Our study shows that the PMC model accurately prices barrier options. Moreover, the idea
behind the method is simple and can be applied to the pricing of complex derivatives, easing
the valuation step significantly: we illustrate the versatility of the PMC model in pricing
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sequential compound real options. Market participants needing to select a reliable, versatile
and simple numerical method for pricing options with embedded features will find our
article appealing.
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INTRODUCTION

Barrier options are cheaper than plain vanilla
options but have a higher risk of loss due to their
barrier(s). With a cheap premium, barrier options
have been attractive and traded over the counter
since 1967 (Haug, 2006). Merton (1973)
pioneered their pricing when they are monitored
in continuous time. However, the most common
traded barrier options are monitored in discrete
time and their pricing is more challenging. A few
solutions are analytical with a correction for
continuity; the most popular solutions are
numerical with lattices or Monte Carlo (MC)
simulation. Nonetheless, Ahn et al (1999) pointed
out that lattice-based solutions inaccurately value
discretely monitored barrier options. Our article
presents an original Probabilistic Monte Carlo
(PMC) model for pricing European discrete
barrier equity options. On the basis of MC
simulation, the PMC model computes the
probability of not crossing the barrier for knock-
out options and crossing the barrier for knock-in
options. This probability is then multiplied by an
average sample discounted payoff of a plain
vanilla option to which we applied a filter. We
test the consistency of our model with the pricing
of a European up-and-out discrete barrier equity
option obtained with an analytical solution
(Merton, 1973; Reiner and Rubinstein, 1991)
adjusted for discretization by Broadie et al (1997)
and a naïve MC simulation presented by
Clewlow and Strickland (2000). We apply the

PMC model to the computation of four different
types of single-barrier options: up-and-out, up-
and-in, down-and-in and down-and-out. In
addition, to show the versatility and potential of
the PMC model, we compute sequential
compound real options. The next section will
review the literature concerning the pricing of
barrier options. The section after that will present
the methodology in six steps. The penultimate
section will present the results and the final
section will wrap up our findings.

LITERATURE REVIEW

Barrier options have been very common on the
over-the-counter market since the late 1980s, the
main reason being that holders pay lower
premiums than for plain vanilla options. We may
find barrier options traded on exchanges (Easton
et al, 2004) but they are not so common. They
appeared first in 1991 in the United States on the
CBOE (Chicago Board Options Exchange) and
on AMEX (American Exchange) but with
limited success. They were introduced on ASX
(Australian Stock Exchange) in 1998, with better
success on the Australian market.
The valuation of simple barrier options relies

on closed-form solutions and numerical
solutions. Merton (1973), Cox and Rubinstein
(1985) and Rubinstein and Reiner (1991)
proposed closed-form solutions. These analytical
solutions assume that the barrier is monitored
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continuously but cannot be applied to barrier
options where the crossing of the barrier is
monitored discretely, for example the options
traded on ASX.
Numerical solutions use either lattice or MC

simulation. Cox and Rubinstein (1985), Hudson
(1992), Boyle and Lau (1994), Derman et al
(1995), Kat and Verdonk (1995), Ritchken
(1995) and Cheuk and Vorst (1996) promoted
lattice solutions. Ahn et al (1999) pointed out that
lattice-based solutions inaccurately value
discretely monitored barrier options. ‘The cause
is often non-linearity or discontinuity in the
option payoff that occurs only in a small region’.
These authors propose an adaptive mesh model
that ‘constructs small sections of fine high-
resolution mesh in the critical areas and grafts
them onto a base lattice with coarser time and
price steps elsewhere.’
Broadie et al (1997) showed ‘that discrete

barrier options can be priced with remarkable
accuracy using continuous barrier formulas by
applying a simple continuity correction to the
barrier’. The approximation is remarkably
accurate except in extreme cases with H very
close to So. While very convenient in practice,
this analytical approximation is limited to single-
barrier options and to the geometric Brownian
motion process. Howison and Steinberg (2007)
extended the applications of the ‘continuity
correction’ presented by Broadie et al (1997) to a
wide variety of cases, using a matched asymptotic
expansions approach.
In the 2000s, authors promoted pure jump and

jump-diffusion asset pricing models based on
Lévy processes. Boyarchenko and Levendorskii
(2002) derived explicit formulas for European-
type barrier options and touch-and-out options
assuming that under a chosen equivalent
martingale measure the stock returns follow a

Lévy process. Petrella and Kou (2004) provided a
comprehensive study of discrete single-barrier
options in Merton’s and Kou’s jump-diffusion
models in this framework based on Spitzer’s
identity. Metwally and Atiya (2002) proposed an
algorithm based on the Brownian Bridge to price
barrier options in the frameworks of Merton
(1976). They observed that between two jumps,
the underlying asset follows a classic geometric
Brownian motion. This method provides non-
biased estimators and is faster than the naïve
simulation. Joshi and Leung (2007) improved
their method by adding a preferential sampling
process that saves computation time for
trajectories with a zero payoff when the barrier is
knocked out. They noted that the simulation
speed is increased for algorithms involving weak
jump frequency. Ross and Ghamani (2010)
proposed an alternative variance reduction
technique to the method of Metwally and Atiya
(2002). Feng and Linetsky (2008) presented a
Lévy process-based model solution to price
discretely monitored single-and double-barrier
options. ‘The method involves a sequential
evaluation of Hilbert transforms of the product of
the Fourier transform of the value function at the
previous barrier monitoring date and the
characteristic function of the (Esscher
transformed) Levy process’. In addition to the
promoters of the Lévy process, other authors
proposed the application of regime-switching
models to investigate option valuation problems,
especially barrier options. The basic idea of
regime-switching models is to allow the model
parameters to change over time according to a
state process, which is usually modeled as a
Markov chain. A key advantage of regime-
switching models is the incorporation of the
impact of structural changes in economic
conditions on the price dynamics. Guo (2001)
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applied a regime-switching model to the pricing
of options. Elliott et al (2014) presented a solution
for pricing ‘both European-style and American-
style barrier options in a Markovian, regime-
switching, Black–Scholes–Merton economy,
where the price process of an underlying risky
asset is governed by a Markovian, regime-
switching, geometric Brownian motion’.
Finally, the trend of the 2010s has been to

apply the SABR (Stochastic, Alpha, Beta, Rho)
stochastic volatility model to the pricing of
options, particularly barrier options. The SABR
model attempts to capture the volatility smile.
Tian et al (2012) priced barrier and American
options by the least squares MC method under
the SABR model. Shiraya et al (2012) provided a
numerical model for pricing double-barrier call
options with discrete monitoring under Heston
and λ-SABR models.

METHODOLOGY

We price a 6-month European up-and-out
discrete barrier equity option with the PMC
model.
Our benchmarks are the analytical solution of

Merton (1973) and Reiner and Rubinstein
(1991) and a naïve numerical model using MC
simulation presented by Clewlow and Strickland
(2000). Our methodology presents six steps.

Step 1

By simulating the stock price using the following
Brownian motion:

St + 1 ¼ Ste
r - δ - 0:5σ2ð Þdt + σ ffiffiffi

dt
p

εð Þ; (1)

we price a plain vanilla European call option with
the exact same parameters as the barrier option
but with no barrier. The algorithm is borrowed
from Clewlow and Strickland (2000). For N

trajectories of the stock prices simulated over the
life of the option with a maturity of T years (in
our example T= 0.5 year= 125 steps, assuming a
year equal to 250 business days), we count the
number of times the stock price has reached
maturity of the option without hitting the
barrier, that is, the probability P that the option is
not knocked out during its life.

Step 2

We filter cTi= (STi−X)+, the option value of a
plain vanilla call option at maturity of the ith
trajectory, STi being the stock price at maturity of
the option and X the strike price: givenH the up-
and-out barrier, if (STi−X)+⩾(H−X) then cTi= 0,
since cTi cannot have a value equal to or higher
than (H−X) otherwise the barrier is activated
(STi⩾H) and the option is knocked out.

Step 3

Simulating N trajectories of the stock price and
applying the filter to the option value cTi of a
plain vanilla call option, we obtain a sample of N
possible values of the option at its maturity cTiAF
(AF=After Filtering). We randomly draw
without replacement NP option values of cTiAF
from the sample.

Step 4

The PMC model computes cuo the value of a
T-year European equity up-and-out barrier
option using equation 2:

cuo ¼ P
N

XNP

i¼1

cTiAF +K 1 -Pð Þ
" #

e - rT (2)

with r the continuous risk-free rate over time T,
cTiAF the option values after filtration in Step 2
and the draws without replacement in Step 3,
P the probability that the option is not knocked
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out and K the rebate offered by the barrier option
when the option is knocked out.

Step 5

We extend our reasoning to down-and-out, up-
and-in and down-and-in European call options.
We obtain Table 1.
The same reasoning applies to put options. We

obtain Table 2.
The PMC model is benchmarked to two

models: (i) a naïve numerical model using MC
simulation to price barrier options presented by
Clewlow and Strickland (2000); and (ii) the
analytical solution developed by Merton (1973)
and emphasized by Reiner and Rubinstein
(1991). The numerical model assumes that the
crossing of the barrier is monitored daily by
dividing the maturity of the option of 6 months
in 125 steps (1 year= 250 steps). The analytical
solution assumes that the crossing of the barrier is
monitored continuously. As mentioned in the
literature review, Broadie et al (1997) developed
an approximation for continuity correction to
price discrete barrier options. The correction
shifts the barrier away from the underlying asset
price that reduces the probability of hitting the
barrier and that mimics the effect of discrete
monitoring that lowers the probability of hitting
the barrier compared with continuous
monitoring. The barrier HAC after correction is
equal to:

HAC ¼ Heβσ
ffiffiffiffi
Δt

p
(3)

when H>So

and is equal to : HAC ¼ He- βσ
ffiffiffiffi
Δt

p
(4)

when H<So
with H the initial barrier, β ¼ - ζð1=2Þ= ffiffiffiffiffi

2π
p ¼

0:5826, where ζ is the Riemann zeta function,
Δt=0.5/125=0.004 (option maturity of 6 months

divided in 125 days – steps) and σ= volatility (either
0.25 or 0.30 in our example).

Step 6

We explore the potential and versatility of the
PMC model in pricing other types of options
than barrier options. This step clarifies the
intuition behind the PMC model. Moreover, it
shows how useful and flexible the model can be
in valuing options with embedded features. For
this purpose, we choose sequential compound
real options. The example is borrowed from
Kodukula and Papudesu (2006). A firm applies
the options theory to the valuation of a project
for a go/no-go investment decision. The
project is divided into three sequential phases:
(i) permitting; (ii) design and (iii) construction.
Each phase has to be completed before the next
phase can begin. The company has a maximum
of 1 year from today to decide on Phase 1,
3 years on Phase 2 and 5 years on Phase 3.
Permitting is expected to cost US$30 million,
design $90 million and construction another
$210 million. Discounted cash flow analysis
using an appropriate risk-adjusted discount rate
values the plant, if it existed today, at So= $250
million. The annual volatility σ of the
logarithmic returns for the future cash flows for
the plant is estimated to be 30 per cent and the
continuous annual risk-free interest rate over
the next 5 years is r= 6 per cent. Kodukula and
Papudesu apply the binomial tree model to
calculate the option values for each of the three
sequential options available on this project:
construction is dependent on design, which in
turn is dependent on permitting. The option
value calculations are done in sequence,
starting with the longest option: simulate
So= $250 million over 5 years, in a binomial
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Table 1: Methodology of the PMC model applied to single-barrier call options

Up-and-out call options Down-and-out call options Up-and-in call options Down-and-in call options

Spot stock price So starts
below the barrier level H
and has to move up for
the option to be knocked
out:
So<H and choose X<H

Spot stock price So starts
above the barrier level H
and has to move down
for the option to be
knocked out: So>H

Spot stock price So starts
below the barrier level H
and has to move up for
the option to be knocked
in (activated): So<H

Spot stock price So starts
above the barrier level H
and has to move down
for the option to be
knocked in (activated):
So>H

Option value cTi at maturity
of the option

cTi= (STi−X)+

Option value cTi of a
plain vanilla call option at
maturity T of the option
for a given simulated
trajectory i among N
trajectories

idem idem idem

Option value cTiAF after
filtration

If cTi⩾(H−X) then cTiAF= 0
Else cTiAF= (STi−X)+

If H>X then
cTiAF= (STi−X)+>(H−X)
Else cTiAF= 0
Else: cTiAF= (STi−X)+

cTiAF= (STi−X)+= cTi
(no filtration)

cTiAF= (STi−X)+= cTi
(no filtration)

Compute probability P
with MC simulation

Probability P that the
option is not knocked
out during the life of the
option

Probability P that the
option is not knocked
out during the life of the
option

Probability P that the
option is not knocked in
during the life of the
option

Probability P that the
option is not knocked in
during the life of the
option

Draws without
replacement

Draw (NP) values without
replacement from the
sample of N cTiAF

idem idem idem

Option price c cuo= [(P/N)∑i= 1
NP cTiAF+

K(1−P)]e−rT
cdo= [(P/N)∑i= 1

NP cTiAF+
K(1−P)]e−rT

cui= [[((1−P)/N)
∑i= 1

N−NPcTiAF]+KP]e
−rT

cdi= [[((1−P)/N)
∑i= 1

N−NPcTiAF]+KP]e
−rT
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Table 2: Methodology of the PMC model applied to single-barrier put options

Up-and-out put options Down-and-out put options Up-and-in put options Down-and-in put options

Spot stock price So starts below
the barrier level H and has to
move up for the option to
be knocked out: So<H

Spot stock price So starts
above the barrier level H
and has to move down
for the option to be
knocked out: So>H and
choose X>H

Spot stock price So starts
below the barrier level H
and has to move up for
the option to be knocked
in (activated): So<H

Spot stock price So starts
above the barrier level H
and has to move down
for the option to be
knocked in (activated):
So>H

Option value cTi at maturity
of the option

cTi= (X−STi)+

Option value cTi of a PLAIN
VANILLA PUT option at
maturity T of the option for
a given simulated trajectory i
among N trajectories

idem idem idem

Option value cTiAF after
filtration

If X>H then
cTiAF= (X−STi)+

>(X−H) else cTiAF= 0
Else: cTiAF= (X−STi)+

If cTiAF= (X−STi)+>(X−H)
then cTiAF= 0
Else: cTiAF= (X−STi)+

cTiAF= (X−STi)+= cTi
(no filtration)

cTiAF= (X−STi)+= cTi
(no filtration)

Compute Probability P
with MC simulation

Probability P that the option is
not knocked out during the
life of the option

Probability P that the
option is not knocked
out during the life of the
option

Probability P that the
option is not knocked in
during the life of the
option

Probability P that the
option is not knocked in
during the life of the
option

Draws without
replacement

Draw (NP) values without
replacement from the
sample of N cTiAF

idem idem idem

Option price p puo= [(P/N)∑i= 1
NP cTiAF+

K(1−P)]e−rT
pdo= [(P/N)∑i= 1

NP cTiAF+
K(1−P)]e−rT

pui= [[((1−P)/N)
∑i= 1

N−NPcTiAF]+KP]e
−rT

pdi= [[((1−P)/N)
∑i= 1

N−NPcTiAF]+KP]e
−rT
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tree with So going up one step with a value Sou
and going down one step with a value Sod,
repeating five steps, and at T= 5 years the
highest and lowest values of the tree being,
respectively, Sou

5= 1120 and Sod
5= 56.

Applying the payment function [ST−X]+ at
T= 5, with X= $210 million the cost of
construction, then going backward in the tree,
using the binomial formulae:

c ¼ pcu + 1 - pð Þcdð Þe - rΔt (5)

with p ¼ erΔt - d
u - d

; u ¼ eσ
ffiffiffiffi
Δt

p
and d ¼ 1

u

we obtain at T= 0 an option value of $113
million. To simulate the second option over
3 years (Phase 2, design), the initial value is
$113 million, the option value of the
construction phase. We again compute Sou and
Sod and so on over 3 years, that is, three steps,
with at T= 3 years the highest and lowest
values of the tree being, respectively,
Sou

3= 429 and Sod
3= 0. Applying the payment

function [ST−X]+ at T= 3, with X= $90
million the cost of design, then going backward
in the tree, using the binomial formulae, we
obtain at T= 0 an option value of $63 million.
To simulate the first option over 1 year (Phase
1, permitting), the initial value is $63 million,
the option value of the design phase. We again
compute Sou and Sod over 1 year, with at T= 1
year the high and low values of the tree,
respectively, Sou= 113 and Sod= 16. Applying
the payment function [ST−X]+ at T= 1, with
X= $30 million the cost of permitting, then
going backward in the tree, using the binomial
formulae, we obtain at T= 0 an option value of
$41 million, which is the final value of the
option. Since it is positive, the firm may go
ahead with the project.

We apply a two-step approach with the PMC
model to compute the final option value of the
project: (i) using MC simulation of equation 1
above with So= $250 million, r= 0.06, σ= 0.30,
Δt= 1, q= 0, T= 5, we compute the probabilities
P1 that S1⩾$30 million (S1 the value of the
project at T= 1), P2 that S3⩾$90 million (S3 the
value of the project at T= 3) and P3 that S5⩾
$210 million (S5 the value of the project at
T= 5), with $30, $90 and $210 million being,
respectively, the costs of Phases 1–3. (ii) Com-
pute the value of the option applying equation 2
above:

c ¼ P
N

XNP

i¼1

cTiAF +K 1 -Pð Þ
" #

e - rT (6)

With K= 0, cTiAF= [STi−X]+ at T= 5 years,
X= $210 million (X is the construction cost)
and P= P1P2P3. P is the conditional probability
that Phase 3 starts if Phase 2 starts if Phase 1
starts. The cTiAF corresponds to NP random
draws without replacement among the N
possible values [STi−X]+ of a plain vanilla
option. By using the PMC model, we simplify
the valuation of the project to computing the
probability that Phase 3 starts conditional on
the start of the two previous phases. The PMC
model avoids building three binomial trees and
solves the whole valuation problem in one
simulation.

RESULTS

Pricing barrier options with the PMC

model

Tables 3 and 4 gather the results, respectively, for
European single-barrier call and put options. We
price a barrier option where S= 100, T= 0.5,
r= 0.08, q= 0.04, rebate= 3, σ= 0.25 or 0.30.
We compute the option premiums for different
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Table 3: Premiums of European Barrier Call Options (S= 100, T=0.5, r=0.08, q=0.04, rebate= 3) computed with four models

(for MC and PMC solutions: 1000 simulations)

Merton et al

solution continuous

recording

Merton et al solution

+Broadie correction

daily recording

Naive MC solution

daily recording

Average

simulation

time in seconds

PMC solution

daily recording

Average

simulation

time in

seconds

Type X H σ= 0.25 σ= 0.30 σ= 0.25

(a) Merton

+Broadie

σ= 0.30

(b) Merton

+Broadie

σ= 0.25

(c) Naive

MC

σ= 0.30

(d) Naive

MC

Squared

error

[(a)−(c)]2

Squared

error

[(b)−(d)]2

σ= 0.25

(e) PMC

σ= 0.30

(f) PMC

Squared

error

[(a)−(e)]2

Squared

error

[(b)−(f)]2

cdo 90 95 9.0246 8.8334 9.8132 9.7965 9.5641 9.6787 0.2105 0.0621 0.0139 5.8898 5.6865 0.3670 15.3931 16.8921

cdo 100 95 6.7924 7.0255 7.2081 7.6198 7.1549 6.9984 0.2030 0.0028 0.3861 4.6693 4.3796 0.3120 6.4455 10.4989

cdo 110 95 4.8759 5.4137 5.0209 5.7111 4.8899 5.4362 0.1950 0.0172 0.0756 3.3080 4.0481 0.3200 2.9340 2.7656

cdo 90 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.2960 0.0000 0.0000

cdo 100 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.2960 0.0000 0.0000

cdo 110 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.2960 0.0000 0.0000

cuo 90 105 2.6789 2.6341 2.6872 2.6069 2.5976 2.5664 0.4880 0.0080 0.0016 2.7415 2.7000 0.3195 0.0029 0.0087

cuo 100 105 2.3580 2.4389 2.2512 2.3240 2.1510 2.2487 0.4595 0.0100 0.0057 2.1287 2.3165 0.3040 0.0150 0.0001

cuo 110 105 2.3453 2.4315 2.2464 2.3075 2.1877 2.2367 0.4525 0.0034 0.0050 2.2021 2.2252 0.3120 0.0020 0.0068

cdi 90 95 7.7627 9.0093 6.9676 8.0393 3.6459 3.5806 0.2035 11.0337 19.8800 10.2549 11.5281 0.3120 10.8063 12.1717

cdi 100 95 4.0109 5.1370 3.5889 4.5389 0.7898 0.6774 0.1950 7.8350 14.9112 5.9031 6.7304 0.3115 5.3555 4.8027

cdi 110 95 2.0576 2.8517 1.9061 2.5474 0.7898 0.6457 0.2030 1.2461 3.6165 3.7068 4.8809 0.3275 3.2425 5.4452

cdi 90 100 13.8333 14.8816 12.5268 13.4179 8.2121 8.0057 0.1170 18.6166 29.2919 12.6791 15.8472 0.2965 0.0232 5.9015

cdi 100 100 7.8494 9.2045 6.9542 8.1314 0.1268 0.1614 0.1020 46.6134 63.5209 7.4937 12.5064 0.2960 0.2911 19.1406

cdi 110 100 3.9795 5.3043 3.4707 4.6096 0.1585 0.0894 0.1090 10.9707 20.4322 4.5654 6.8170 0.3045 1.1984 4.8726

cui 90 105 14.1112 15.2098 14.0964 15.2299 12.1605 12.5005 0.2105 3.7477 7.4496 11.0642 11.6041 0.3120 9.1942 13.1464

cui 100 105 8.4482 9.7278 8.5485 9.8357 5.0094 5.3417 0.1950 12.5252 20.1960 6.6981 7.1493 0.3045 3.4240 7.2167

cui 110 105 4.5910 5.8350 4.7035 5.9221 0.7254 0.7005 0.2030 15.8253 27.2651 3.4569 3.9312 0.2970 1.5540 3.9637

RMSE 2.6720 3.3916 RMSE 1.8239 2.4362

Average

RMSE

3.0318 Average

RMSE

2.1301
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Table 4: Premiums of European Barrier Put Options (S= 100, T= 0.5, r= 0.08, q= 0.04, rebate=3) computed with four models

(for MC and PMC solutions: 1000 simulations)

Merton et al

solution continuous

recording

Merton et al solution

+ Broadie correction

daily recording

Naive MC solution

daily recording

Average

simulation

time in seconds

PMC solution

daily recording

Average

simulation

time in

seconds

Type X H σ= 0.25 σ= 0.30 σ= 0.25

(a)

Merton

+Broadie

σ= 0.30

(b)

Merton

+Broadie

σ= 0.25

(c) Naive

MC

σ= 0.30

(d) Naive

MC

Squared

error

[(a)−(c)]2

Squared

error

[(b)−(d)]2

σ= 0.25

(e) PMC

σ= 0.30

(f) PMC

Squared

error

[(a)−(e)]2

Squared

error

[(b)−(f)]2

pdo 90 95 2.2798 2.4170 2.1575 2.2956 2.0350 2.2425 0.4840 0.0150 0.0028 2.0407 2.2713 0.3115 0.0136 0.0006

pdo 100 95 2.2947 2.4258 2.1857 2.3144 2.1574 2.2646 0.4760 0.0008 0.0025 2.2260 2.3146 0.3120 0.0016 0.0000

pdo 110 95 2.6252 2.6246 2.6319 2.6013 2.5498 2.4458 0.4835 0.0067 0.0242 2.8313 2.7852 0.3200 0.0398 0.0338

pdo 90 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.3120 0.0000 0.0000

pdo 100 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.3120 0.0000 0.0000

pdo 110 100 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 0.0930 0.0000 0.0000 3.0000 3.0000 0.3120 0.0000 0.0000

puo 90 105 3.7760 4.2293 3.8193 4.3792 3.5835 4.4614 0.4600 0.0556 0.0068 2.7533 2.8946 0.3200 1.1364 2.2040

puo 100 105 5.4932 5.8032 5.7966 6.2554 5.4966 5.8779 0.4520 0.0900 0.1425 3.6586 3.8920 0.3200 4.5710 5.5857

puo 110 105 7.5187 7.5649 8.1849 8.3981 8.4449 8.2022 0.4605 0.0676 0.0384 5.1286 5.4700 0.3120 9.3410 8.5738

pdi 90 95 2.9586 3.8769 3.0745 3.9915 0.7725 0.6607 1.1540 5.2992 11.0942 2.1701 3.3584 0.3195 0.8179 0.4008

pdi 100 95 6.5677 7.7989 6.6703 7.9034 4.8786 5.1644 0.4680 3.2102 7.5021 4.4645 5.9924 0.3200 4.8656 3.6519

pdi 110 95 11.9752 13.3078 11.9621 13.3242 11.7010 12.6445 0.4835 0.0682 0.4620 9.2133 9.5404 0.3200 7.5559 14.3171

pdi 90 100 2.2845 3.3328 2.4078 3.4509 0.1499 0.1066 0.2190 5.0981 11.1843 2.5901 3.9574 0.3120 0.0332 0.2565

pdi 100 100 5.9085 7.2636 6.0319 7.3816 1.1663 1.3578 0.2105 23.6741 36.2862 5.3388 6.7993 0.3040 0.4804 0.3391

pdi 110 100 11.6465 12.9713 11.7450 13.0711 10.2182 10.5818 0.2180 2.3311 6.1966 9.2165 11.1055 0.2960 6.3933 3.8636

pui 90 105 1.4653 2.0658 1.4154 1.9089 0.7350 0.6244 0.4680 0.4629 1.6499 2.5959 2.8700 0.3435 1.3936 0.9237

pui 100 105 3.3721 4.4226 3.0622 3.9634 0.7062 0.7177 0.4680 5.5507 10.5346 5.9681 6.1137 0.3275 8.4443 4.6238

pui 110 105 7.0846 8.3686 6.4119 7.5284 3.6323 3.5316 0.4760 7.7262 15.9744 9.4208 9.8662 0.3275 9.0535 5.4653

RMSE 1.7265 2.3700 RMSE 1.7343 1.6707

Average

RMSE

2.0483 Average

RMSE

1.7025
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levels of strike price X and barrier H, as suggested
in Haug (2006). For MC and PMC solutions, we
simulate 1000 trajectories for each option
valuation.
On the basis of the criteria of RMSE (Root

Mean Square Error), using as a benchmark the
analytical solution developed by Merton (1973)
and emphasized by Reiner and Rubinstein
(1991), adjusted for discretization by Broadie et al
(1997), the PMC model beats the naïve
numerical model using MC simulation, whatever
the call or put options. However, the naïve MC
model applies to the pricing of barrier put options
when the volatility σ is equal to 0.25 has a slightly
lower RMSE (1.7265 versus 1.7343) than the
PMC model.
Figures 1 and 2 illustrate call and put options

prices when σ= 0.30. Overall, we observe the
superior accuracy of the PMC model compared
with the naïve MC model when pricing single-
barrier options.

However, looking in detail at Figures 1 and
2 and Tables 3 and 4, we observe that the naïve
MC model outperforms the PMC model
for down-and-out and up-and-out calls
and puts (lower sum of squared errors).
It is the opposite for down-and-in and up-and-
in calls and puts, where the PMC model
performs best.
Investigating the power of convergence of the

naïve MC model versus the PMC model, we
choose an up-and-out call with H= 105,
X= 100 and σ= 0.30. On the basis of Figure 3,
we observe that the PMC model converges faster
than the naïve MC model.

Pricing sequential compound real

options with the PMC model

For an MC simulation of 10 000 trajectories with
5 steps (1 step= 1 year), we obtain a value of
40.31 with the probabilities P1= 10 000/10 000

18.0000

16.0000

14.0000
sigma = 0.30 (b) Merton+Broadie  

sigma = 0.30 (d) Naive MC 

12.0000
sigma = 0.30 (f) PMC

10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

Figure 1: Premiums of European discrete barrier call options (S= 100, T=0.5, r=0.08, q=0.04,

σ=0.30) computed with PMC and MC models versus the benchmark Merton et al (1973)
+Broadie et al (1997); for MC and PMC solutions: 1000 simulations.
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that S1⩾$30 million (S1 the value of the project at
T= 1), P2= 9 787/10 000 that S3⩾$90 million

(S3 the value of the project at T= 3), and
P3= 6342/10 000 that S5⩾$210 million (S5 the

14.0000

12.0000 sigma = 0.30 (b) Merton + Broadie

sigma = 0.30 (f) PMC 
10.0000

8.0000

6.0000

4.0000

2.0000

0.0000

sigma = 0.30 (d) Naive MC

Figure 2: Premiums of European discrete barrier put options (S= 100, T=0.5, r=0.08, q=0.04,

σ=0.30) computed with PMC and MC models versus the benchmark Merton et al (1973)
+Broadie et al (1997); for MC and PMC solutions: 1000 simulations.

2.3000

2.3500

2.4000

2.4500

Naive MC solution Daily recording

PMC solution Daily recording

Exact solution 

2.2000

2.2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3: Illustration of the convergence for an up-and-out barrier call option (S= 100, T=0.5,

r= 0.08, q= 0.04, H= 105, X=100, σ=0.30) computed with PMC and MC models versus the

benchmark Merton et al (1973)+Broadie et al (1997) that we call exact solution. We increase

the number of simulations from 100 to 10 000.
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value of the project at T= 5), with
P=P1P2P3= 0.62.

c ¼ P
N

XNP

i¼1

cTiAF +Kð1 -PÞ
" #

e - rT

¼ 0:62
10000

877; 626ð Þ + 0: 1 - 0:62ð Þ
� �

e - 0:06ð5Þ

¼40:31

CONCLUSION

We present an original PMC model based on
MC simulation that prices discrete barrier
options: we call it probabilistic since it computes
the probability of not crossing the barrier for
knock-out options and crossing the barrier for
knock-in options. This probability is then
multiplied by an average sample discounted
payoff of a plain vanilla option that has the same
inputs as the barrier option but without a barrier
and to which we have applied a filter. We test the
consistency of our model with an analytical
solution (Merton, 1973; Reiner and Rubinstein,
1991) adjusted for discretization by Broadie et al
(1997) and a naïve numerical model using MC
simulation. Overall, based on call and put options
and all types of single-barrier European options
(up-and-out, down-and-out, up-and-in and
down-and-in) and based on the criteria of
RMSE, the PMC model is superior to the naïve
MC simulation. We show through an example
that it also converges faster towards the exact
solution. However, the naïve MC simulation
offers better results for down-and-out and up-
and-out calls and puts (lower sum of squared
errors). It is the opposite for down-and-in and
up-and-in calls and puts, where the PMC model
performs best.
We explore the potential and versatility of the

PMC model in pricing other types of options

than barrier options. We choose to price
sequential compound real options since these
options are more complex options than barrier
options and are involved in project valuation. We
show that the PMC model offers a simpler
methodology than the binomial model; the latter
involves building three different trees whereas
the PMC model computes the sequential
compound real options with one simulation
only. Whenever there is a way to measure the
probability that an event attached to an option
will occur, for example the crossing of a barrier or
the value of a project lower than its cost – or
whatever the feature embedded in the option –

there is a way to implement the PMCmodel. We
have shown that by computing two distant types
of options, the PMC model is quiet versatile in
valuing options with distinctive embedded
features.
Further works will extend the range of

applications of the PMC model and will
investigate variance reduction techniques applied
to this model.
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