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ABSTRACT How many commodity trading advisors (CTAs) are needed to arrive at a diver-
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CTAs in a real-world setting where frictional costs of diversification, the amount of assets under
management, risk aversion and the state dependence on hedge fund payoffs matter to investors.
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INTRODUCTION

With the establishment of modern portfolio
theory, researchers have started to test how well
its normative diversification advice is reflected
in observed portfolios. Early studies focused on
equity markets and tried to answer the question:
‘How many stocks make a diversified portfolio?’
Elton and Gruber (1977), Statman (1987),
Newbould and Poon (1993), O’Neal (1997) and
Statman (2004) all come to different conclusions
about the optimal number of stocks in a naively
diversified (randomly selected stocks with equal
weighting in the absence of conditioning
information) portfolio. The recommended
holdings range between 10 and 300 stocks.
However, even these numbers are high relative

to the accounts of individual investors, which
often contain only a handful of stocks as well
as large holdings in their own company stocks.
On the back of these results, Statman (2004)
coined the term ‘behavioural portfolio theory’,
that is, the attempt to ‘rationalize’ the apparent
under-diversification of individual investors. In
his view, individual investors divide their total
wealth into mental buckets according to their
investment goals. Equities fall into the top
portfolio layer that reflects the investors’ demand
for lottery tickets. Recent support for this has
been provided by Frazzini and Pedersen (2010),
who find that leverage aversion will cause
investors to arrive at under-diversified portfolios
that concentrate on the more volatile stocks.
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The popularity of hedge funds, as both an
investment vehicle and an object of academic
interest, has created interest in the question:
‘How many hedge funds (commodity trading
advisors (CTAs), managed futures, etc.) make a
diversified portfolio?’. Despite well-documented
differences in hedge fund return distributions
(most notably non-normality and non-linearity
with respect to underlying risk factors) and hedge
fund investment costs, virtually all studies heavily
borrowed the methodologies designed for
individual stock portfolios and applied them
to hedge funds. In short, this amounts to
a two-step procedure:

1. Simulate random portfolios of size n= 1,…,
N and record the evolution of volatility,
SHARPE-ratio or correlation with an already
diversified index to trace out a diversification
curve, that is, a functional relationship
between portfolio standard deviation and
portfolio size.

2. Decide when the marginal improvement in
the above-mentioned statistic becomes
‘small’. What ‘small’ means is usually left to
eyeballing the diversification curve, that is, it
relies on the researcher’s subjective statement.

Henker and Martin (1998), Amin and Kat
(2002) and Lhabitant and Learned (2002) are
examples of this approach. The number
of hedge funds they deem optimal ranges
between 5 and 25. Despite the arbitrariness of the
above approach, Brown et al (2011) claim that
fund of funds exhibit excess diversification.
We see several shortcomings in the above

papers. First, no attempt is made specifying the
frictional costs of adding another fund into
a portfolio. In the absence of these costs, it is
always optimal to naively diversify across all
possible investments. Samuelson (1967) made this

point early on by stating that investors should
diversify as much as possible, aware of the
tradeoff between diversification and its costs.
Frictional costs arise from fixed monitoring
costs per additional funds, as well as the loss
of bargaining power for fee rebates when
diversifying among too many funds. Second,
assets under management do not enter the
decision-making problem, even though fixed
costs can be spread more easily across a large
pool of assets. Clearly it makes a very practical
difference whether a decision-maker with
10 million USD or 100 million USD asks
for the optimal number of assets to invest in.
Third, the reduction in volatility is most valuable
for investors with high risk aversion, while
investors with low risk aversion will be less
willing to incur frictional diversification costs
for a reduction in volatility they value only very
little. Finally, but most importantly, volatility for
an investment will not differ if we reshuffle
returns across different states of the world.
However, investors have a preference for invest-
ments that pay well in bad states (where wealth is
down) of the world. Such an investment might
be more valuable or offer more protection than
an asset that offers a higher SHARPE-ratio or
lower volatility. Diversifications studies on hedge
funds remain silent on this topic. This is most
relevant for CTAs that, due to their trend-
following trading style and money management
techniques, offer portfolio insurance properties.
For a risk-averse investor, it will now matter most
how well his portfolio of CTAs performs in those
months where he values insurance most highly.
Consequently, the normative advice of these
papers is limited at best.
Another more recent motivation of our

work is the flood of papers motivated by
Demiguel et al (2009). The authors show that
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equal weighting (1/n) is preferable to mean
variance optimization if the SHARPE ratio
differences between assets are small (adjusted for
sample size). This situation is likely to be given
for CTAs that are notoriously known for both
large return dispersion and little to no persistence
as documented in Bhardwaj et al (2008). None of
the 1/n papers discusses frictional diversification
costs and consequently the optimal number of
assets is imposed rather than derived.
The next section first reviews the existing

methodology used in diversification studies.
We then extend the traditional mean variance
framework to account for frictional costs of
diversification, differences in assets under
management and risk aversion to arrive at
a closed form solution for the optimal number
of assets. This method works well under the
assumptions of normality and for investors who
show no interest in the conditional nature of
hedge fund returns. However, for investors who
care whether losses are realized in good or bad
times, we evaluate portfolios of CTAs for
different state price deflators (assuming investors
exhibit power utility). This allows us to evaluate
whether a portfolio of CTAs is properly
diversified, where diversification means the
extraction of ‘CTA-beta’, that is, the ability
to protect from a fall in risky assets. The latter
sections apply both methods on CTAs. The final
section concludes.

OPTIMAL DIVERSIFICATION
REVISITED

Diversification curves

Diversification curves trace out the relation
between the expected risk (or, more generally,
performance measure) of a portfolio of hedge

funds (or more general assets) that consists of
n randomly selected and equally weighted
constituents. The brute force approach is to
repeatedly sample n funds (out of a total of
N funds). For the jth sampling we get a set
Sj(n) that contains n index numbers (out of N)
to calculate the portfolio return

R nð Þm;j =
X

i2 SjðnÞ
1
nRi;m (1)

for all m= 1,…,M scenarios, that is, observations
on a databank. This exercise is repeated many
times, that is, we compute the variance of (1),
that is,

σ nð Þ2j =
XM
m= 1

R nð Þm;j - 1
M

XM
m= 1

R nð Þm;j
 !2

(2)

and average it over all J samplings. However,
it was shown early on by Elton and Gruber
(1977) that a simulation is not needed and we can
instead replace time-intensive simulations with
the formula for the expected variance of a naively
diversified portfolio.

σ2 nð Þ= σ2

n
+ 1 -

1
n

� �
σ2ρ (3)

where σ2 and ρ represent average variance and
correlation across all N assets, that is, for the
whole universe rather than the subset of n stocks.
The rationale for this surprising result is that (3)
is equivalent to the expectation of all possible
n out of N permutations of index numbers.
Mathematically, (3) is a monotonically decreasing
function of n that converges to σ2ρ; hence,
optimal diversification is only achieved by
holding the full universe. A decision to hold
less than n assets is typically imposed by ad hoc
assumptions on the desired degree of reduction
in diversifiable risk and is therefore not
satisfactory.
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Mean variance-based performance

measure

Rather than the previous ad hoc approach,
we first suggest starting to model optimal
diversification as a decision-making problem
for a standard mean variance investor and
ask: ‘How many hedge funds make
a diversified portfolio?’ In contrast to
previous work, our decision maker will
trade off the marginal benefits from
diversification against their marginal costs.
For an investor using naive diversification
(that is, in the absence of conditioning
information) the only choice parameter is
the number of equally weighted funds she
intends to include, that is, we assume that the
investor tries to optimize

μ nð Þ - λσ2 nð Þ - n f
aum

(4)

where μ(n) and σ2(n) are the expected return
and risk for an equally weighted portfolio of
size n, λ denotes the investor’s risk aversion
and f/aum represents the additional fixed costs
as a fraction of assets under management per
additional fund.
While adding funds to a portfolio, we

can expect portfolio risk to fall, while average
portfolio return is expected to remain constant,
that is (dμ(n)/dn)= 0.1 We can therefore focus
on the impact of increasing portfolio size on
portfolio risk and diversification costs. For the
optimal number of funds in a portfolio, marginal
benefits and costs need to be balanced. Hence
we can write

f
aum

= - λ
dσ2 nð Þ
dn

(5)

As seen in the previous section, the expected
variance for an equally weighted portfolio can be
equally written as σ2 nð Þ= σ2=n + 1 - ð1=nÞð Þσ2ρ,

so we can find an explicit solution for
the marginal change in risk

dσ2 nð Þ
dn

=
1
n2

σ2 ρ - 1ð Þ (6)

Substituting (6) into (5) we arrive at

f
aum

= - λ
1
n2

σ2 ρ - 1ð Þ (7)

which can be solved for the optimal n.

n� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λσ2 1 - ρð Þ f

aum

� � - 1
s

(8)

We see that the optimal number of funds
increases with rising risk aversion (λ), rising
average volatility (σ2), falling average
correlation ( ρ ), falling frictional costs ( f ) and
rising assets under management (aum). The
objective of (8) is to provide insight into the
determinants of naïve diversification with
frictional diversification costs. Linearizing (8)
via logs will also yield a testable model for
observed fund of fund data. The model suffers
from two shortcomings. First, how should an
investor solve the above problem when instead
he has some information (return forecasts) on
individual funds? In this case we need to solve
a quadratic program with mixed integer
constraints using dedicated software like
NUOPT for SPLUS/R. A formulation is given
in Appendix C. Second, it is clear that (8) will
provide little guidance when hedge fund data are
non-normally distributed. This is dealt with in
the next section.

State price deflators

The previous section established the optimal
number of hedge funds in closed form for a mean
variance decision-maker. Even if the returns
for our assets would all be individually normal
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(which we know they are not) the approach in
the previous section would fail. The main
drawback of the solution in the previous
sub-section arises from hedge fund returns that
display a non-linear relationship to risky assets, as
documented by Fung and Hsieh (2001). This is
particularly true for CTAs that create part of their
attraction from their ability to perform well if
risky assets are down for a prolonged period of
time. This feature of CTA returns is important to
real-world investors but gets lost in SHARPE-
ratio or volatility measures. Imagine we simply
reshuffle hedge fund returns, that is, we take the
returns of hedge fund strategies, and rearrange
them randomly (without replacement) along
the timeline. This will affect neither their
SHARPE-ratio nor their skewness or volatility,
but it will alter their attractiveness to real-world
investors as suddenly their returns conditioned
on the returns of equity and bond markets will
change.
We follow Chen and Knez’s (1996)

seminal work and use state price deflators
for performance measurement to address this
problem. A state price deflator is a stochastic
discount factor that applies a separate discount
rate to each state of the world. States where
economy-wide wealth is down and therefore
marginal utility is up should carry a larger
importance for risk-averse investors. Hence
we can generically express the state price
deflator Λm for state m, a negative function
of wealth in state m (Wm), and a positive
function of risk aversion (γ)

Λm =F γ
+ð Þ
;Wm

-ð Þ

 !
(9)

The exact functional form for (9) and its
calibration (choice of γ) to real data is

described in Appendices A and B. Once
we know the state price deflator, we can
price any asset (or derivative claim) by
multiplying the state price deflator with the
corresponding payoff to the asset under
consideration and build the expectation
under the real-world probability measure P.
The value of an n fund portfolio with return
R(n)m, j in state m after frictional costs φ(n) in
simulation run j is given by)

V nð Þj =EP Λm � 1 +R nð Þm;j
� �� �

-ϕ nð Þ (10)

Averaging across many (J) we get

EV nð Þ=V nð Þ= 1
J

XJ
j= 1

V nð Þj (11)

Consequently, funds that pay off well
when wealth is low will get a higher valuation
even when their average returns are identical
or even lower than those hedge funds that
synchronize their losses with losses in the
economy.
In order to model the frictional costs of

diversification, we introduce two cost functions.
The first simply models the increase in fixed
costs that arise when an additional fund is added
to a portfolio. These costs can be thought of
as monitoring costs (hire qualified analysts,
consultants, buy software, data, or incur other
due diligence costs like costs of flights, hotel).
All this is consumed in annual fixed costs f per
additional fund; hence, costs per months as
a fraction of assets under management (aum)
are given by

ϕ nð Þ= - n
f � aum - 1

12
(12)

In addition, we introduce rebates (θ) to
reflect buying power if an investor focuses
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on investing larger sums in a smaller number
of funds.

ϕ nð Þ= - n
f � aum - 1

12
+ b � log aum

n

� �
� θ
12

(13)

The size of the rebate depends on log(aum/n), that
is, it rises with the average fund size. We apply a
scaling factor b to control the range of rebates.
Typically one would set b equal to the inverses
of the log of the maximum mandate size in
a given study, such that the maximum mandate
gets a full rebate θ/12 while all other mandates get
a lower rebate. We use this valuation measure to
calculate where (dEV(n)/dn)= 0 to arrive at the
optimal number of CTAs in a portfolio.

CASE STUDY #1: OPTIMAL
NUMBER OF CTAs IN A MEAN

VARIANCE FRAMEWORK

Our first case study looks at potential
differences in optimal diversification when

diversifying across large or small CTAs. The
data for this case study are summarized in Table 1.
We use monthly data from the Barclays Managed
Futures database stretching from January 2007
to January 2012, where size is defined as average
assets under management (AUM) between
January 2011 and January 2012. Small funds are
defined as funds with AUM smaller than 100
million. No attempt has been made to filter out
micro CTAs (CTAs with less than 5 million
under management) so the number of funds is
large and investing in this quintile might not be
entirely realistic. Medium-size CTAs are defined
by AUM ranging between 100 and 750 million,
while large CTAs are defined by AUM above
750 million.2

Comparing CTAs across the size dimension
reveals some interesting differences. First, large
CTAs display the lowest average volatility
(13 per cent) and the highest average correlation
(0.8). The high correlation might be due to the

Table 1: Managed futures – size versus key characteristics

Small Medium Large

Definition AUM smaller than
100 million

AUM between 100 and
750 million

AUM larger than
750 million

# of funds 332 137 60
Average volatility 19.98 14.55 13.0
Average internal correlation 0.33 0.46 0.80
Average Sharpe 0.50 0.62 0.56
Median Sharpe 0.55 0.56 0.53
5% Percentile Sharpe −0.21 0.08 0.07
95% Percentile Sharpe 1.22 1.40 1.25
1/n Sharpe 0.96 0.91 0.78

The table presents average volatility (aggressiveness), average correlation (diversification benefit), average

SHARPE (skill) as well as the SHARPE of an equally weighted portfolio for managed futures bucketed into three

size categories. Our data stretch from January 2007 to January 2012. Size is defined as average AUM between

January 2011 and January 2012.

Source: Barclays Managed Futures Database.
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fact that large CTAs originate from the same set
of ideas, as some of them are just early offspring
of other large CTAs. Smaller CTAs try instead
to bring in new ideas as they can’t afford to be
perceived as ‘me too’ products. This is reflected
in their low internal correlation (0.33). Small
CTAs want to grow with performance and
their large volatility (19.98 per cent) reflects the
call-options-like feature of hedge fund business
models. Large funds, on the other hand, display
lower volatility. This reflects the fact that they
have more to lose from drawdowns (large
redemptions), as well as the fact that their size
makes it difficult to operate with the same level
of aggressiveness as their smaller peers.
All this should clearly affect the optimal

number of CTAs in an investor’s portfolio.
The basic information in Table 1 contains all
inputs needed to apply (8). We start with an
example. Imagine a small investor with 10
million assets under management willing to
invest in large CTAs. Her risk aversion is
2 and she faces fixed costs of 15 000 USD per
additional fund.3 How many CTAs will this
investor find optimal? The optimal solution
becomesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 0:132 � 1 - 0:8ð Þ 0:015
10

� � - 1q
= 2:12 (14)

We can broaden our calculations to varying
levels of assets under management and risk
aversion, as displayed in Figure 1 where
various ‘iso-diversification’-curves are shown.
These curves describe the location of aum
and risk aversion combinations that would
yield the same optimal number of funds. Each
curve describes the tradeoff between risk
aversion and assets under management. A small
number of assets in a portfolio are constant with
either a very large investor and very low risk

aversion or a very small investor and very high
risk aversion.
Investing in large funds – that are often

lookalikes – has limited payoffs and so the
number of funds should be kept small unless
risk aversion becomes large.

CASE STUDY #2: OPTIMAL

NUMBER OF CTAs IN

CONTINGENT CLAIMS
FRAMEWORK

In this section we apply the more general state
price deflator approach to a set of CTA returns
in order to find the optimal number of CTAs.
Our starting point is using the implied risk
aversion of a power utility investor who invests
100 per cent of his wealth in the US equity
market to define a representative investor. We
use 10 years of monthly data from January
2002 to December 2011 where the one-month
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mean variance investor.

The contour plot displays the optimal

number of CTAs using (8) as a function of
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management for the universe of large CTAs,

that is, ρ= 0:80; σ2 = 0:13 and f=0.015.
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US risk-free rate and US equity market excess
returns come from the Fama and French research
database. We calibrate the state price deflator
as described in Appendix B and plot it across
time. The result of this is shown in Figure 2.
The importance of performing well in down

markets in order to score a high valuation
measure is evident from the figure. Hedge funds
that perform poorly in times of down markets
(in general short volatility strategies) will be
penalized for this behaviour with respect to
investor valuation. This effect will become
even more pronounced for higher risk aversions,
where our valuation measure becomes more
and more centric in a few down markets.
Suppose we now want to use the above state

price deflators to find the optimal number of
CTAs for the period January 2002 to December
2011. First, we select all funds from the Barclays
Managed Futures databank that show a complete

10-year series of monthly returns and are
described in the databank as technical/
systematic/diversified funds. Second, we
also require those funds to be denominated in
USD. After applying these criteria we are left
with 74 funds. Imagine we use cost function (12),
that is, a cost function that only incorporates the
stepwise increase in fixed costs once a new fund
is added to the portfolio. We set γ= 2.3, f= 0.01,
aum= 50 and J= 50 000, that is, we perform
50 000 simulations for a power utility investor
with risk aversion of 2.3, 10 000 USD stepwise
fixed costs and 50 million assets under
management. Figure 3 plots the distribution
(as a boxplot) of our valuation metrics given as
a function of n, adding two new funds at a time.
The highest portfolio valuation is reached for

four funds, that is, our investor finds it optimal to
allocate 12.5 million per fund. We can interpret
the valuation measure as monthly alpha of
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Figure 2: State price deflator.

We plot the implied state price deflator for an economy where the representative display

power utility investor finds it optimal to hold 100 per cent in US equities. Our data span

10 years of monthly data from January 2002 to December 2011. The one-month US risk-free

rate and US equity market excess returns come from the FAMA/FRENCH research database.
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around 70 bps versus a 100 per cent investment in
US equities with alpha of 0 per cent. In order to
generalize this result, we repeat the above analysis
for investors with 10, 50, 100 and 500 million
assets under management, and risk aversions of
2.3, 10 and 50 for both cost functions.4 The
results are shown in Table 2.
Panel A provides several interesting features.

As in the mean variance case, we see that higher
AUM allow a larger number of CTAs. Equally, as
the fixed costs of investing into an additional
CTA simply become lower (as a percentage of
AUM), the number of funds increases with assets
under management. Higher risk aversion also
means that an investor is willing to give up more
return (pay for additional CTAs) in order to
reduce portfolio volatility. The optimal number
of CTAs rises with risk. For large risk aversions
this seems excessive. An investor with 10 million
AUM and risk aversion of 50 would still be
willing to invest in 14 funds, that is, to incur costs
of 1.4 per cent of portfolio size without
expectations of increased returns. Where does
this come from? Note that higher risk aversion

# of randomly selected CTAs
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Figure 3: State price deflator.

Optimal diversification curve according to our valuation metric in (10) for γ=2.3, f= 0.01,

aum= 50 and J=50000.

Table 2: How many CTAs make a diversified

portfolio?

Risk aversion

2.3 10 50

Panel A

AUM

10 2 4 14

50 4 10 36

100 8 12 >40
500 22 >40 >40

Panel B

AUM

10 2 4 18

50 2 8 24

100 2 10 22

500 4 12 >40

We display the optimal number of CTAs for investors

with varying risk aversion and assets under manage-

ment. Frictional costs of diversification are assumed to

follow either (12) with 10 000 USD per additional

fund (Panel A) or (13) with a rebate θ of 50bps and

maximum account size for rebates of 250 million

(Panel B).
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also means that the state price deflator becomes
very large in a few extreme down markets. Why
is diversification so important in those markets,
that is, why do tail risk-sensitive investors need
many CTAs? The answer to this can be found in
Figure 4, which plots the cross-sectional volatility
of CTA returns over time.
We see that the dispersion of returns is highest

(that is, the correlation between CTAs is lowest)
in extreme market states. This is worrying for
CTA investors as they can’t be sure that
diversifying into only a few CTAs will provide
protection for asset owners. In extreme months,
some funds will have the optimal trades on, while
some are still on the other side as their long-term
models are caught out by trend reversals. Markets
with high volatility, that is, large unanticipated
swings in asset prices, will amplify even small
differences in positions and the CTA universe
will display inhomogeneous performance in
times of crisis.
Investors with high risk aversion should

allocate into CTAs as a group (as CTAs provide

tail insurance) and invest in many CTAs of this
group to ensure that a CTA portfolio actually
provides tail insurance in down markets.

CONCLUSION

This article shows that in order to find the
optimal number of CTAs in a portfolio (or any
group of assets) it does not suffice to simply
calculate/plot portfolio volatility as a function of
portfolio size and choose the optimal number
where additional diversification becomes ‘small’.
Surely we must be able to do better than that.
Instead, the frictional costs of diversification, the
amount of assets under management, the degree
of risk aversion and the state dependence on
hedge fund payoffs matter to investors. This
article presented two practical and easy to
implement methods that allow us to calculate the
optimal number of equally weighted CTAs for
investors who can’t distinguish between CTAs.
We found that portfolios containing more
than 40 CTAs do not necessarily display
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series of monthly returns.
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over-diversification. They can simply arise out of
a combination of large assets under management,
high risk aversion and low frictional diversification
costs. We also find that valuation measures based
on realistic preferences lead investors to portfolios
containing more rather fewer funds. This
contrasts with earlier claims that adding
more funds increases tail risk. We find that
that CTA dispersion increases in extreme
down markets as small differences in positions
become amplified. Highly risk-averse investors
should therefore diversify more.

NOTES

1 Assume a universe of hedge funds with
average return μ. Sampling all funds without
replacement generates in every sampling the
average universe return such that the average
trivially equals μ again. On the other hand,
sampling one fund many times creates
a return that is different for every sampling,
but the average converges against μ, where
convergence depends on the number of
samplings.

2 Clearly our choice of data induces survivorship
bias, but the case studies’ aim is to add an
example to our concept rather than deal
with the many implementation details
real-world investors have to face.

3 What does a risk aversion of 2 practically
mean? We know from standard portfolio
theory that a mean variance investor
optimally allocates a fraction w= μλ−1σ−2 of
his wealth into the risky asset, where μ and
σ2 denote expected return and risk, while
λ describes risk aversion. For μ= 0.08,
σ= 0.2, a risk aversion λ= 2 translates into an
optimal allocation of 100 per cent into the
risky asset. Low risk aversions model investors

that are willing to take substantial risks, while
high risk aversions lead to less risky portfolios.

4 Note that for higher risk aversions our
valuation can no longer be interpreted as
alpha. Instead we can interpret our deflators as
a subjective valuation rather than a no
arbitrage valuation measure.
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APPENDIX A

State price deflators for performance

measurement

Let Λm denote the state price deflator for m= 1,
…,M equally likely states of the world, defined
by the marginal utilities for a representative
investor

Λm =
u0ðWmÞ

1
M

PM
m= 1

u0ðWmÞ
1 + cð Þ - 1 (A.1)

where u( ) denotes the preferences of a
representative investor and Wm denotes the
wealth of the representative investor in state m.
The riskless rate is given by c. We use equally
likely states of the world as this facilitates our
empirical work using equally time spaced return
from a data bank. The valuation of a single CTA
with return Rm in state m in (A.1) is found by
applying the state price deflator across all states
of the world

V = 1
m

XM
m= 1

Λmð1 +RmÞ - 1 (A.2)

This valuation measure will put more weight
on returns that occur in states where Λm is high,
that is, in those states of the world where
marginal utility is high or equivalently where
wealth in the economy is low. Consequently,
funds that pay off well when wealth is low will
get a higher valuation – even when their average

returns are identical – than those hedge funds
that synchronize their losses with losses in the
economy. We need to find EV(n), that is,
our expected valuation measure for a n fund
portfolio. Suppose in the jth draw we sample
n funds, that is, we sample a set Sj(n) that contains
n index numbers, where each index number
identifies a given CTA. For a single draw j
we can now value a CTA portfolio with
n randomly drawn funds according to

V nð Þ= 1
m

XM
m= 1

Λm 1 +
X

i2 Sj nð Þ
1
nRi;m -ϕ nð Þ

0
@

1
A - 1

(A.3)

where ϕ(n) is defined as in (12) or (13). All
draws are sampled independently as CTA returns
do neither exhibit statistically significant serial
correlation (in which case we would have
employed sampling from blocks of random
lengths) nor temporal dependency in their
second moment. This process is repeated
across j= 1,…, J samplings and the expected
value of an n fund portfolio is given by

EV nð Þ= 1
J

XJ
j= 1

1
M

XM
m= 1

Λm

 

´ 1 +
X

i2 Sj nð Þ
1
nRi;m -ϕ nð Þ

0
@

1
A - 1

1
A ðA:4Þ

We use this valuation measure to calculate where
(dEV(n)/dn)= 0 to arrive at the optimal number
of CTAs in a portfolio. Note that the only
randomness in our simulations arises from Sj(n).

APPENDIX B

Calibration of a state price deflator

To apply state price deflators to real-world
data we need to make assumptions on the
investor’s utility function and on the asset our
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representative investor holds. Without
apology, we assume power utility, that is,
uð1 +RUS;mÞ= ð1=1 - γÞð1 +RUS;mÞ1 - γ where
marginal utility is given by

u0 = 1 +RUS;m
� � - γ

(B.1)

Our representative investor is further assumed to
hold 100 per cent of his wealth in US equities.
Calibration involves choosing γ to satisfy the
first-order condition of a utility-maximizing
investor as given in (B.2)

1
m

XM
m= 1

1 +RUS;m
� � - γ

RUS;m - c
� �

= 0 (B.2)

which is a simple numerical exercise. We arrive
at γ= 2.3 for the above-described data set. Our
implied risk aversion is low, as the past 10 years
of US equity returns provide a SHARPE-ratio
of just 0.22. Any investor willing to accept that
position must display low aversion to risk, that
is, be willing to accept a small return per unit
of risk. Substituting the expression for marginal
utility given by (B.1) into (A.1) and noting that
Wm= 1+RUS,m, we get (B.3)

Λm =
1 +RUS;m
� � - 2:3

1
M

PM
m= 1

1 +RUS;m
� � - 2:3 1 + cð Þ - 1 (B.3)

This exercise can be applied to other one
parameter utility functions. Researchers can
also use bootstrapping methods to test for the
statistical significance of estimates.

APPENDIX C

Frictional diversification costs and

optimal number of assets with return

information and mean variance

preferences

Let μi and wi denote the expected return
and weight for asset i and σij the covariance

between asset i and j. We now need to
maximize

max
w;δ

Xn
i= 1

wiμi -
Xn
i= 1

δi

 !
f

aum (C.1)

under the following constraints

Xn
i= 1

Xn
i= 1

wiwjσij⩽ σ (C.2)

Xn
i= 1

wi = 1 (C.3)

wi⩽Mδi (C.4)

0⩽wi⩽1 (C.5)

δi 2 0; 1f g (C.6)

Equation (C.1) models the expected portfolio
return given return forecasts as well as the
number of funds (Σi= 1

n δi) multiplied by the
monitoring/selection costs, f /aum, per fund (as a
percentage of AUM). Here δi is defined as an
integer variable (taking on either a value of
0 or 1) as in (C.6). As an asset is either in or out
we pin down the value of this integer value by
(C.4), where M is a ‘large’ number (for example,
10). If an asset is included (even at tiny size), the
inequality is only satisfied for δi= 1. As soon as it
leaves the optimal solution δi must assume a value
of zero. Equation (C.2) and (C.5) are the usual
budget and individual position constraints. The
system (C.1)–(C.6) can be solved with a quadratic
solver allowing integer constraints as in
NUOPT™ for SPLUS™.
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