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ABSTRACT The hedge fund industry has experienced some very troublesome periods in

the recent past. In this study, we test the efficiency of simple and advanced risk measures

during these difficult market periods according to the Basel II requirements. We

concentrate on Fund of Hedge Fund (FoHF) data, as some studies propose that they

suffer least from database and measurement biases, and are therefore likely to yield the

most representative results compared to other alternative investment data. We examine

model stability and risk measure efficiency using unconditional and conditional GMM-

based and likelihood ratio tests, as well as independence tests. We find that model stability is

very dependent on the successful specification of autoregressive and volatility models. In

addition, custom quantile estimation is less susceptible to misspecification than volatility

models. Further, we assess the hypothesis of market efficiency for the special case of FoHF.

Finally, we find evidence of different level of managerial skill in terms of asset choice,

allocation and market timing.
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INTRODUCTION
The hedge fund industry has grown

tremendously during the past 15 years. By

the end of 2008, more than 10 700 hedge funds

were listed in the HFR database. Hedge funds

are private investment partnerships, in which

both the investor and the manager make

substantial personal investments. Hedge funds

invest in long and short positions, leverage

and derivatives, as well as illiquid markets such as

real estate and concentrated portfolios. One

of the fundamental goals for hedge funds is

to reduce risk exposure to market cycles as far

as possible.

Hedge funds1 may not advertise in public and

only a maximum of 500 sophisticated investors

or offshore corporations are allowed to invest in

them. Typically hedge fund investment involves

a lock-up period for capital, as well as minimum

investment thresholds that may range from

several US$10 000 to several $million.

Hedge fund manager compensation is

usually performance linked. The majority of

hedge funds have a high-watermark provision

that requires the manager to make up for

previous losses before an incentive fee is paid.

In addition, investors may sometimes ask for

a rebate of previously charged management fees.

These conditions provide a more powerful

incentive scheme than those for mutual fund

managers.

In this study, we investigate the efficiency and

accuracy of risk measures in the context of

FoHF. So far, current literature has focused on

investigating the nature of the FoHF industry

and FoHF portfolio-creation methods. In his

overview of the FoHF industry, Ineichen2

stipulates that FoHF have additional specific

advantages compared to normal HF. Managers

are ‘both managers and advisors’, corroborating

the later argument by Fung and Hsieh3 of FoHF

being preferred by conservative investors.

Amenc et al 4 conduct a survey, which indicates

that the great majority of FoHF managers apply

only simple, traditional risk indicators. As a

consequence, FoHF risk properties appear to be

largely opaque, even to their managers.

According to Olszewski,5 FoHF specifically add

value through diversification of alternative assets

that correlate only weakly with traditional

markets, thus minimizing exposure to systemic

risk. He further finds that FoHF portfolios

comprising anti-persistent and quasi-random

return processes display a persistent return profile

and, at the same time, exhibit great persistence

against extreme events. Denvir et al 6 show that

different HF strategies are often significantly

correlated and that the construction of efficient

FoHF portfolios requires skill, experience and

efficient risk monitoring. All authors use

traditional dispersion measures or the classic

VaR/CVaR measures for the assessment of

FoHF volatilities, risk exposures or optimal

FoHF portfolios.

Hence, our goal in this study is to assess

the different parametric methods of risk

quantification in the context of FoHF for

their general efficiency under the Basel II

conditions. In this article, we choose to

implement parametric methods for VaR

estimation in order to reduce the risk of data

bias-induced errors of risk estimation. Each

measure is applied to each fund of the sample

with the goal of assessing the empirical

mathematical robustness of the approach.

Specifically, we investigate whether advanced

coherent risk measures can improve the practise

of risk management. For that, we analyse

efficiency and robustness and evaluate the power

of prediction of fund returns.
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FUNDS OF HEDGE FUNDS DATA

ANALYSIS
We extracted 10 years of price series data for the

period of 31 December 1998 – 31 December

2008. During this period, financial markets have

been subjected to several serious market

corrections, which makes studying the efficiency

of risk assessment tools a particularly interesting

and current topic. Data were obtained from the

Hedge Fund Research (HFR) commercial

database, which is one of the most complete

databases presently available. Under the

conditions of monthly reporting and fund assets

at inception amounting to at least US$ 5

Million, we extracted 2416 FoHF (of which

1805 were alive on 31 December 2008) return

time series out a total of 10 761 hedge funds in

the database. In this selection, we include

defunct and alive funds in order to minimize the

effect of survivorship bias. We then filter this

pool by only including FoHF that have existed

for consecutive 36 months or more, defining our

final pool of 1465 FoHF (of which 1001 were

alive on 31 December 2008).

All analysis has been carried out on log returns

of the original price series:

rt ¼ lnðXtÞ � lnðXt�1Þ ð1Þ

Return series have a monthly periodicity

and are based on 12 months per year, while

assuming identical lengths for each month.

The rolling window size for all statistics is

kept at 12 months length, as for dynamic

assets market forces have changed significantly

after a maximum of 24 months. For further

discussions, see Blum7 and others. Table 1

reports the general statistical properties of our

FoHF sample.

Investigation of our sample properties reveals

that average sample skewness is negative and

spread narrowly and symmetrically about its

mean, which indicates significant non-normality

but also less fat tails than pure hedge funds.

Table 1: Synthesis of statistical data properties of the FoHF sample

Mean Median SD Max. Min.

Size (US$) 232.88M 67.78M 565M 9.727M 0.016M

Age (months) 63.06 59.00 0.32 116.00 36.00

RETURN Statistics

Mean 0.0050 0.0047 0.0029 0.0330 �0.0060

SD 0.0189 0.0169 0.0099 0.1123 0.0022

Skewness �0.7641 �0.7398 0.9185 5.9910 �5.6793

Kurtosis 5.3025 4.0064 3.8517 42.7303 1.9022

JB-test ( p-value) 0.586% 0.100% 1.109% 4.999% 0.000%

Max. 0.0454 0.0374 0.0324 0.5613 0.0109

Min. �0.0548 �0.0484 0.0331 0.0030 �0.3388
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Further, over 95 per cent of positive and

negative extreme monthly returns are below the

10 per cent hurdle and cluster around the 5

per cent mark. This indicates more effective

market de-correlation and less general sensitivity

to market extreme events. Moreover, we find

that the great majority of FoHF significantly

reject the null of return normality, although

few elements pass the Jarque–Bera test at the

5 per cent confidence level.

In unreported work, we find that most funds

display statistically significant tail activity and

some funds even exhibit clustering in the

extremes of the left tail.

Next, we test our sample for the average levels

of autocorrelation, moving average effects,

volatility clustering and long-term persistence/

anti-persistence. Table 2 reports the test results.

We find persistent autocorrelation effects in

returns similar to the case of general HF, using

the Ljung-Box (1978)8 Test. ARCH Tests

indicate the existence of strong volatility

clustering. Long-term persistence is determined

by the Hurst (1951)9 exponent. Empirically, we

can state that FoHF are more likely to exhibit an

anti-persistent (mean reverting) return process.

Persistent FoHF are only weakly persistent.

These results indicate that FoHF tend to be

better diversified than HF, whose Hurst

exponent may sometimes exceed 0.65,

see Olszewski.10

NON-COHERENT AND

COHERENT RISK MODELS
In this section, we will briefly outline our testing

set of coherent and non-coherent risk measures.

A coherent risk measure is a risk measure that

fulfils coherency axioms as first proposed by

Arditti11 and then more recently improved by

Arztner,12 Föllmer and Schied,13 Frittelli and

Rosazza Gianin,14 Acerbi et al,15 Acerbi,16

Cheridito and Stadje,17 and Christofferson.18

The coherency axioms of monotonicity,

subadditivity, convexity, positive homogeneity,

translation invariance and relevance ensure good

behaviour, consistency and boundedness of the

risk measure in the context of risk assessment

and portfolio optimization.

The VaR

The VaR has rapidly become the standard

quantitative benchmark for measuring the risk

exposures of financial portfolios and has become

Table 2: Synthesis of tests for statistical time series effects

TEST statistics Mean ( p-value) Mean Q-statistics X 20.10,15

LB-Test (AR 1) 58,59% 14,41 22,31

LB-Test (MA 1) 64,55% 12,57 22,31

ARCH(1)-Test ( p-val) 82,92% 9,85 22,31

Mean Median SD

Hurst exponent 0.4511 0.4885 0.2458

0oHo0.5 0.5oHo1.0 —

Hurst-sample 52.29% 47.71% —
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a standard concept in risk management, see

Pichler and Selitsch19 and Jorion.20 Simply put,

the VaR of a portfolio is the fraction of portfolio

value being risked with some fixed probability.

In other words, the VaR figure is a quantile loss

function of the portfolio return distribution.

We first evaluate all FoHF using standard

variance techniques for the simplest VaR

measure, based on the assumption of return

normality and homoscedasticity. This risk

measure will then serve us as a benchmark for the

remaining risk models. Formally, for our chosen

Basel II 1 per cent coverage threshold, the classical

Normal-VaR model is then written as:

VaR ¼ m� Faðx; s2Þ � s ¼ m� 2:32 � s ð2Þ

Where m is the mean, a is the VaR threshold

(1 per cent) and Fa( � ) is the Normal

distribution. Many authors have shown that the

hypothesis of normal return distributions is not

valid for financial assets. We confirm this again

for our sample of FoHF in the previous section.

High tail activity and return dependencies

induce fat tails and skewness, which cannot be

modelled successfully under the normal

distribution. Thus, the normal quantile

systematically underestimates risk especially for

VaR thresholds far into the tails. For this reason,

we include the Cornish-Fisher (1937)-VaR,

which takes into account higher moments by

adjusting the Gaussian distribution quartile ratio

according to excess kurtosis and skewness

parameters using a point estimate derived

through a fourth level Taylor Expansion.

Although the quantile estimate now considers

all first four moments, the underlying return

distribution hypothesis remains Gaussian.

Formally, we have:

VaRCFðaÞ ¼ m� OðaÞ � s

with

OðaÞ ¼ zðaÞ þ
1

6
ðzðaÞ2 � 1ÞS

þ
1

24
ðzðaÞ3 � 3zðaÞÞK

�
1

36
ð2zðaÞ3 � 5zðaÞÞS2 ð3Þ

where O(a) is the Cornish-Fisher Value,

z¼F–1(a, 0, 1) is the inverse of the standard

Normal distribution and all remaining

parameters remain as before. At present, these

traditional measures are still the most widely

used risk measures in financial institutions, and

also form the basis for Basel II Agreements.

Unfortunately, they are neither coherent, nor

consistent with portfolio theory nor do they

capture the dynamics of large losses. As we have

seen in Section two ‘Funds of hedge funds data

analysis’, our FoHF sample is heavily influenced

by time series effects. This observation

invalidates the assumption of constant means and

variances. Different types of dynamics need to be

modelled for both parameters.

Conditional VaR

As we can see from Table 2 in Section two

‘Funds of hedge funds data analysis’, all FoHF

display significant degrees of autocorrelation in

returns and heteroscedastic variance. More

precisely, the latter displays significant levels of

ARCH effects, persistence and asymmetry in the

variance. This invalidates the hypotheses of

independent, identically distributed (IID)

returns and stationarity upon which the

traditional VaR models have been based so far.

The family of GARCH-based VaR models

address these problems by directly modelling the

conditional mean and conditional variance

processes of a return-generating process. The first

On the efficiency of risk measures for funds of hedge funds
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Autoregressive Conditional Heteroscedasticity

(ARCH) model was developed by Engle (1982),21

which was followed by the introduction of the

generalized ARCH model (GARCH) by

Bollerslev (1986)22. Presently, literature yields a

vast refinement of this base model. In a survey of

more than 400 variance models, Hansen and

Lunde23 and Theodossiou and Bali24 find that the

GARCH (1, 1) lag-1 coupled with ARMA (1, 1)

models represent by far the best approximation

of variance processes. For this reason, and because

of restrictions in data availability, we limit

ourselves to the use of first lag models only.

We extend the initial ARMA(1, 1) equation first

by the symmetric GARCH(1, 1) model and then

the EGARCH(1, 1) and GJR-GARCH(1, 1).

EGARCH (Nelson, 1991)25 allows for

quantifying asymmetries in clusters over time,

whereas GJR-GARCH (Glosten, Jagannathan

and Runkle, 1993)26 allows for quantifying the

difference in impact on volatility for positive

and negative returns.

ARMA:

rt ¼ c þ a � rt�1 þ b � et�1 þ et ð4Þ

GARCH:

s2
t ¼ gþ a � e2

t�1 þ b � s2
t�1 ð5Þ

EGARCH:

s2
t ¼ gþ a � gðet�1Þ þ b � lnðs2

t�1Þ

gðet�1Þ ¼ yet�1 þ o½jet�1j � Ejet�1j� ð6Þ

GJR-GARCH:

s2
t ¼ gþ a � e2

t�1 þ b � s2
t�1 þ f � It�1ðe2

t�1Þ

It�1 ¼ 1 for e2
t�1o0; and It�1 ¼ 0 otherwise: ð7Þ

With etBN(0,st). Parameters a and b are

regression coefficients, which satisfy

0paþ bp1, and st and et are the conditional

variance and conditional mean terms,

respectively. For a successfully defined model

conditional variance residuals n should mimic a

white noise process. We test this property using

the Ljung-Box Q-Statistic Test. Implementing

the conditional models into VaR, the new

empirical model now becomes:

VaRt ¼ m� st � Fað�Þ ð8Þ

where Fa ( � ) is a distribution quantile. The next

step in our study will be to assess the validity of

the quantile estimation framework.

The quantile estimation framework

Now we expand our set of VaR measures further,

based on both conditional variance models and

custom-fitted quantiles. As we have shown above,

the assumption of Gaussian-distributed returns is

invalid for almost all FoHF as a consequence of

high tail activity and variance clustering. We

therefore choose to replace the normal

distribution by the now popular Skewed-

Generalized-T (SGT)24–28 probability density

function (PDF). It is well known that the SGT

PDF is one of the most powerful analytic PDFs

currently available in literature because of its high

degree of flexibility: it nests eight well-known

distributions. We choose this particular

distribution function because of its high degree of

scalability: next to skewness and kurtosis, the SGT

has a fifth parameter controlling tail thickness.

This feature makes it particularly useful for our

purpose as we can model the geometry of the loss

quantiles more precisely. Formally, the SGT is

defined as follows:

SGT Xjm; s; n; k; lð Þ

¼
C

s
1þ

jX � mþ dsjk�
ðn� 2Þ=k ð1þ signðX � mþ dsÞl

�k

yksk

0
B@

1
CA
�nþ1

k

ð9Þ
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with

C ¼
k

2ððn� 2Þ=kÞ1=k � y � Bð1=k; n=kÞ

y ¼
k

n� 2

� �1=k

�Bð1=k; n=kÞ1=2

� Bð3=k; ðn� 2Þ=kÞ�1=2
� SðlÞ�1

SðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3l2

� 4A2l2
p

A ¼Bð2=k; ðn� 1Þ=kÞ

� Bð1=k; n=kÞ�1=2
� Bð3=k; ðn� 2Þ=kÞ�1=2

d ¼ 2lASðlÞ�1

where, m is the fitted mean, s the fitted standard

deviation, n is the tail parameter, k the height

parameter, l the skewness parameter and B( � )

the Beta Function, with n42, k40 and

�1olo1. All other parameters are as

before.

The SGT contains several nested probability

density functions as special cases of the parameter

configuration. Table 3 on the next page

summarizes all nested distributions. For our

experiment, we fit the SGT to our data set using

Maximum Likelihood Estimation (MLE). From

the resulting parameters, the a¼ 1 per cent

coverage quartile is determined as required by

Basel II. The combination of custom quantiles

and conditional variances will then be used to

determine advanced VaR estimates. To test for

the impact of difference between the traditional

Gaussian quartile estimate approach and the

customized-quantile model, we test both

conditional-Gaussian and conditional-SGT-

based VaR models.

The family of coherent VaR

measures

We use different types of Coherent VaR

(CVaR) measures, sometimes also referred to

as Conditional VaR or Average VaR (AVaR).

According to Rachev et al,33 the n-level average

of VaR violations is computed through the

following integral:

CVaRðnÞa :¼
1

a

Za

0

CVaRðn�1Þ
p ðXÞdp ð10Þ

Table 3: Synthesis of all probability density function nested in the SGT

Parameter configuration Description Original Author(s)

l=0 Generalized T-distribution McDonald and Newey (1988)29

K=2 Skewed-T distribution Hansen (1994)30

n=N Skewed generalized error distribution Theodossiou (2004)31

n=N, l=0 Generalized error distribution Subbotin (1923)32

n=N, l=0, k=1 Laplace distribution (double exponential) Laplace

n=2, l=0, k=0 Cauchy distribution Cauchy

n=N, l=0, k=2 Normal distribution Gauss

n=N, l=0, k=N Uniform distribution — none —

On the efficiency of risk measures for funds of hedge funds
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where a is the coverage threshold and VaRp are

the historical VaR values excessive to VaRt and n

is the order of CVaR. In our study, we also

examine higher order CVaR that is the ‘CVaR

of CVaRs’. For the discrete case, for level 1

CVaR we have:

CVaRa :¼
1

a

X
ðVaRt; aoaÞ ð11Þ

Literature also offers a large variety of variations

of the CVaR measure. For our work, only the set

of spectral risk measures was feasible because of

stability issues during models estimation.

Spectral risk measures belong to the family of

coherent risk measures and were first defined by

Acerbi15 and Artzner et al.34 More precisely, the

spectral risk measure is a special case of CVaR,

where VaR measures are time-weighted using a

risk spectrum, a non-constant averaging

functional, instead of using the simple, constant

arithmetic average. Formally, spectral risk

measures are defined as:

rfðXÞ ¼
Z1

0

VaRpðXÞfð pÞdp ð12Þ

Where f( p) is the risk spectrum or the

weighting functional. Acerbi16 finds that models’

risk spectra need to be calibrated individually to

obtain the best risk performance. Acerbi,16

Artzner et al 34 and Rachev et al 33 formally

define and later refine the properties of risk

spectra, namely positivity, a strictly non-

increasing domain and full normalization of the

weighing function.

We use only one single risk spectrum

function, namely the widely known

Exponentially Weighted Moving Average

(EWMA), because it attributes more importance

to recent tail events than a linear weighting

model. According to Acerbi,16 the choice of risk

spectrum is purely subjective and there exist no

intuitive reasons why one should be preferred to

the other. The EWMA weighting function is

algorithmically defined as follows:

fð pÞ ¼ ð1=SwiÞ � �w

with

�w ¼
Xl

i¼1

ð1� yÞi�1; y ¼ 2=ðl þ 1Þ ð13Þ

where f(p) is the normalized risk spectrum, w̄

the vector of non-normalized weights and y the

exponential decaying factor of the weighting

function and l the length of the VaR vector to be

weighted.

Performance of risk models

We perform several types of backtests in order to

assess and quantify the accuracy and quality of

the different risk assessment models, using

methods by Kupiec,35 Christofferson36 and

Candelon.37 We construct VaR violation

sequences and subsequently test for achievement

of threshold a¼ 1 per cent and conditional

correlations in the sequences.

EMPIRICAL RESULTS

Model estimations

Here, we provide a brief overview of the VaR

estimations, providing an impression of the

empirical qualities and weaknesses of the

different VaR estimation techniques. Table 4

below reports empirical model statistics for all

1465 FoHF.

Laube et al
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From these results, we can state that non-

coherent risk measures generally seem to be

outperformed by coherent risk measures.

Globally, all coherent risk measures have

preferable VaR violation scores when compared

to their non-coherent counterparts. Further, the

general mean level of modelled risk is 50 per

cent higher for coherent risk measures than for

non-coherent ones. Classic VaR, with the

highest violation score and the lowest average

level of risk displays highest violation scores and

very significant serial correlation of VaR events.

As we proceed down the table from more

sophisticated VaR measures towards coherent

VaR measures, average score and serial

correlation of VaR violation incidents declines.

Specifically, the introduction of conditional

variance models contributes most to the

significant improvement on model performance.

Adding custom quantiles further improves that

performance. From our results, it seems that

successful volatility modelling is the most crucial

factor for model performance, followed by

coherency structure (B25 per cent of model

improvement) and finally by custom non-Gaussian

quartiles (B10–15 per cent of improvement).

Table 4: General overview of the results for different VaR estimates

Mean SD Max. Min.(%) Violations LR(%) ( p)(%)

Non-coherent risk measures

VaR �0.0178 0.0110 0.1107 0.0010 3.49 0.7843 74.96

CF-VaR �0.0198 0.0166 0.2016 0.1640 4.30 8.8727 49.07

GARCH-normal-VaR �0.0216 0.0191 0.2504 0.2278 2.24 8.2982 44.20

EGARCH-normal-VaR �0.0215 0.0186 0.2449 0.1777 2.93 8.5748 40.71

GJR-GARCH-normal-VaR �0.0215 0.0188 0.2408 0.1935 2.30 8.4281 41.18

GARCH-SGT-VaR �0.0232 0.0168 0.1665 0.0098 2.79 10.3929 38.26

EGARCH-SGT-VaR �0.0232 0.0168 0.1676 0.0100 3.49 10.5401 37.57

GJR-GARCH-SGT-VaR �0.0230 0.0169 0.1796 0.0101 2.88 10.4615 37.98

Coherent risk measures

CVaR (normal) �0.0217 0.0147 0.1722 0.0010 2.66 8.1329 42.66

GARCH-normal-CVaR �0.0314 0.0213 0.1723 0.0020 1.84 5.4239 33.86

EGARCH-normal-CVaR �0.0335 0.0226 0.1771 0.0021 1.91 5.4463 31.92

GJR-GARCH-normal-CVaR �0.0317 0.0216 0.1921 0.0021 1.84 5.4299 32.95

GARCH-SGT-CVaR �0.0363 0.0247 0.1757 0.0007 1.53 4.1757 33.77

EGARCH-SGT-CVaR �0.0395 0.0268 0.2866 0.0007 1.56 4.1841 31.98

GJR-GARCH-SGT-CVaR �0.0370 0.0251 0.1993 0.0007 1.53 4.1857 33.04

GARCH-SGT-CVaR (r) �0.0300 0.0205 0.1736 0.0026 1.83 5.4354 33.45

EGARCH-SGT-CVaR (r) �0.0323 0.0217 0.1772 0.0026 1.90 5.4373 31.75

GJR-GARCH-SGT-CVaR (r) �0.0305 0.0208 0.1942 0.0026 1.83 5.4592 32.79
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The preferred volatility model by our sample

data is the symmetric GARCH(1, 1) model as

these risk measures display the most favourable

LR values and the lowest number of violation

events on average. It is directly followed by the

GJR(1, 1) model, which performs only slightly

worse. However, the EGARCH(1, 1) model

performs significantly less well, indicating that

temporal asymmetries of the volatility structure

seems to be less important when constructing

risk assessments than asymmetries caused by

return signs.

Efficiency of VaR measures

Efficiency cannot only be traced back to the

coherency axioms as postulated by

Christoffersen.36,18 We measure the efficiency of

risk models by assessing numerical robustness of

the estimation process. In addition, we look at

the statistical quality of our results in order to

ascertain the coherency of our risk measures

with the theoretical framework provided by

Artzner.12

Non-coherent risk measures

Comparisons among the non-coherent risk

measures show that modelling volatility structure

and fitting custom quartiles, which can take

into account asymmetric tail thickness and

skewness, are superior to simpler risk measures

(see Table 5).

Clearly, advanced non-coherent risk measures

have favourable violation sequences closer to the

required threshold of a¼ 1 per cent and also

show lower levels of conditional correlation and

inferior cost of violation during actual violation

events.

However, we can also read that the

specification of the asymmetry structure in the

conditional volatility processes makes a

significant difference: FoHF in our sample

seem to display more asymmetry in returns

Table 5: Extract of comparisons of all non-coherent risk measures

Non-coherent risk

measures

VaR(classic) CF-VaR VaR-GARCH-

normal

VaR-EGARCH-

normal

VaR-GJR-

normal

Violation Test 3.6468 3.5997 1.4409 2.2103 1.5337

LR-CC 0.7873 3.1198 2.7864 3.0775 2.9806

p-values 0.7480 0.4907 0.4542 0.4180 0.4220

RMSE 1.19E-03 1.80E-03 1.02E-02 1.41E-03 1.56E-03

VaR-

GARCH-SGT

VaR-

EGARCH-

SGT

VaR-

GJR-SGT

Violation test 1.6062 2.3749 1.6998

LR-CC 4.1079 4.2932 4.1940

P-values 0.4003 0.3938 0.3977

RMSE 1.75E-03 1.64E-03 1.71E-03
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than in volatility clusters. Classic VaR and

CF-VaR significantly underperform risk

assessments, indicating that the assessment of

variance using the moving window method is

inadequate. Unexpectedly, modelling custom

quantiles does not necessarily improve the

quality of the risk measure over time. A possible

cause may be that, with as little data at hand as

we have in this experiment, the observed return

series may not be sufficiently representative

of the true form of the underlying dynamics

of the assets.

Therefore, among this class of risk measures

the most preferable risk model is, on average, the

VaR-GARCH-Normal model closely followed

by the VaR-GJR-Normal model.

Coherent risk measures
Table 6 below presents the results of CVaR

performance tests. From this table, it is clear that,

generally, coherent risk measures assess risk levels

more reliably than non-coherent measures. With

exception of the CVaR-Normal measure, all risk

measures come very close to the required a¼ 1

per cent confidence threshold. Further, the

performance discrepancies between different

architectures of coherent risk measures are

much smaller than with non-coherent risk

measures.

Results indicate that coherent risk measures

based on GARCH volatilities lead the

performance for all CVaR model types, closely

followed by GJR models. This implies that risks

of monthly FoHF data are generally best assessed

assuming no or some asymmetry in returns.

Results for cluster asymmetry are relatively

unfavourable.

Another important observation is that level-2

CVaR outperforms all other risk measures.

Spectral risk measures are actually outperformed

by their non-spectral counterparts. These

observations indicate that greater care has to be

taken when choosing the appropriate risk

spectrum for an alternative asset.

Table 6: Comparisons of all coherent risk measures

Coherent risk measures CVaR-

normal

CVaR(1)-

GARCH-SGT

CVaR(1)-

EGARCH-SGT

CVaR(1)-

GJR-SGT

CVaR(2)-

GARCH-SGT

Violation Test 3.4927 1.2342 1.3263 1.2415 1.1276

LR-CC 0.9357 3.0569 3.0790 3.0676 2.7493

p-values 0.6264 0.3535 0.3343 0.3454 0.3510

RMSE 1.57E�06 1.53E�03 1.42E�03 1.49E-03 1.47E�03

CVaR(2)-

EGARCH-SGT

CVaR(2)-

GJR-SGT

CVaR(rho)-

GARCH-SGT

CVaR(rho)-

EGARCH-SGT

CVaR(rho)-

GJR-SGT

Violation Test 1.1711 1.1334 1.2321 1.3241 1.2444

LR-CC 2.7665 2.7565 3.0689 3.0887 3.0934

P-values 0.3324 0.3434 0.3496 0.3324 0.3430

RMSE 1.36E�03 1.53E�03 1.53E�03 1.41E�03 1.48E�03
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The implementation of custom quantile

estimates has a much stronger effect on coherent

risk measures than on non-coherent ones. The

reason for this behaviour may be in the

fundamental structure of the risk measure:

coherent risk measures also contain information

of the loss magnitude beyond the tolerance

threshold. Therefore, well-fit negative return

tails provide better information about the entire

loss structure. The CVaR measure can take this

complementary information into account,

which results in more robust estimates.

Therefore, the most recommended risk model

structure for FoHF data with monthly frequency

is the CVaR(2)-GARCH-SGT model followed

very closely by CVaR(2)-GJR-SGT. In our

experiment, CVaR-family risk measures showed

the greatest robustness against outlier influence.

Figure 1 on the next page further supports the

hypothesis of advanced coherent risk measures

being among the most preferable ones for risk

exposure analysis. It contains four p-value graphs

with simple, advanced and advanced coherent

risk measures.

Figure 1: Plots of risk measure threshold success rates as risk measure go from simple to

coherent advanced. Note that classic VaR does not display outliers, but is almost always far

from the required confidence threshold. More advanced measures have large outliers where

volatility or the custom quartile has not been modelled successfully, but in models converge

towards the required confidence threshold.

Laube et al
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From these graphs, clearly, the classic VaR

measure does not converge towards the a¼ 1

per cent confidence threshold. What is worse,

CF-VaR shows the same bad convergence

behaviour as VaR (classic), but additionally

includes very large error outliers for some FoHF.

This disqualifies it as the most unsuitable risk

assessment model in our experiment and

indicates that for some data series, the

Cornish-Fisher expansion significantly and

systematically severely underestimates the risk

exposure of the underlying asset.

As we progress to advanced risk measures, we

can see that all CVaR(2)-models converge

closely towards the a¼ 1 per cent confidence

threshold. Risk underestimation is still

statistically significant. However, the spread of

difference in risk assessment performance is only

small. This indicates that the impact of outliers is

much less significant than for less sophisticated

models. Under these circumstances, the

CVaR(2)-model family clearly crystallizes as the

best alternative for risk assessments with only

little difference between alternative conditional

volatility structures.

Robustness of models

In this section, we discuss our findings on the

subject of the mathematical robustness of the

different classes of risk measures. On closer

inspection, we find that VaR measure outliers are

created by model convergence problems. More

precisely, our analysis shows that volatility

models are more prone to misspecifications

than quantile estimates: for very large outlier

cases, risk models showed very low assessment

performance regardless of class. The problem was

concentrated around young FoHF most of the

time, indicating that likely the amount of data was

insufficient for stable convergence of the volatility

model.

Further, in some cases (o1 per cent of the

sample funds) we found convergence difficulties

during quantile estimation, where SGT family

risk measures systematically performed much

worse than Gaussian risk measures. Again, we

found that this problem is concentrated around

young funds where only very little data are

available. Quartile estimates for small return

series may be mis-specified because the limited

amount of real return data available may not yet

be very representative of the true underlying

return-generating process of the asset.

Next, we look at general robustness levels per

risk measure class. Figure 2 below shows the

maximum number of VaR estimation failures per

risk quantification method. As can easily be seen,

in the entire sample, classic VaR generally has the

lowest number of VaR failures, whereas CF-VaR

and GARCH family models show the highest

failure rate. But does this mean that classic VaR is

the most reliable risk measure? Certainly not:

classic CVaR is the most stable risk measure as it

does not model conditional variance, conditional

mean or conditional quartiles. But it is also one

of the most inefficient measures. In contrast, the

very high rate of VaR prediction failures for

advanced models can be traced back to singular

cases where modelling the conditional variance

process failed. For some rare data sets, GARCH

models simply do not converge towards a

meaningful solution. Complete failure of

volatility convergence in our entire sample could

be traced back to only two FoHF out of 1465.

In general, the great majority of volatility models

converge even if only little information is

present. Nevertheless, these models may still

carry the implicit risk of insufficient structural

specification, as we restricted ourselves to the

On the efficiency of risk measures for funds of hedge funds
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assumption that generating process followed an

ARMA(1, 1)-GARCH(1, 1) process. This

approach was chosen for reasons of parsimony

and low data availability. Hence, before accepting

volatility assessments for any FoHF data at

monthly frequency model accuracy imperatively

needs to be confirmed. We find further support

for this conclusion in literature, for example

Adam et al 38 conclude that VaR is as efficient a

risk measure as moment-based and spectral risk

measures, provided the VaR measure is calibrated

correctly.

Correlation issues

FoHF are highly dynamic and unregulated

investment vehicles and as such may be exposed

to important degrees of leverage and risk factor

concentration. It is thus natural to ask the

question whether annualized returns are in any

way correlated to the number of VaR failures,

that is, underestimated risk exposure incidents,

without primarily looking at failure magnitudes.

Figure 3 shows a set of scatter graphs that map

annualized FoHF returns against the number of

VaR failures for each risk measure. The first

graph illustrates that classic-VaR model

prediction failures cluster around 0 to 10

prediction failures for all return classes. For

standard models, high and low return outliers

display similar amounts of prediction failures

without any discernible trends. However, the

picture changes as soon as we start considering

higher moments, conditional volatilities and

Figure 2: A graphical comparison of general risk model robustness versus risk model

accuracy. The blue bars represent the maximum observed VaR violations per model on the

entire sample. The red bars indicate the achieved confidence threshold. Classic models are

numerically more robust, but fail to achieve the confidence threshold required by Basel II.

Laube et al
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custom quartiles. Risk measures then improve

on accuracy at the expense of loss of some global

numerical robustness.

Next, Figure 4 presents a risk-return

distribution of all FoHF. From this figure, we

can observe an interesting phenomenon: the

apparent departure of the risk-return

relationship originating from the Capital Asset

Pricing Model (CAPM). In fact, this is not

surprising: the universe of hedge funds and

FoHF is notorious for its opacity and its

subsequently highly asymmetric and incomplete

information flow. One of the pillars of the

CAPM assumes that information is accessible

instantaneously and at no cost for every investor.

This is not the case for the assets in our study.

In fact, information access and control presents

one of the key skills for successful asset

management in the hedge fund industry. As a

result, the market heterogeneity effects are more

concentrated and pronounced than in any other

asset class. Different ways of describing market

dynamics must be explored, such as the Fractal

Market Hypothesis (FMH), first introduced by

Peters.39

We continue our analysis by briefly presenting

a violation cost analysis. More precisely, Table 7

below compares the cost related to VaR measure

failures for each one of the models tested in this

study.

From the table, it is clear that classic risk

measures fail most critically and thus pose the

most serious threat of liquidation after faulty risk

assessment for all FoHF. On the other end of

extremes, we find the CVaR(2) family for which

Figure 3: The evolution of classic risk models to recent advanced risk models: Classic VaR

(left), VaR-GARCH-Normal and CVaR(2)-GARCH-SGT. Clearly, the most advanced models

achieve a¼ 1 per cent most consistently. However, some highly significant estimation outliers

still persist.

Figure 4: Annualized FoHF returns plotted

against CVaR(2)-GJR-SGT risk measure.
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costs do not greatly exceed the VaR threshold in

the event of a threshold violation. Thus,

although these measures exhibit a more

conservative and therefore expensive nature,

managers using advanced risk measures are much

less exposed to liquidation risk.

These observations suggest that high return

FoHF benefit from a more controlled risk

exposure, as well as a higher risk-adjusted return.

Hence, high and low return FoHF both tend to

show much less prediction failures than medium

range return FoHF. One possible explanation for

this could be that the risk model does not

succeed in estimating risk exposure correctly.

Another could be that some fund managers may

be less skilled than others and expose their fund

to higher risks, willingly or unwillingly, while

maintaining the same level of returns. For

example, this can occur through overleveraging

of the risky assets, thus overexposing the

FoHF portfolio as a whole. Similarly, pursuing

a static trading strategy while failing to

frequently assess and correct risk exposures for

portfolios invested in a dynamic asset sector

would lead to the same situation. The low

violation-return markers are low return funds

that choose to accept lower returns for less

exposure to risk factors, whereas low violation-

high return markers represent high return funds

displaying exceptional skill in quantifying and

managing risk exposures.

We can interpret these groupings as evidence

that managerial skill does matter and indeed

different skill levels exist. Going one step further,

we may venture the hypothesis that some of the

medium return FoHF may only yield medium

returns because their risk exposure is managed

insufficiently and consequently best possible

returns are reduced by inappropriate, because

inefficient, hedging strategies.

The structure of VaR violation

sequences

Next, we examine whether risk measures

performing close to the confidence threshold

a¼ 1 per cent show particular patterns for

correlations or dependences in prediction

failure. More precisely, we attempt to determine

whether risk models converging towards the

intended confidence threshold systematically

show preferable conditional coverage and

dependence structure properties.

Results for the dependence structure of

violation events indicate that, on average, for

simple risk measures one can assume weak to

medium correlation of violation events,

independently of whether threshold a was

achieved. For advanced measures, the picture is

split in two. Measures that achieve threshold a
exhibit very low or no correlation in the

violation sequence. In contrast, cases that

significantly fail to achieve threshold a always

display weak to high degrees of correlations

between consecutive violations.

This indicates that for coherent advanced risk

measures, we can usually expect a more

preferable conditional coverage and dependence

structure, on the condition that the confidence

threshold is more or less achieved.

These results imply that coherent advanced

risk measures are generally more successful at

ensuring conditional coverage of the VaR

violation threshold than advanced and simple

risk measures. Further they show weaker, and

therefore preferable, dependence structures of

violation events than simple risk measures. It is

generally more recommendable to apply

coherent risk measures when evaluating FoHF

risk exposure as they appear to filter risk

exposures more clearly, and show weaker

dependence structures of violation events.
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To summarize, Table 8 briefly outlines the two

best models for different test criteria.

CONCLUSION
In this article, we examine the efficiency of VaR-

based risk measures in the context of the FoHF

universe and under Basel II Accord stipulations.

We assessed risk measure efficiency by testing

VaR-violation sequences for the achievement of

the unconditional confidence threshold a, for

existence of autocorrelation up to several violation

lags, and for numerical robustness, which is

important for reliable risk assessment results.

We find that advanced coherent risk measures

come closest to the targeted 99 per cent

confidence threshold and further display weakest

correlations of subsequent VaR violations.

During normal market periods, the best

models, namely the CVaR(2)-model family,

protect their underlying satisfactorily. Thus,

provided no negative extreme events occur, this

family of risk measures can provide very

satisfactory risk protection and manage their

exposure at economically acceptable costs.

However, results in this work indicate that no

particular risk model can successfully protect

managers from unfavourable extreme events.

In our experiments, even the CVaR(2) model

family still fails to attain the critical confidence

threshold on an empirical basis. Further, all

models fail to protect their assets during critically

abnormal market correction periods. All VaR

measures only indicate high-risk market

conditions ex ante, meaning only after extreme

events have already occurred.

This systematic failure of risk models during

critical market times leads us to postulate the

existence of at least two different fundamental

types of randomness: mediocre and extreme

Table 8: Filtering the best models according to various quality criteria. The CVaR(2)-GARCH-

SGT model is the most successful risk model, closely followed by the CVaR(2)-EGARCH-SGT

model. Generally, the class of higher order advanced coherent risk models is the most

preferable set of risk assessment tools for FoHF

Topic Conclusion

Efficient models CVaR(2)-GARCH-SGT / CVaR(2)-GJR-SGT

Non-coherent models VaR-GARCH-Normal / VaR-GJR-Normal

Coherent models CVaR(2)-GARCH-SGT / CVaR(2)-GJR-SGT

Robustness CVaR-Normal / VaR-Normal

Model fit (RMSE) CVaR(2)-EGARCH-SGT / CVaR(2)-GARCH-SGT

Violation cost CVaR(2)-GARCH-SGT / CVaR(2)-GJR-SGT

Violation variance CVaR(2)-GARCH-SGT / CVaR(2)-GJR-SGT

Violation threshold (99%) CVaR(2)-GARCH-SGT / CVaR(2)-GJR-SGT

Christoffersen LR (CC) CVaR(2)-EGARCH-SGT / CVaR(2)-GJR-SGT
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randomness. During times of mediocre

randomness, market dynamics largely

correspond to the descriptions offered by

available data and the exogenous part of the

volatility equations and the geometry of the

return histogram. However, during abnormal

times, the residual part of the volatility equations

controls the price generation for a very short

period of time. The investor is largely unaware

of the dynamics of the process during this time

and available data are very scarce. Therefore, he

cannot, by definition, forecast such periods.

From this follows that VaR models cannot, by

definition, contribute valuable information, as

the exogenous part of the equation has been

calibrated to market dynamics present during

‘normal’ market times. Critical bear periods

suffer systematically from data scarcity, so that

the dynamics underlying the abrupt and extreme

changes are very hard to model.

In light of these results, the imposed high

confidence threshold of a¼ 1 per cent induces

significant error margin during model estimation

because of the structural nature of the family

of VaR models and the low frequency of the

data available. Consequently, risk assessment

techniques as imposed by the Basel II regulatory

framework are generally insufficient for

extreme risk management in the special case

of FoHF.
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