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ABSTRACT In this article, a Generalized Pareto distribution is used for the determination

of a fund’s Probability of Default (PD) and Exposure at Default (EAD). Once hedge fund

returns have been fitted to the Generalized Pareto distribution, a fund’s PD is determined

by its default point, or the asset return that will just wipe out its equity. The same fitted

Generalized Pareto distribution can also be used for the determination of the PD of

subordinated tranches and their EADs.
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INTRODUCTION
Credit risk models for managed assets are

relevant but difficult to implement. The funds

aim at an attractive return through strategies and

portfolios, which are not always transparent or

are impossible to replicate, such as special

purpose vehicles (SPVs) containing positions in

many asset-backed securities.1 However, since

the portfolio managers rely on leverage in order

to show considerable return-on-equity figures,

they need loans and, hence, the credit risk

assessment of these managed portfolios is a

relevant issue. The subprime crisis points out

that returns inflated by leverage were often not

sustainable. Not only did leverage become costly

and scarce because of increasing funding rates,

but large losses were realized as the securities’

markets became more illiquid, putting many

funds out of business.

In this article, we will apply an asset

return model to the credit scoring of a

managed portfolio. We will show how a

Generalized Pareto distribution can provide a

good fit for typical returns and how this fit is

used for the determination of PD. Subsequently,

we will show how EAD can be easily assessed,

once this Generalized Pareto fit has been

established.
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APPLYING AN ASSET RETURN PD

MODEL TO SPVS
Hedge funds seeking to acquire a leveraged

position use ownership of SPVs, which borrow

money to purchase a portfolio of assets (equities,

loans, credit derivatives and so on), and pass the

economic return of such portfolio, including

coupon payments, through to the fund.

The funding of the SPV is structured with

the help of an equity tranche and several

tranches of loans. Managed assets include, but

are not limited to, commercial and residential

mortgage loans, other securitizations (for

example, credit card loans or small and medium

enterprises loans), equity and fixed-income

pools or derivatives, Collateralized Debt

Obligation (CDO) (bundled to create CDO-

squared constructions) and funds that are

bundled into funds of funds.

PD of the loan that is provided to the SPV

could be based on its rating, but often lenders are

warned of relying too much on ratings provided

by the rating agencies for structured finance

vehicles – and that is even before the subprime

crisis.2

For an independent, internal PD rating for the

loans extended to these SPVs, banks have

basically three options:

K a qualitative model;

K a bottom-up cash flow model; and

K an asset return model.

A qualitative model rates the portfolio manager

based on scores on criteria such as location of the

fund, nature of the manager’s remuneration,

assets under management, complexity of

instruments traded, and leverage and

management style.3 The weighted sum of these

scores is mapped to an initial PD. The final PD is

attained after optional overrides that occur if

senior managers attach a higher or lower risk

to the portfolio manager than is captured by

the initial scores. This procedure has several

disadvantages. The risk factors, their scoring and

their weights are highly subjective. In addition,

only one PD is reached for each portfolio

manager, whereas more granularity is needed as

soon as the SPV is funded with the help of

several tranches of loans that differ in their

seniority. Even if one agrees about the asset

quality and its downside risk, we need a PD for

each tranche, which reflects its position in the

subordination structure (lower PDs for the

senior tranches).

A bottom-up cash flow model determines the

incoming cash flows for each single asset or

bundle of similar assets of the SPV. These future

cash flows can only be predicted with the help of

underlying models of the mechanics for each

specific instrument and with the help of a

simulation engine as the cash flows are not

deterministic but stochastic. For each scenario,

the model evaluates whether the incoming cash

flows provide sufficient cover for interest and

amortization. This approach will provide a

separate PD for each tranche. Its main drawback

is that it requires a detailed cash flow model for

each type of instrument, with a specific

parameterization for each single instrument in

the portfolio (maturity, optionality and so on).

The cash flows are stochastic, and therefore

many simulation runs are needed in order to

gain an understanding of the dispersion of the

asset return outcomes for the SPV.

A middle-of-the-road model is the application

of the asset return model to portfolio managers,

which we will describe here.3 According to this

approach, SPV is modeled as a collection of

assets that is funded with the help of equity and

Default modeling of funds

117& 2010 Macmillan Publishers Ltd. 1753-9641 Journal of Derivatives & Hedge Funds Vol. 16, 2, 116–122



liabilities. The asset return is modeled with the

help of historical asset returns of comparable

return indices, that is, monthly published hedge

fund returns of funds with the same strategy, or

published real estate returns are used for

modeling the return of a Commercial Mortgage

Backed Securities SPV.

In the next section, we will first outline how

PD can be modeled using the return

distribution. Subsequently, we will derive the

concomitant EAD of the SPV.

QUANTIFICATION OF PD
From the website of Greenwich Alternative

Investments, we downloaded monthly hedge

fund returns for 23 hedge fund styles.4 Our data

run from January 2004 to June 2009, that is, 66

months or 5.5 years.

First, we standardize the returns:

StdRt ¼
rt � m
s

ð1Þ

In our example, we standardize the data

with the help of an estimated s equal to

2.39 per cent and an estimated m equal to

0.33 per cent.

In Figure 1, we show the empirical

probability density function (PDF) of these

monthly standardized returns xt.

As can be concluded from the graph, the

returns are obviously non-Gaussian. This implies

that we cannot treat these returns as normally

distributed for the purpose of default modeling.5

As we are only interested in the left tail of the

distribution, we will adopt an Extreme Value

Theory approach and identify peaks over

threshold. We define the threshold at the 20th

percentile. For the current distribution, the

Threshold is located at �0.47 standard deviations.

We define x as the absolute value of the peak

over this 20th percentile threshold (with PCT(.)

for the percentile function):

x ¼ �ðStdRt � PCT ðStdRt; 20ÞÞ

if StdRtoPCT ðStdRt; 20Þ

x ¼ :if StdRtXPCT ðStdRt; 20Þ ð2Þ

The distribution of x, that is, the left-tail

distribution of StdR after mirroring, is depicted

in Figure 2. The x vector has 302 elements,

which is 20 per cent of the original 1518

observations (¼ 23 hedge fund styles� 66

months).

For the modeling of the exceedances, we

use a Generalized Pareto distribution. PDF is

equal to

f x; k; sð Þ ¼
1

s
� 1þ k �

x

s

� ��ð1=kþ1Þ

ð3Þ

Its mean equals s/(1�k) with ko1.
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Figure 1: Empirical PDF of standardized

monthly returns.
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Its Cumulative Distribution Function (CDF) is

F x; k;sð Þ ¼ 1� 1þ k �
x

s

� ��1=k
ð4Þ

In this distribution, k is the tail index and

characterizes the shape, and s is the scaling

parameter and is a measure of dispersion. For

positive k, the Generalized Pareto distribution is

characterized by fat tails.

With the help of Maximum Likelihood

estimation,6,7 we fit a Generalized Pareto

distribution to x with parameters: k¼ 0.2091

and s¼ 0.7227.

The empirical CDF is well fitted by this

Generalized Pareto distribution, as is shown in

Figure 3. This is confirmed with the help of a

Kolmogorov-Smirnov test in which we compare

the empirical exceedance-vector x with

the fitted Generalized Pareto distribution

(P410 per cent).

Suppose now that our specific hedge fund

defaults if its standardized return StdRi is below

�3.5. With the help of the threshold of �0.47,

the exceedance is in this case equal to 3.03 (the

default point DPi¼�(StdRi�Threshold)). The

corresponding Generalized Pareto cumulative

probability equals 95.06 per cent and the

probability that the exceedance exceeds 3.03

equals its complement, 4.94 per cent. As the GP

distribution is only applicable in 20 per cent of

the cases, the monthly PDm equals 20 per cent

of this 4.94 per cent, and thus 0.99 per cent.

This monthly PD is easily converted to a yearly

PD (through the survival rate) equal to

11.23 per cent:

PDm ¼f1� Fð3:03; k ¼ 0:2091;

s ¼ 0:7227Þg � 0:2

¼ 1� 0:9506ð Þ � 0:2 ¼ 0:0494 � 0:2

¼0:0099

PDY ¼1� ð1� PDmÞ
12
¼ 11:23% ð5Þ

We will now turn to the quantification of

EAD. This estimate is based on the expected

decline in the asset value of SPV once a default

occurs.

QUANTIFICATION OF EAD
In order to quantify EAD, we need to derive the

expected value of x once we have a default, that
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Figure 2: PDF of x (return exceedances).

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDFs of exceedances and
GP fit (red dotted line)

x

P
ro

ba
bi

lit
y

Figure 3: Empirical CDF and fitted

Generalized Pareto CDF.
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is, once the exceedance is larger than the default

point (DP, in our case 3.03):

Eðxjx4DPiÞ ð6Þ

When using the Generalized Pareto

distribution, we can prove that this conditional

mean is equal to (see the Appendix for the

derivation):

E xjx4DPið Þ ¼
DPi þ s

1� k
ð7Þ

In our example, the conditional mean equals

an exceedance equal to 4.74. When including

the threshold, we have a standardized return

for the default point equal to �5.21. As we

standardized our data with a s equal to 2.39 per

cent and a m equal to 0.33 per cent, we have a

conditional expected return equal to �0.1213.

This means that our EAD is equal to 12.13 per

cent times total assets minus the equity funding.

StdRDP ¼ �ðE xjx4DPið Þ � ThresholdÞ

rDP ¼ StdRDP � sþ m

EADi ¼ �rDP � Assets� Equity ð8Þ

Otherwise stated, if the asset value

declines with 12.13 per cent, this reduction

is first accommodated by the equity buffer.

Subsequently, the decline will impair the

loans to the SPV.

Our example is illustrated in Figure 4,

where the probability density and cumulative

distribution functions are shown, as well as

g(x; k, s)¼ f(x; k,s) � x, which is needed for the

calculation of the conditional mean.8 It shows

the outcome of the conditional mean for each

value of x as well.

The figure illustrates how an exceedance of

3.03 (the default point) leads to a conditional

mean of 4.74 (vertical black dotted line). The

1-month PD can be read from the figure as

well: it is the distance between the red line

(the CDF) and the Y¼ 1 line depicted as the

black horizontal line. As the probability of an

exceedance of the threshold equals 20 per cent,

this distance has to be multiplied by 0.20 for the

1-month PD.

PARTING THOUGHTS
In this article, we have shown how the

Generalized Pareto distribution can be applied to

return data. Subsequently, the fitted Generalized

Pareto distribution is used to determine the PD

of a managed portfolio. As the conditional mean

of the Generalized Pareto is easily calculated,

EAD is established as the asset value that is

impaired after subtraction of equity.

The methodology is easily extended to the

case in which several tranches of debt need to be

rated. For each tranche, a separate default point

DPi should be established. Generally, the senior

0

•    Decreasing line: fitted Generalized Pareto PDF for exceedances
•    Increasing line: fitted Generalized Pareto CDF for exceedances
•    Dotted line: g(x) = f(x) * x
•    Dashed line: conditional mean
•    Vertical dotted line: default point x = 3.03; conditional mean
     is 4.74 in this case 
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tranches will have higher default points, and

hence lower PDs than the junior tranches. Their

EADs equal the asset value that is impaired after

subtraction of the equity and the tranches that

are subordinated to these senior tranches.
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APPENDIX

Derivation of the conditional mean

for the Generalized Pareto

distribution

The Generalized Pareto’s PDF is

f x; k;sð Þ ¼
1

s
� 1þ k �

x

s

� ��ð1=kþ1Þ

ðA1Þ

Its mean equals s/(1�k) with ko1.

Its CDF is

F x; k;sð Þ ¼ 1� 1þ k �
x

s

� ��1=k
ðA2Þ

For the determination of the expected value

of the exceedance in case x4x1, we first define

g(x, k, s)¼ f(x; k,s) � x. For the area under the

curve of g, we need its integral:

Z1

x1

f x; k;sð Þ � xdx ¼ Gðx; k;sÞ½ �
1
x1
ðA3Þ

Now, we can determine the expected value of

the exceedance in case x4x1 (the conditional

mean for x if x4x1) as

Eðx; x4x1Þ ¼
G x; k; sð Þ½ �

1
x1

F x; k; sð Þ½ �
1
x1

¼
1�G x1; k; sð Þð Þ

1� F x1; k; sð Þð Þ
ðA4Þ

By evaluating the indefinite integral G(), we

arrive at

G x; k; sð Þ ¼
R

f x; k; sð Þ � xdx

¼
s � ðk� 1Þ þ q � ðs2 þ k � x2 þ x � sþ x � s � kÞ

s � k� 1ð Þ
;

with

q ¼
sþ k � x

s

� ��1þk
k

ðA5Þ

Now, 1�G() can be written as

1�G x; k; sð Þ ¼
s � ðk� 1Þ

s � ðk� 1Þ

�
s � k� 1ð Þ þ q � s2 þ k � x2 þ x � sþ x � s � k

� �
s � ðk� 1Þ

¼ �
q � s2 þ k � x2 þ x � sþ x � s � k
� �

s � ðk� 1Þ
ðA6Þ

Whereas 1�F() can be written as

1� F x; k;sð Þ ¼
sþ k � x

s

� � �1
kð Þ

ðA7Þ
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By rewriting q as

q ¼
sþ k � x

s

� ��1þk
k

¼
sþ k � x

s

� � �1
kð Þ

�
sþ k � x

s

� ��1

¼
sþ k � x

s

� � �1
kð Þ

�
s

sþ k � x

� �
ðA8Þ

We can rewrite (1�G(x; k,s))/(1�F(x; k,s)) as

Hence, the conditional mean simplifies to

E xjx4x1ð Þ ¼
x1 þ s
1� k

ðA10Þ

This is the same result as the exceedance

function of the Generalized Pareto function that

gives the expected value of the distribution

dependent on the choice of a threshold. The

exceedance function is

eðuÞ ¼ E x� ujx4uð Þ ¼
sþ k � u

1� k
ðA11Þ

Therefore,

E xjx4uð Þ ¼
uþ s
1� k

ðA12Þ

Notice that exceedances over this higher

threshold u are Generalized Pareto distributed

themselves with the same shape parameter k but

with a different scaling parameter. See, for

further analysis, McNeil9 and McNeil et al.10

1�G x; k; sð Þð Þ

1� F x; k; sð Þð Þ

¼ �

sþ k � x

s

� � � 1

k

� �
�

s
sþ k � x

� �
� s2 þ k � x2 þ x � sþ x � s � k
� �

s � k� 1ð Þ

sþ k � x

s

� � � 1

k

� �

¼ �

s
sþ k � x

� �
� s2 þ k � x2 þ x � sþ x � s � k
� �

s � k� 1ð Þ

¼ �
s2 þ k � x2 þ x � sþ x � s � k
� �

ðsþ k � xÞ � k� 1ð Þ

¼ �
sþ k � xð Þ � ðxþ sÞ
ðsþ k � xÞ � k� 1ð Þ

¼
ðxþ sÞ
1� kð Þ

ðA9Þ
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