
Original Article

Revisiting the Black–Litterman model: The case of
hedge funds
Received (in revised form): 8th December 2008

Maher Kooli
is Professor of Finance at the School of Management, Universite du Quebec a Montreal (UQAM). He holds

a PhD in finance from Laval University (Quebec). Kooli also worked as a senior research advisor for la Caisse

de depot et placement de Quebec (CDP Capital). He has published articles in a wide variety of books and

journals.

Margaux Selam
is Analyst at Caisse de dépôt et placement du Québec (CDP capital). She holds an MSc in finance from the

School of Management, Universite du Quebec a Montreal (UQAM).

Correspondence: Maher Kooli, School of Management, Universite du Quebec a Montreal (UQAM),

P.O. Box 6192, succursalle Centre-Ville, Montreal (Quebec), H3C 4R2, Canada

E-mail: kooli.maher@uqam.ca

ABSTRACT In this article, we re-examine a new optimization approach introduced by

Black and Litterman to overcome the weaknesses of the standard mean-variance

optimization model. We also consider the resampling technique to refine our results.

Our results show that combining the resampling technique with the Black–Litterman

model presents the most robust asset allocation. When we consider the case of hedge funds

(HFs), we find that the integration of HFs into traditional investment categories indeed

improves the portfolio’s risk/return profile, for the period 2002–2007. The importance of

HFs is less obvious, however, when using the Black–Litterman model with the resampling

technique.
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INTRODUCTION
Hedge funds (HFs) have grown rapidly over the

past 20 years. Current estimates of the industry

stand at nearly 8500 funds in existence managing

approximately US$1.6 trillion. Nevertheless,

the HF industry remains an unknown area of

investment. HFs are exempt from certain

regulatory requirements applicable to securities

investments, and are mostly reserved for

sophisticated investors (with a minimum amount

of money earned annually and a net worth of

more than $1 million, along with a significant

amount of investment knowledge). HFs have

also managed to distinguish themselves from

traditional asset classes, by not being correlated

with them. Many studies have examined the
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added value of HFs to institutional investors. For

instance, L’Her et al1 confirm the importance of

including HFs in institutional portfolios using

Markowitz2 optimization. Although the modern

portfolio theory developed by Markowitz2

has become a necessary tool for portfolio

managers when selecting asset allocations,

a few problems have been observed. According

to Drobetz,3 mean-variance optimization creates

concentrated portfolios. It is also highly sensitive

to small changes in initial variables and does not

take parameter uncertainty into account. The

purpose of this research is to re-examine HF

behaviour in a Canadian institutional portfolio,

based on more robust methods such as the

Black–Litterman model and the resampling

technique, which we will compare to the

standard Markowitz2 model.

The next section presents the results

of previous studies on HFs and on the

Black–Litterman model. The subsequent

section describes the data and models used in

our study. The results of our analyses are

presented in the penultimate section before

concluding in the final section.

BACKGROUND
Many studies have examined HF behaviour.

According to Liang,4 HFs constantly obtain

better returns than mutual funds. The author

considers 385 HF and 4476 mutual funds from

January 1994 to December 1996 and finds that

the Sharpe ratio for different HFs is 0.364 versus

0.168 for mutual funds. He also notes that

the standard deviation for mutual funds is

2.04 per cent, compared to 2.10 per cent for

HFs, thus making them riskier than mutual

funds. Amin and Kat5 study the monthly returns

of 77 HFs and 13 HF indexes over the period

May 1990 – April 2000. They find that it is

better to invest in a portfolio comprised of HFs

than in a single fund. Capocci and Hübner6

analyse HFs performance over the period

1994–2000. They observe that 10 of the 13 HF

strategies considered provide superior returns.

They note, however, that some managers took

enormous risks to obtain additional returns,

while also being faced with cases of extreme

losses. Brooks and Kat7 examine whether HFs

would be beneficial for investors and conclude

that the high Sharpe ratio observed for HFs is

usually accompanied by negative skewness and

high kurtosis. The authors maintain that

investors should be cautious when they invest

in HFs giving non-normality of returns, negative

skewness accompanied by positive kurtosis,

positive correlation between investment

categories, powerlessness of the Sharpe ratio

in evaluating performance and finally,

overvaluation of positive absolute returns.

Amin and Kat8 also confirm that HFs increase

the portfolio’s performance but at the cost of low

skewness and high kurtosis. L’Her et al1

explore the introduction of HFs into a

Canadian institutional portfolio for the period

January 1990 – December 2002. They use

the mean-variance optimization proposed by

Markowitz2 and find that, in general, HFs

generate very good returns in a bull market

and manage to limit their losses during

favourable periods. They conclude that it was

attractive to include HFs in a Canadian

institutional portfolio composition, but argue

that there is still a price to pay: a decrease in

skewness combined with an increase in kurtosis.

The authors highlight the limitations within the

context of a mean-variance analysis. In this

article, we supplement their research using a

more robust asset allocation model. The modern
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Markowitz2 theory on portfolios is indeed the

mainstay of portfolio management. Investors can

reduce risks in their portfolio simply by holding

assets that are not positively or only slightly

correlated, thus diversifying their investments.

This allows them to obtain the same return

potential by reducing their portfolio volatility.

The mean-variance optimization model has

thus become a key financial instrument for

choosing asset allocations, but several

difficulties arise. According to Mankert,9

problems incurred with mean-variance

optimization include creation of concentrated

(or non-diversified) portfolios, an unstable

model causing significant changes in portfolios

during small variations in initial data, and the

use of historical values that maximize errors in

estimating expected return. As a result of this

optimization, we will overweight those asset

classes for which the estimation error is

the most significant. Mankert9 suggests the

Black–Litterman method as an alternative to

Markowitz optimization. Black and

Litterman10 introduce an intuitive optimization

method to resolve the mean-variance model

difficulties. This method makes it possible to

combine allocations resulting from market

equilibrium according to the Capital Asset

Pricing Model (CAPM) with portfolio

managers’ views. Further, Idzoreck11 develops

robust asset allocation with different

optimization approaches such as the standard

mean-variance model and the Black–Litterman

approach, using a resampling technique. His

results show that the Black–Litterman model is

more capable of diversifying portfolios than the

standard Markowitz2 model. However,

combining resampling and the Black–Litterman

model provides the most robust optimization

when it comes to properly diversifying risky

investment categories. Few researchers have

identified the Black–Litterman model as a

means of optimizing HF portfolios. Martellini

and Ziemann12 improve the Black–Litterman

model with the goal of optimizing a portfolio

incorporating various HF strategies. They

observe few problems with the non-normality

of returns and parameter uncertainty, owing

to the lack of historical data and low data

frequency. They conclude that there is a distinct

advantage to adding alternative investments

to a portfolio that already includes traditional

investment categories. This study stemmed

from earlier research by Martellini et al,13

arguing that the success of HFs among

institutional managers results from the fact

that they provide new diversification

opportunities, compared to traditional asset

classes. Given the several challenges faced by

the Markowitz2 optimization model, even in

the presence of HFs, the authors introduce

an extension to the Black–Litterman model

in order to demonstrate that institutional

investors could take full advantage of the

benefits offered by alternative investments.

In our research, we re-examine the various

portfolio optimization models proposed by

Idzoreck.14 We also analyse the place held

by HFs in institutional portfolios using

various optimization models.

DATA AND METHODS
For our reference portfolio, we consider the

following indexes: the S&P/TSX (for the

Canadian market), the S&P500 (for the US

market), the MSCI EM (for emerging markets),

the MSCI EAFE (for Europe, Australasia and the

Far East), the long-term governmental and

corporate bond return rates and the returns
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from for the 3-month Canadian Treasury Bills.

Figure 3 presents the benchmark portfolio asset

allocation. To simulate the HFs universe, we

consider the Fund Weighted Composite Index

from Hedge Fund Research (HFR), comprising

more than 2000 funds. This index is renewed three

times a month and contains no hedge funds of

funds. A weight of 5 per cent is allocated to HFs.

Our period of study is January 2002 – January 2007.

The Black–Litterman method challenges one

of the principal weaknesses of mean-variance

optimization, which is its high sensitivity to

future returns. The Black–Litterman model is

especially useful owing to the implicit returns

resulting from the following relationship:

P ¼ lSomkt ð1Þ

where
Q

is the implied excess equilibrium

returns (N� 1 column vector); omkt is the

market capitalization weight of the assets (N� 1

column vector) in our portfolio; l is the risk

aversion coefficient (1� 1), corresponding to

the market risk premium on the variance; and

R is the covariance matrix of returns (N�N

matrix). This relationship is obtained by

reversing the general mean-variance

optimization equation. Our purpose is to find

the expected returns using the Black–Litterman

model, integrating both market equilibrium and

investor views. Managers and analysts have

mixed opinions on stock market movement, but

until the Black–Litterman method appeared, no

model would allow them to be taken into

consideration. This method allows investors to

express their view, whether absolute or relative.

An absolute view is defined as a manager’s

forecast regarding the future performance of

certain assets in his/her portfolio. For example,

one analyst anticipated that the S&P/TSX index

would obtain an absolute return of 5 per cent.

By contrast, a view is relative when simply

comparing differences between various asset

classes. For example the S&P/TSX will obtain a

performance 3 per cent greater than that of the

S&P500. These two factors allow investors to

incorporate their views on the stock market

when optimizing their portfolio. We should also

note that our view choices are not limited.

Managers can suggest as many views as they

want, yet their level of confidence must be taken

into account. This latter factor reflects the

degree of managers’ certainty with respect to

their forecasts. In general, if the manager’s views

suggest that an asset could obtain a higher level

of implicit return, then the model will allocate

this asset a significant weight in the portfolio.

Moreover, while this model allows managers to

express their views, they are not forced to reveal

or express them for each asset class. In the latter

case, the model uses implicit returns, or those

from the market balance according to the

CAPM.

To take these views into account in the

model, we assume the following relationship:

Qþ e ¼
Q1

�

QK

2
4

3
5þ

e1

�

eK

2
4

3
5 ð2Þ

where Q is the view vector (K� 1 column

vector), K is the number of views and e is the

error term vector indicating the uncertainty

associated with these opinions with a mean of

0 and covariance matrix X.

In our example:

Qþ e ¼
5

3

� �
þ

e1

e2

� �
ð3Þ

The error term vector e is not directly employed

in the final Black–Litterman equation; instead
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we use the variance of each error term (o).

These variances form X, a diagonal covariance

matrix. Specifically, all off-diagonal elements of X
are equal to zero because we assume that the views

are independent of one another. Note that the

greater confidence expressed by investors, the

more they assign importance to their views, and

the variance (oK) is thus less.

X ¼
o1 0 0

0 � 0

0 0 oK

2
4

3
5 ð4Þ

Matrix P represents the assets considered by

investors in their forecasts. The rows in this

matrix correspond to the managers’ views, while

the columns are the number of assets in the

portfolio. In general:

P ¼

p1;1 � p1;N

� � �

pK ;1 � pK ;N

2
4

3
5 ð5Þ

In the previous case, we have two views

(K¼ 2), the first being absolute and the second

relative. If we consider the S&P/TSX as being

the top asset among the 6 (N¼ 6) in the

portfolio, then it should be placed in the first

column. Similarly, if we consider S&P500 as the

second asset, then we obtain the following

matrix P:

P ¼
1 0 0 0 0 0

1 �1 0 0 0 0

� �
ð6Þ

Note that we assign positive signs to those

assets that performed better and vice versa. In

addition, in the case of a relative view, the sum

of the row must be zero. Finally, the views are

expressed by:

P:E R½ � ¼ Qþ e ð7Þ

E[R] represents the expected returns that

cannot be observed. They will be integrated

both with the various investors’ views and the

equilibrium relations P, taken from the initial

market capitalization. We assume that P.E[R]

would have a normal distribution with a mean

Q and variance X (covariance matrix):

P:E R½ � � N ðQ;OÞ ð8Þ

We then obtain the equation for the general

Black–Litterman model:

E R½ � ¼ tSð Þ�1
þP0X�1P

� ��1
tSð Þ�1Pþ P0X�1Q
� �

ð9Þ

where K is the number of views; N is the

number of assets in the portfolio;t is a scalar,

which depends on investors’ confidence in the

market (the smaller it is, the greater the implied

confidence in returns, and less in their views); R
is the covariance matrix of excess returns (N�N

matrix); X is a diagonal covariance matrix for

error terms, representing investor confidence

thresholds (K�K matrix); P is the implicit

returns vector (N� 1 column vector); P is a

matrix that identifies the assets involved in the

views (K�N matrix or 1�N row vector in the

special case of 1 view); Q is the view vector

(K� 1 column vector); and E[R] is the new

return vector according to the Black–Litterman

approach (N� 1 column vector). Thus, when

managers have less confidence in their views,

then expectation is closer to implicit returns, and

vice versa. Eventually, thanks to this new returns

vector, we can finally optimize our portfolio and

build an efficient frontier. This latter

indicates the new redistribution for asset

classes in the portfolio. The Black–Litterman

model is mathematically very complex,

combining the implied return with the

managers’ views.

To overcome the problem of using estimates

based on historical data, we consider the
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resampling technique. This technique combines

the traditional mean-variance optimization

with Monte Carlo simulation. It helps explain

the uncertainty of assumptions made about

our parameters: expected returns, standard

deviation and correlation. Whether we use

the assumptions related to our parameters

(parametric approach) or historical data on

portfolio asset classes (non parametric approach),

Monte Carlo simulation provides us with a

simulated set of assumptions, which are used to

optimize our portfolio. This results in a

simulated efficient frontier, indicating the new

asset allocation. The process is repeated several

times in order to obtain an average for all asset

allocations combinations. We then retain a final

resampled efficient frontier.

Note that our objective is to examine whether

or not the inclusion of HFs in a portfolio would

be beneficial for institutional investors. Finding

the optimal HFs weight is beyond the scope of

this research.

In this article, we consider the following

views as an example:

View no. 1 S&P/TSX will obtain a monthly

return of 1 per cent (confidence

level: 30 per cent).

View no. 2 HF monthly index HFRI will

reach higher monthly returns 20

basis points greater than the

S&P500 return (confidence

level: 65 per cent).

View no. 3 Canadian government bonds will

obtain monthly returns 30 basis

points less than the S&P/TSX

(confidence level: 65 per cent).

Table 1 summarizes the different scenario that

we consider in this study.

RESULTS
Table 2 summarizes the main statistics for the

different indexes over the period 2002–2007.

Several researchers find that HFs provide

superior returns, at the cost of negative skewness

and high kurtosis. For our period of study, we

find that the monthly arithmetic HF mean

return is relatively low (0.3 per cent) compared

with that of MSCI EM (1.58 per cent). HFs also

show positive skewness (0.43) along with

negative kurtosis (�0.37). Nevertheless, in

addition to fixed-income securities, HFs offer

protection against bearish stock market

movement. The lowest HF performance for the

period under review was �3 per cent, compared

to �7.47 per cent for the S&P/TSX, �9.10 per

cent for the MSCI EM, �9.36 per cent for the

S&P500 and 11.78 per cent for the MSCI

EAFE.

Table 1: Optimization scenario

Expected returns Views Optimization model With hedge funds Without hedge funds

Historical (Markowitz) Without views Traditional X X

Black–Litterman Without views Traditional X —

With views Traditional X —

Resampling X —

Revisiting the Black–Litterman model
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Figure 1 presents the optimal portfolio

allocation according to managers’ risk positions.

Position 0 corresponds to a portfolio with

minimal variance, while position 100 indicates

asset allocation with maximum return. We find

that portfolio asset allocation is slightly

diversified when risk is low. However, as risk

increases the portfolio is more concentrated,

comprising fewer assets. Consequently,

traditional mean-variance optimization assigns

an allocation of 100 per cent to the asset class

having the highest return, which is in most cases

the most risky (MSCI Emerging Mkts in our

example).

Next, we repeat Markowitz optimization by

incorporating HFs into our portfolio. Figure 2

shows Markowitz efficient frontiers including

and excluding HFs, while Figure 3 presents the

optimal portfolio allocation (with HFs)

according to managers’ risk positions. We find

that the addition of HFs leads to different asset

allocation. Specifically, according to Figure 3,

only three of the eight assets considered are

included in the portfolio, between positions

0 and 78. Thus, the inclusion of HFs in

an institutional portfolio makes it more

concentrated. We turn now to the

Black–Litterman model. We consider

two cases: (1) using market equilibrium implied

expected returns and (2) combining an investor’s

views with market equilibrium.

Figure 4 presents the optimal portfolio

allocation according to managers’ risk positions.

Figure 4 shows an obvious increase in portfolio

Table 2: Summary statistics of the different indexes, 2002–2007

Geometric

mean

(%)

Arithmetic

mean

(%)

SD

(%)

Sharpe

ratio

Skewness Kurtosis Highest

return

(%)

Lowest

return

(%)

S&P/TSX 1.03 1.08 3.20 0.3380 �0.7690 0.1144 6.06 �7.47

S&P500 0.02 0.09 3.65 0.0240 �0.3753 �0.2680 6.79 �9.26

91 Day T-Bill 0.24 0.24 0.06 3.6684 0.5992 �0.2975 0.40 0.13

Scotia LT Corporate Bonds 0.81 0.82 1.75 0.4713 0.0029 �0.8420 4.81 �2.23

Scotia LT Government

Bonds

0.73 0.75 1.78 0.4178 �0.1280 �0.1556 5.56 �3.48

MSCI EAFE 0.69 0.76 3.66 0.2078 �0.4348 �0.0156 7.60 �9.10

MSCI Emerging Mkts 1.46 1.58 4.96 0.3182 �0.5089 �0.1727 10.77 �11.78

HFRI Fund Weighted

Composite

0.28 0.30 2.07 0.1447 0.4251 �0.3709 5.60 �3.01

Returns are in Canadian dollars. S&P/TSX composite index stands fro S&P/TSX Composite Index. S&P500

stands for S&P500 Index. 91-day T-Bill stands for 3-month Canadian T-Bill rate. Canadian corporate and

government bond indexes correspond to the Scotia Long Term (LT) Government Bonds Index and the Scotia

Long Term (LT) Corporate Bonds Index, respectively. MSCI EAFE stands for MSCI European, Australasia and

Far East markets. MSCI Emerging Mkts stands for MSCI emerging markets. HFRI Fund Weighted Composite

is the HFR Hedge Funds Index.
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diversification; eight assets are included in the

first section (positions 0–48). At position 30, the

S&P500 and S&P/TSX are assigned a 20 per

cent allocation on average. Bonds, HFs and

MSCI EM and MSCI EAFE indexes have

substantially the same weight (5 per cent on

average). By contrast, the Canadian 3-month

Treasury bills have a weight of 35 per cent.

Unlike traditional optimization with historical

returns, we assign significant weight to Canadian

and US stocks, while only a small portion to

HFs. This difference could be explained by the

Figure 1: Asset allocation with Markowitz optimization, excluding hedge funds.

Figure 2: Markowitz efficient frontiers (with and without hedge funds).

Revisiting the Black–Litterman model
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Figure 3: Asset allocation with Markowitz optimization, including hedge funds.

Figure 4: Asset allocation with market equilibrium implied expected returns, including

hedge funds.

Kooli and Selam
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Black–Litterman return characteristics, which

are pre-set.

Figure 5 presents asset allocation combining

an investor’s views (discussed previously) with

market equilibrium, including HFs. We notice

that six out of eight asset classes are considered,

whereas all the classes are present in Figure 4.

Note that a prominent position is given to those

asset classes that we overestimate. In this case, we

assume a monthly performance of 1 per cent for

the S&P/TSX and a higher return than that of

government bonds. According to Figure 5, an

allocation of approximately 30 per cent is

granted to S&P/TSX at position 40, while the

government bond index is attributed a weight of

1 per cent. The second view suggests that the

S&P500 obtains a performance lower than that

of the HFRI HF composite index. The latter

obtains a weight of approximately 50 per cent at

position 40, in contrast to 3 per cent in the

absence of views. By contrast, we notice that the

S&P500 is absent from the institutional

portfolio’s composition. Indeed, a substantial

allocation is given to HFs in exchange for a

significant reduction in the S&P500 weight.

Figure 6 presents the portfolio asset allocation

with Black–Litterman returns using the

resampling technique with views. Overall, we

find that a slightly higher allocation is attributed

to HFs in the presence of views, in exchange for

a reduction in the S&P500 weight. The addition

of views with the resampling technique has little

influence on asset distribution. An interesting

feature of the Black–Litterman model is that the

distribution of the five asset classes not part of

our views remains substantially unchanged. We

also notice that the resampling technique

reduces the allocation of assets having the largest

Figure 5: Asset allocation combining an investor’s views with market equilibrium, including

hedge funds.
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weighting and increases the allocation of those

assets having the lowest weighting. It thus allows

managers to adequately diversify their portfolios.

Further, we confirm that the Black–Litterman

model is a robust diversification tool. Its use

along with the resampling technique provides

a robust asset allocation. However, even if we

confirm the importance of HFs in a Canadian

institutional portfolio, we should note that their

role is less evident when using the Black–

Litterman model and the resampling technique.

CONCLUSION
The mean-variance optimization is an essential

tool for portfolio managers. However, it does

have some weaknesses. The model’s sensitivity to

small changes in initial values, the estimation

errors and the use of historical data are three

elements that lead to a concentrated distribution

of assets. In this article, we compared two robust

asset allocation models, the Black–Litterman

method and the resampling technique, in order

to counteract the powerlessness of standard

Markowitz2 optimization. The Black–Litterman

model integrates the market equilibrium

hypothesis according to the CAPM into the

investors’ views, creating a new return vector.

The resampling method involves sensitivity

analysis using Monte Carlo simulation

and mean-variance optimization to create

perfectly diversified portfolios. Compared

to the traditional model, each of these

approaches is capable of adequately

diversifying the portfolio. By combining

the two it is possible to develop a robust

asset allocation model.

We applied various optimization models

to examine the role of HFs in a Canadian

institutional portfolio. Our results show that

for the period 2002–2007, the integration of

HFs into investment categories improves the

portfolio’s traditional risk/return profile.

Figure 6: Assets allocation with Black–Litterman optimization using resampling technique,

including hedge funds.
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However, the significance of HFs is less obvious

when using the Black–Litterman approach.

Although in this study we were able to examine

the importance of robust asset allocation versus

the Markowitz2 optimization, certain limitations

appeared, and these could become additional

avenues of research. It would be interesting, for

example, to apply the Black–Litterman approach

to different HF strategies. The universe of

alternative investments is in fact highly

heterogeneous, and each fund has its specific

characteristics (styles, risk, performance and so

on) that could influence portfolio behaviour. It

would be worth revisiting the robust model

within the framework of factors models.
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