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Surety bonds are instruments used in public and private procurement to avoid the
problem of contractor bankruptcy. A surety company issuing such a bond
guarantees to either finish the project itself or pay the bond to the procurement
agency in case of contractor’s bankruptcy. This situation is analysed under the
assumption that the bond is either priced fairly, or a risk loading that is
proportional to the money at risk is imposed. If the surety is priced fairly, full
insurance (or even overinsurance) is optimal. If the surety is priced unfairly,
more solvent contractors are more likely to win, thus the problem of abnormally
low tenders is alleviated.
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Introduction

During a procurement process, a low winning tender can be bad news for the
procurement agency if the project leads to financial distress of the winning
contractor who could go bankrupt before finishing the project. Of the 850,000
contractors in business in the United States in 2004, only 650,000 were still in
business in 2006; a failure rate of 23.6 per cent.1 Contractor bankruptcy can be
very costly for the agency: the direct costs of bankruptcy (e.g., lawyers) make
up 7–20 per cent of the liquidation proceeds and the indirect costs (e.g., delays)
are estimated to be even higher (White, 1989). To be more specific, the 80,000
contractors that went bankrupt in the U.S. construction industry between 1990
and 1997 left unfinished construction projects with liabilities exceeding U.S.$
21 billion.2

1 For more details of the U.S. surety market see Ramsey (2008).
2 Dun and Bradstreet Business Failure Record, cited from Calveras et al. (2004).
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To deal with the problem of bankrupt contractors, several governments
introduced surety bonds in public procurement (among others Brazil, Canada,
Italy, Japan, and the U.S.A.). In the U.S.A. the federal Miller Act requires
a surety bond from all construction contractors if the value of the project
exceeds U.S.$ 100.000.3 Surety bonds are used as well in the private sector . For
instance, 17 per cent of the surety bonds in the U.S.A. (Russell, 1999, p. 4)
were accounted for by private agencies. The U.S. practice uses two kinds of
bonds, a performance bond and a payment bond. We focus our analysis on the
performance bond whose size is usually 100 per cent of the project value and
protects the agency from financial loss if the contractor fails to fulfil the
contract.4 Surety bonds are issued by surety and insurance companies that are
approved by the U.S. Treasury. In contrast to most insurance contracts or
letters of credit, surety bonds are not designed to cover the expected loss in case
of failure but to avoid failure. This is done by screening the project’s risks
(inherent risk, type of coverage, etc.) as well as the contractor’s risks (tangible
assets, past performance, etc.)5 and charging a risk-adjusted insurance
premium. Premia in the U.S. vary between 0.5 per cent and 3 per cent of the
project value (source: www.sio.org) and are derived from rate manuals issued
by the Surety & Fidelity Association of America and by surety companies or
are individually adjusted by surety companies. The rates are usually percentage
shares of the project value that decrease in project value. In the case of failure,
the surety company guarantees either to finish the project or to abandon the
project and pay the surety bond to the agency.6

Surety bonds were recently analysed by Calveras, Ganuza, and Hauk (CGH,
2004). CGH show that surety companies that are specialized in screening the
contractors can help to mitigate the problem of contractors going bankrupt.
They also show that the U.S. practice of requiring a bond whose size is equal to
the actual payment may lead to inefficient overinsurance. CGH derive their
results under the assumption that if a surety bond of size L is required from the
contractor, the issuing surety company has to freeze L and has opportunity
costs of rL, which is the return of a risk-free investment.

3 Many states in the U.S. have adopted the Miller Act (www.sio.org). The issue was on the

agenda in the EU as well. In 1999, the European Commission’s Enterprise Section published a

report titled ‘‘Abnormally low tenders’’ (ALT) with detection and rejection rules for ALTs and

started a working group on surety bonds (European Commission Enterprise Section, 1999).

However, no further procedures regarding surety bonds in the EU were recommended.
4 The payment bond ensures that the contractor will pay subcontractors, workers, etc.
5 Contractors are usually divided into three broad classes that have direct influence on the

premium: intermediate, merit, and preferred. For examples, see Russell (1999, p. 97).
6 The U.S. surety industry had to cover failure losses of $1,3 billion from 1995 to 2005 (source:

www.sio.org).
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We base our analysis on the framework introduced by CGH but modify
their pricing assumption. This is done for three reasons: first, the insurance
literature has always focused on the benchmark of fair insurance in which an
efficient outcome is obtained. Thus it is interesting to analyse fairly priced
surety bonds and the resulting outcome in the present context. Second, even if
insurance is priced unfairly, the risk loading should be related to the money at
risk and not to the size of the payment. For example, in case the contractor
never goes bankrupt (i.e., owns enough financial assets), the surety company
knows that the contractor’s assets (and therefore the project) are not at risk
and should not charge a risk premium. Third, even if a surety bond of size L
has to be frozen to cover the potential loss, it can be invested. In contrast to
CGH we assume that the bond can be invested at some risk-free interest rate
that is the same for all surety companies.

We obtain the following new results compared to CGH: With fair pricing,
the problem becomes analytically solvable. The optimal fairly priced surety
bond is such that finishing the project is always preferred. Furthermore,
overinsurance in the sense that the surety bond required is higher than the
money at risk can be efficient. This result is not at odds with the insurance
literature (where fair pricing leads to full insurance), as overinsurance on the
side of the agency translates into full insurance on the side of the surety
company since it implies that the surety company will always finish the project.

If insurance is priced marginally unfair, with pricing being proportional to
the money at risk, the bidding behaviour of the contractors might become non-
monotonic or even decrease in wealth. This can be understood by noting that
although low wealth contractors bid more aggressively as they have less to lose
in case of bankruptcy, due to unfair pricing these contractors have to pay a
higher risk loading. Thus surety bonds help to alleviate the problem of
abnormally low tenders (ALTs) as contractors who are more likely to go
bankrupt end up submitting higher bids than more solvent contractors.

If the unfair component of the pricing scheme is proportional to the money
at risk, overinsurance might still be optimal if bankruptcy costs are high. The
intuition is the following: the agency wants to protect itself against the trouble
that arises if the contractor goes bankrupt, while surety bonds cover the costs
of finishing the project. As CGH already observed, if the inconveniences for
the agency are large compared to the costs of finishing the project in case of
bankruptcy, then the agency prefers to become fully insured even under unfair
pricing. Overinsurance will then also be optimal because any amount of
insurance beyond the necessary does not come with an additional risk loading.
However, this only holds if the price is proportional to the money at risk and
not to the size of the surety bond.

The results concerning the optimal size of surety bonds have consequences
for the U.S. practice, which requires surety bonds whose size is equal to the
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project payment. It could be argued that this size is larger than the money at
risk, as for example contractors have some financial means such that in case of
bankruptcy not the whole project is forfeited. This paper shows that this form
of insurance does not imply inefficient overinsurance but might indeed be
optimal, as long as pricing is either fair or the loading is related to the risk of
the surety bond.

This paper contributes to the recent literature on ALTs and auctions with
bidders with limited liability. Parlane (2003) and Board (2007) show that
bidders with limited liability bid more aggressively as their downside risk is cut
off. While they analyse classic auction formats and the general mechanism,
Engel and Wambach (2006) compare how several commonly used procurement
methods – beyond the standard auctions – perform in the context of limited
liability. In a common-value selling auction, Zheng (2001) shows that if bidders
are budget constrained, the value of the object auctioned is uncertain, and the
payment can be postponed, the most budget-constrained bidder is most likely
to win the auction. An overview of this literature is given in Engel et al. (2006).

The paper is structured as follows: in the second section, we set up the
model. In the third section the bidding strategy and the size of the optimal
surety bond for fair insurance pricing is determined. In the fourth section, we
derive properties of the bidding strategy and discuss the optimal size of the
surety bond for unfair premia. The last section concludes.

The model

We follow the modelling structure by CGH. A risk-neutral agency wants to
undertake a project with value V and procures it via a second-price sealed-bid
auction. N risk-neutral contractors bid for the contract but face uncertainty
about the realization of their costs. Ex ante, the costs C are either c�kG with
a probability of (1�q) or cþ kB with a probability of q where (1�q)(�kG)þ
qkB¼0. All contractors (indexed by i) have the identical, commonly known cost
structure but differ in financial assets Ai. AiA[0,N), with a distribution
function f(Ai), is private information, that is the agency can neither identify nor
quantify the contractors’ assets. Due to limited liability, the winning contractor
can declare bankruptcy if his costs are higher than the sum of the payment Pi

and the assets Ai. In this case the contractor loses all his assets (which are
transferred to the agency) but avoids higher losses.7 This bankruptcy option
makes contractors behave as if they were risk loving, which leads to the result

7 As surety bonds are designed to keep the project in line with the budget and to avoid costly

renegotiation, we will not consider the possibility of renegotiation.
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that overall (i) contractors bid more aggressively and (ii) contractors that are in
a bad financial situation (high bankruptcy rate)8 win more often.

If a surety bond of size L is required by the agency, each potential contractor
has to have a bond of size L guaranteed by a surety company. Because of
the guarantee, the contractor (limited to Ai) and the issuing surety company
(limited to L) are liable. Surety companies are specialized in dealing with the
financials of contractors and can – in contrast to the agency – perfectly screen
the contractors, that is learn about Ai. Once a surety company has learned
about Ai, it will charge contractor i a risk-adjusted fee Ri(L,Ai), which depends
on the size of the bond L and the assets of the contractor Ai. The fee Ri(L,Ai)
compensates the surety company for the guarantee either to finish the project
or to pay L to the agency in case of the contractor’s bankruptcy. In both cases
the contractor loses all his assets.

Each surety company can invest L at the risk-free interest rate r0. While
CGH assume that a surety company does not accrue interest at the risk-free
interest rate if it issues the bond, we relax this assumption because deposits
usually accrue interest and the bond is not at risk until the contractor is in
financial difficulties, which is the case towards the end of the project.9

The investment at the risk-free interest rate renders the timing of the cash
flows important. Therefore, we use a two-period model to compare the cash
flows at the end of the project. In the first period (t¼0), the agency announces
the auction, the specifications of the project as well as the required size L of the
surety bond. The surety bond is required in t¼1, so the discounted surety bond
that a surety company has to guarantee in t¼0 is L/(1þ r0). In t¼0 the surety
companies screen the contractors, learn about the value of their financial assets
Ai/(1þ r0), and charge the discounted fee Ri(L,Ai)/(1þ r0), which a contractor
has to pay in case of winning the contract. Once the potential contractors have
the guarantee, they enter the auction and bid according to their bidding
functions. Following the rules of the second-price sealed-bid auction, the
lowest bid wins and the winning contractor receives the second lowest bid as
the payment. Since we compare all cash flows at the end of the project, we
define the bids Pi*(Ai) and the payment Pi in t¼1. The discounted payment the
winning contractor receives is Pi/(1þ r0). Note that Pi is uncertain before and
during the auction. If a contractor wins, he pays the fee Ri(L,Ai)/(1þ r0) to the
surety company in t¼0 and starts the project.

8 As already mentioned, Zheng (2001) shows that if contractors are budget-constrained, the most

budget-constrained contractor is the contractor most likely to win the auction.
9 One might argue that the agency has costs for freezing the deposits. In CGH, these costs

are proportional to the size of the bond L. We also allow for further costs in a second step in the

section ‘‘Unfairly priced surety bonds’’. However, we consider the case in which these costs are

either fixed or proportional to the money at risk but not proportional to L.
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In the last period (t¼1), the contractor learns about his true costs and the
project is finished either by the contractor, the surety company, or the agency.
The bankruptcy decisions and the payoffs in t¼1 are as follows: if the winning
contractor has enough assets, he will finish the project. In this case the
guarantee of the surety company is not needed and the utility of the agency is
U¼V�Pi. If the costs are high and the winning contractor’s assets are not
sufficient to finish the project, the winning contractor loses all his assets and
the surety company has two options: first, if Ai is large enough so that the
difference between the costs and the sum of the payment and the remaining
assets is smaller than the bond (cþ kB�Pi�(Ai�Ri(L,Ai))pL), the surety
company finishes the project. In this case the utility of the agency is again
U¼V�Pi. Second, if Ai is not large enough so that the difference between the
costs and the sum of the payment and the remaining assets is larger than the
bond (cþ kB�Pi�(Ai�Ri(L,Ai))>L), the surety company pays the bond to
the agency. In this case the agency obtains L and the remaining assets of the
contractor, which implies that the utility of the agency is given by
U¼V�c�kBþ (Ai�Ri(L,Ai))þL�CB. CB are additional bankruptcy costs of
the agency if she finishes the project herself. An overview of the timing of the
cash flows is displayed in Table 1.

Table 1 The timing of the cash flows

No bankruptcy Bankruptcy, surety

company finishes

Bankruptcy,

agency finishes

Players/

Time

t=0 t=1 t=0 t=1 t=0 t=1

Agency �Pi

ð1þ r0Þ
V �Pi

ð1þ r0Þ
V �Pi

ð1þ r0Þ
V� c� kB

þ ðAi � RiðL;AiÞÞ
þ L� CB þ Pi

Surety

company

�Li

ð1þ r0Þ
L � Li

ð1þ r0Þ
L� c� kB þ Pi

þ ðAi � RiðL;AiÞÞ
� Li

ð1þ r0Þ
0

RiðL;AiÞ
ð1þ r0Þ

RiðL;AiÞ
ð1þ r0Þ

RiðL;AiÞ
ð1þ r0Þ

Contractor Pi

ð1þ r0Þ
Ai�Ci Pi

ð1þ r0Þ
0 Pi

ð1þ r0Þ
0

�RiðL;AiÞ
ð1þ r0Þ

�RiðL;AiÞ
ð1þ r0Þ

�RiðL;AiÞ
ð1þ r0Þ
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Fairly priced surety bonds

In this section it is assumed that surety companies are risk-neutral profit
maximizers, that screening is costless and that the market for surety bonds is
perfectly competitive. This implies that surety companies make zero profits.
The price of the surety bond for contractor i is then given by the requirement
that the surety company is indifferent between issuing the bond and investing
into the risk-free asset:

E½PSðissue;RiðL;AiÞ;LÞ� ¼ L: ð1Þ

Concerning the bidding in t¼0, each contractor will take the fee Ri(L,Ai)/
(1þ r0) and the remaining assets (Ai�Ri(L,Ai))/(1þ r0) into account and bid
according to his equilibrium bidding function Pi*(Ai). It is well known that if
the procurement mechanism is a second-price sealed-bid auction, the
equilibrium bid is such that in the case of winning with this payment, the
contractor is indifferent between winning and not winning the contract.
Therefore,

PCðwin;Pi ¼ P�
i ðAiÞ;RiðL;AiÞ;LÞ ¼ Ai: ð2Þ

As mentioned before, there are three different cases that have to be
considered:

(i) The winning contractor has enough assets and never goes bankrupt
(contractors of group (i)). In this case L is never at risk. Consequently, the
surety company does not need to charge a risk premium (Ri(L,Ai)¼0).
This result differs from CGH because here the contractor does not have to
pay any fee, whereas in CGH even the wealthy contractors of group (i)
have to pay r0L. According to Eq. (2), the equilibrium bid must satisfy
(1�q)(Pi*(Ai)�cþ kGþAi)þ q(Pi*(Ai)�c�kBþAi)¼Ai, which leads to a
bid of Pi*(Ai)¼c for contractors with AiXkB.

(ii) The second case is that the surety company helps the contractor finish
the project in case of high costs (contractors of group (ii)). In this case,
the optimal fee is defined by Ri(L,Ai)þ (1�q)Lþ q(L�(cþ kB�E [Pi]�
AiþRi(L,Ai)))¼L.10 E [Pi] is the expected payment in case of winning and

10 If this condition holds, the surety company is indifferent between issuing the bond (left-hand

side) and not issuing the bond (right-hand side). The left-hand side is given by the fee, the bond

(if costs are low), and the amount the surety company has to pay if the costs are high and if it

wants to help the contractor finish the project.
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depends on the bids submitted by the other contractors. The last equation
translates into a fee of Ri(L,Ai)¼q(cþ kB�E[Pi]�Ai)/(1�q), which also
does not depend on the size of L, as the surety will never be paid.
According to Eq. (2), a contractor bids Pi*(Ai) such that (1�q)
(Pi*(Ai)�cþ kGþAi�Ri(L,Ai))¼Ai, which gives (1�q)Pi*(Ai)þ qE[Pi]¼c.
Given the payment rule of the second-price sealed-bid auction, the bid
must be Pi*(Ai)¼c if AiXkB�(1�q)L.11

(iii) The third case is that the contractor goes bankrupt and the surety
company does not finish the project and pays L to the agency (contractors
of group (iii)). Then, the surety company sets Ri(L,Ai)þ (1�q)L¼L, which
gives Ri(L,Ai)¼qL. The contractors bid such that (1�q)(Pi*(Ai)
�cþ kGþAi�Ri(L,Ai))¼Ai, which gives Pi*(Ai)¼c�kGþ qLþAiq/(1�q)
if AiokB�(1�q)L. Note that Pi*(Ai)oc. These results are summarized in
the following Lemma12:

Lemma 1 The bidding function under fair pricing is given by:

For Lo kB
ð1�qÞ :

P�
i ðAi;LÞ ¼

c� kG þ qLþ qAi

ð1�qÞ if 0pAiokB � ð1� qÞL
c if AiXkB � ð1� qÞL:

�
ð3Þ

For LX kB
ð1�qÞ :

P�
i ðAi;LÞ ¼ c: ð4Þ

The optimal size of the surety bond

The next step is to determine the optimal size of the surety bond that
maximizes the utility of the agency. Assume first that LokB/(1�q). Expression

11 If a contractor of this group wins, there are two possible payments. First, the payment is

determined by a contractor of group (i) with Pi*(Ai)¼c. Second, the payment is determined by a

contractor of the same group. With Pi*(Ai)¼c, we have E [Pi]¼c. As the next paragraph shows,

a contractor of group (iii) will always bid less.
12 The corresponding Lemma in CGH is Lemma 4.
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(5) represents the expected utility of the agency, where fi denotes the
distribution of the ith lowest assets and A2 denotes the second lowest asset.

V�
Z 1

kB�ð1�qÞL
cf1ðAÞdA

� ð1� qÞ
Z kB�ð1�qÞL

0

Z kB�ð1�qÞL

A

ðcþ qA2

ð1� qÞ � kG þ qLÞf2ðA2ÞdA2

" #
f1ðAÞdA

� ð1� qÞ
Z kB�ð1�qÞL

0

Z 1

kB�ð1�qÞL
cf2ðA2ÞdA2

" #
f1ðAÞdA

� q

Z kB�ð1�qÞL

0

cþ kB � ð1� qÞL� Aþ CBð Þf1ðAÞdA:

ð5Þ

The first integral represents the case in which the winning contractor has
assets (A) that are large enough to ensure the completion of the project either
by himself or by the surety company. In this case the contractor receives c as
payment (groups (i) and (ii)). Concerning the second and third integral, they
represent that case in which the project is only finished if the costs are low. The
second integral depicts the case in which a contractor of group (iii) wins and
receives a bid of a contractor of the same group as the payment. The third
integral is the case in which a contractor of group (iii) wins and receives c as the
payment. The last integral represents the case when the costs are high and
neither the winning contractor nor the surety company finishes the project.
Expression (5) can be rewritten as:

V� c� q

Z kB�ð1�qÞL

0

ðkB � ð1� qÞL � Aþ CBÞf1ðAÞdA

� ð1� qÞ
Z kB�ð1�qÞL

0

Z kB�ð1�qÞL

A

"

ð qA2

ð1� qÞ � kG þ qLÞf2ðA2ÞdA2

�
f1ðAÞdA:

ð6Þ

In the case of LXkB/(1�q) the surety bond is such that the project will
always be finished (only group (i) and (ii) contractors). The utility of the agency
is then given by:

V� c: ð7Þ

The optimal size of the surety bond is determined by optimizing (6) and (7)
with respect to L.

The Geneva Risk and Insurance Review

44



Proposition 1 The optimal size of the surety bond that maximizes the agency’s
utility is L*XkB/(1�q).

Proof Note that the integrand of the first integral in Eq. (6) is positive because
AokB�(1�q)L. For the same reason, the integrand of the second integral is
positive as well. As both integrals are subtracted from V, Eq. (6) is maximized if
the range of each integral becomes zero. This is the case for L*¼kB/(1�q)
(or larger as then expression (7) applies). &

From Lemma 1 we know that for LXkB/(1�q), the surety company will
always complete the project for any Ai, which yields a utility of V�c for the
agency. This result is contrary to CGH where it can be optimal that the project
is not completed by the surety company. In line with the insurance literature, it
holds that fair insurance pricing leads to an efficient outcome in the sense that
the surety company always finishes the project. Interestingly, this can be
obtained with overinsurance, in the sense that the required surety bond L
might be larger than the money at risk. However, overinsurance on the side of
the agency translates into full insurance on the side of the surety company as
this implies that the surety company will always finish the project.

The interpretation of this result carries over to the U.S. practice of surety
bonds in which the agency requires a bond that is equal to the actual payment,
that is L¼E[P]. In this case CGH come to the conclusion that inefficient
overinsurance may arise. Proposition 1 shows that even if there is over-
insurance, this is efficient as long as the surety bond is priced fairly. On the
other hand, the U.S. practice might lead to underinsurance. The expected
payment E[P] under fair pricing is always lower than or equal to c, the expected
costs of the project. Now, if c is smaller than kB/(1�q), then the surety will be
too small. In other words, if variations in costs are potentially large, then
requiring a surety of the size of the expected costs might provide too little
cover.13

Unfairly priced surety bonds

Having established that for fair premia full insurance (and even overinsurance)
can be optimal, let us now consider the case in which the surety company faces
costs of screening and risk taking that might be a reason for unfair insurance
premia. As it is common in the insurance literature,14 we assume that the unfair

13 We thank a referee for pointing this out to us.
14 See for example Gollier (2000, p. 101).
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part of the premium consists of a fixed fee m (e.g., for the fixed screening costs)
and a premium loading l, which is proportional to the actuarial value of the
policy. The fee contractor i has to pay is equal to Ri(L,Ai)¼mþ (1þ l)Ri

f(L,Ai),
where Ri

f(L,Ai) is the fair premium derived in the previous section. We begin
with the simpler case of l¼0.

Surety bonds with a fixed fee

If screening costs are positive but constant, that is they do not depend on the
size of the bond, the premium a surety company demands in a competitive
market is Ri(L,Ai)¼mþRi

f(L,Ai), where m is the fixed fee. That is, the risk
loading l is set equal to zero.

Every bidder has to pay m in addition to the fair premium in case of winning
the contract. Thus the fixed fee m has the same effect as an increase in the cost
term c by m. Therefore the analysis of the previous section goes through in this
case as well, with the only difference that c has to be replaced by cþ m in every
expression. This implies that in expression (5), the term m has to be subtracted.
Hence, if the agency decides to demand a surety such that every contractor has
to pay m in case of winning the contract, the optimization problem remains
unchanged. The agency thus decides to choose LXkB/(1�q). The utility of the
agency is then given by

V� c� m ð8Þ

Now if m is small, the results of the previous section continue to hold.
However, if m is large (e.g., mXV�c), the agency might decide either not to
insure herself at all (if the bankruptcy costs are small), or to abandon the
project. We summarize this result in the following proposition.

Proposition 2 Let l¼0 and m>0. Then, if m is small L*XkB/(1�q) is optimal.
If m is large, either L*¼0 or the project is abandoned.

Thus full insurance is still optimal for small values of m.

Surety bonds with a risk loading

Now the general case in which l>0 is considered. We proceed as follows: in
a first step, we derive the bidding strategies of the contractors. The optimal size
of the bond is discussed next.

Interestingly, if a risk loading is imposed on the price for the surety bond,
then the bidding behaviour of the contractors might become non-monotonic or
even decrease in wealth.
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Proposition 3 If LokB/(1�q) and l>0, the bidding function is non-monotonic.
If LXkB/(1�q) and l>0, the bidding function decreases in wealth.

Proof Following steps (i)–(iii) from above, the bids of the contractors are as
follows: in case (i), the contractor never goes bankrupt. Therefore, the surety
company will only charge the fixed premium Ri(Ai)¼m and the bid will be equal
to Pi*(Ai)¼cþ m if AiXkB.

In case (iii) the surety company pays L to the agency if the costs are high,
that is it will not help the contractor finish the project. Therefore, the surety
company will charge a premium of Ri(Ai)¼qL(1þ l)þ m because it wants to be
compensated for paying L to the agency in case the costs are high, which occurs
with probability q. The bids of the contractors in group (iii) have to satisfy
(1�q)(Pi*(Ai)�cþ kGþAi�Ri(Ai))¼Ai, which gives Pi*(Ai)¼cþ m�kGþ qAi/
(1�q)þ qL(1þ l). A property of this bidding function is that it is increasing in
Ai. Therefore, the highest bid of group (iii) is placed by the contractor with the
highest Ai in this group.

In case (ii) the surety company helps the contractor to complete the project
and charges a premium of Ri(Ai)¼mþ q(1þ l)(cþ kB�E[Pi]�AiþRi(Ai)). Here
the premium compensates the surety company for the case in which the costs are
higher than the expected payment and the remaining assets (but lower than L).15

This implies a fee of Ri(Ai)¼(mþ q(1þ l)(cþ kB�E[Pi]�Ai))/(1�q(1þ l)). The
bids of the contractors have to satisfy (1�q)(Pi*(Ai)�cþ kGþAi�
Ri(Ai))¼Ai. The solution to this problem is Pi*(Ai)¼(1�q�ql)þ qE[Pi](1þ l)¼
cþ mþ ql(kB�Ai)/(1�q), which depends on the bidding function Pi*(Ai) and
on the expected payment E[Pi] if a contractor wins with Pi*(Ai). A property
of this bidding function is that the bid is decreasing in Ai as E[Pi] is increasing
in Pi*(Ai). Therefore, the highest bid of group (ii) is placed by the contractor
with the lowest Ai of this group.

Now, we turn to the question which contractors belong to groups (ii) and
(iii). To do so, we have to identify the marginal contractor with the lowest
Ai¼Âi the surety company is willing to help, that is the contractor with the
lowest assets who still belongs to group (ii). First, assume that the highest bid
of group (ii) is always higher than the highest bid of group (iii). If the
contractor with the highest bid of group (ii) wins, the payment must be the
same as his bid for it is the maximum possible bid. In this case Pi*(Âi)¼E[Pi]
and thus the bid is Pi*(Âi)¼cþ mþ (ql(kB�Âi)/(1�q). Hence, the marginal
contractor the surety company helps to finish the project is the contractor with

15 E[Pi] is again the expected payment in equilibrium if a contractor with assets Ai wins, that is the

expectation of the second lowest bid under the assumption that Pi*(Ai) is the lowest bid.
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Âi¼kB�(1�q)L. Second, we have to show that the surety company does not
want to finish the project and prefers paying the bond to the agency for
contractors with AiokB�(1�q)L, namely L�(cþ kB�P�(Ai�Ri(Ai)))o0.
Substituting the fee and the maximum possible payment (since it is the best
case for the surety company if a contractor of group (iii) wins), the surety
company indeed does not help contractors with AiokB�(1�q)L to finish the
project. Note that our assumption that the maximum possible bid is placed by
a contractor of group (ii) holds for Âi¼kB�(1�q)L, because the bids of all
contractors with assets below Âi (group (iii)) lie below the maximum possible
bid and the contractor with Âi also bids more than cþ m. If LXkB/(1�q),
group (iii) ceases to exist, so that the bidding function becomes decreasing in
wealth (for contractors of group (ii)) and then constant (for contractors of
group (i)). &

The non-monotonic bidding function (for low values of L) has implications
for the final allocation. The intermediate group of contractors, that is those
who might go bankrupt and for which the surety company finishes the project
in case of bankruptcy, place the highest bid. Thus the agency is more likely to
end up either with those contractors who never go bankrupt or with those for
whom the surety company pays the bond in case of bankruptcy.

If the surety is large enough, then this intermediate group is made up of
all bidders with low assets. This implies that the lowest bids will be placed by
those contractors with the largest assets, that is with the lowest probability
of going bankrupt. Hence, a large enough surety will prevent ALTs. If the
surety is smaller, then the problem of ALTs will at least be alleviated to some
extent. This is different from the result in CGH. In their setup, the lowest bids
always come from the contractors with the lowest wealth and thus with the
highest risk of bankruptcy. Hence, the difference in pricing matters in this
context. If pricing is proportional to the money at risk, high-risk contractors
have to pay more to the surety company and thus become less competitive in
the market. If pricing is proportional to the size of the bond, all contractors
pay the same unfair part of the premium, which implies that the surety
company does not help in separating out the more risky contractors.

The bidding functions for the non-monotonic case are depicted in Figure 1.
The solid line sketches the bidding function and the dashed line gives an
approximation of the real bidding function for E[Pi]¼Pi*(Ai), which yields
Pi*(Ai)¼cþ mþ ql(kB�Ai)/(1�q). Note that the real bidding function has to
be below the approximation because a winning contractor receives some kind of
average payment and not his bid that would be the minimum possible payment.

The dotted line in Figure 1 depicts the bidding function for the case in which
the risk loading is zero (l¼0). The bidding function is increasing in Ai until it
reaches its maximum (cþ m) at Ai¼kB�(1�q)L and is constant afterwards.
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If l>0, the bidding function (the solid line) first increases in Ai until it reaches
its maximum (cþ mþ qlL) at Ai¼kB�(1�q)L, then decreases in Ai to cþ m at
Ai¼kB and is constant afterwards. We have not been able to solve for the
optimal size of the surety bond analytically in this case. However, if the costs
of bankruptcy for the agency are high and the agency thus wants to set the
probability of non-fulfilment to zero, she should require a large surety bond,
L*XkB/(1�q). Then, L* is such that the winning contractor or the surety
company always finishes the project. This result is in contrast to the standard
insurance literature, where only partial insurance will be demanded if insurance
is priced marginally unfair.

Moreover, also in the pricing structure analysed in CGH, L*¼kB/1�q might
be optimal if bankruptcy costs are large. However, L*>kB/1�q never holds in
their model. Overinsurance might be optimal in our case because
it does not come at additional costs if the loading is proportional to the
money at risk, and not, as in CGH, proportional to the size of the surety bond.
This has implications for the U.S. practice where a surety bond of the expected
size of the project (approximately L¼E[P]) is required. Even if this implies
overinsurance, as CGH argue, it might still be optimal under unfair pricing.

Conclusion

Industries with uncertainty about future costs are plagued by ALTs and
bankruptcy. In many countries compulsory surety bonds are used to deal with
this problem. CGH (2004) show that surety bonds indeed mitigate the problem
of ALTs. CGH assume that the cost of the surety bond are proportional to its
size. We modify their framework and assume in a first step that surety bonds

P∗

c + � − kG + q(1 + λ)L

c + �

c + � + qλL

c − kG + (r0 + q)L

c + r0L

AkB − (1 − q)L kB

Figure 1. Bidding function for unfair premia; l>0: solid line; l¼0: dotted line.
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are priced fairly – the common benchmark case in the insurance literature.
Then, in contrast to CHG, the problem becomes analytically solvable and full
insurance or even overinsurance is optimal, that is the project is always finished
either by the contractor or by the surety company. In a second step, we
introduce a risk loading (unfair premia) and show that full insurance or even
overinsurance might still be optimal. This result is interesting to note as usually
in the insurance literature marginally unfair premia lead to partial insurance.

If the unfairly priced surety bond is large enough to cover all costs in all
cases, the contractors’ bids decrease in wealth. Potential contractors with low
wealth have to pay a high risk premium and thus submit higher bids compared
to contractors with larger wealth. Thus surety bonds with costs that are
proportional to the money at risk might help to avoid ALTs in the sense that
contractors with a higher risk of bankruptcy will not bid less than a contractor
with a lower risk of bankruptcy.

The analysis has implications for the U.S. practice where a surety bond of
the expected size of the project is usually required. Even if this implies
overinsurance, as CGH argue, the U.S. practice might still be optimal under
unfair pricing as long as the unfair part of the premium is proportional to the
money at risk and not to the size of the surety bond.
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