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This paper studies a principal-agent insurance brokerage problem with a risk-
averse principal (an insured) and a risk-neutral agent (a broker). The concept of
“mean-preserving, spread-reducing” (MPSR) effort is introduced to model the
broker’s activities. Using the first-order approach, it is shown that under some
common conditions, the insured may “concavify” the reward function to induce the
risk-neutral agent to exert MPSR brokering effort. These conditions, together with
an additional condition, guarantee the validity of the first-order approach even
when the monotone likelihood ratio condition (used exclusively to justify the first-
order approach) is violated.
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Introduction

In their seminal paper, Spence and Zeckhauser (1971) analyze a principal-agent
model in which an insurance company (the principal) alleviates the moral hazard
problem of an insured (the agent), who has no incentive to exert self-protection
effort. It is tempting to apply the results derived from the traditional principal-
agent problem (e.g., Spence and Zeckhauser, 1971; Campbell and Kracaw, 1987;
Oyer, 2000) to the insurance brokerage problem. In fact, Cummins and Doherty
(2006) conjectures that “principal-agent theory” may be used to analyze the
inefficiency of fee or commission compensation schemes that currently prevail in
insurance brokerage. In insurance broking, an insured (the principal) hires a
broker (the agent) to arrange for insurance coverage for a certain potential loss.

Unfortunately, there is a major feature in insurance broking that distinguishes
it from the principal-agent problem analyzed in the literature. Particularly, the
principal is risk-neutral and the agent is risk-averse in the traditional principal-
agent problem, whereas the opposite is often true in insurance brokerage.
According to Tommy (2000), the insurance brokerage market is dominated by
several large brokers. Almost 60 percent of global insurance has been brokered by

The Geneva Risk and Insurance Review, 2011, 36, (189–201)
r 2011 The International Association for the Study of Insurance Economics 1554-964X/11

www.palgrave-journals.com/grir/



the largest two insurance brokers, namely, Marsh Inc. and Aon Corp. A large
insurance broker can diversify in the financial market or has a sufficiently large
portfolio of (independent) clients. Therefore, a large insurance broker may accept
an insurance broking contract based on the expected value of the contract, acting
as if it is risk-neutral. Another reason for an insurance broking company to be
risk-neutral is that its shareholders can diversify by investing in broking
companies and non-broking companies. On the other hand, the principal that
purchases insurance may be a small enterprise or a company facing bankruptcy
cost and can be considered as risk-averse.

This paper attempts to study the principal-agent problem with a risk-averse
principal and a risk-neutral agent in which the agent’s effort exhibits the
“mean-preserving, spread reducing” (MPSR) property in the Rothschild-
Stiglitz sense. An immediate application of this general model is the case of an
insurance broker helping an insured arrange for appropriate insurance policies
or bargaining with insurance companies to tailor-make policies to obtain
optimal actuarially fair coverage. Under the general model, the agent’s
activities reduce the spread of the potential loss of the principal keeping its
mean unchanged. However, the agent has no incentive to take account of the
principal’s risk attitude. Therefore, the principal needs to design a reward
(commission) profile to provide an appropriate incentive to the agent. The
solution of the problem serves as a benchmark for checking whether existing
broking fees and commission schedules are or are not optimal to the insured.

Finally, Mirrlees (1999/1975) points out that the first-order approach used
by Spence and Zeckhauser (1971) for solving the traditional principal-agent
problems is often invalid. Grossman and Hart (1983) and Rogerson (1985)
show that if the principal’s random outcome satisfies both the monotone
likelihood ratio condition (MLRC) and the convexity of distribution function
condition (CDFC), the first-order approach is valid.1 Jewitt (1988) replaces the
CDFC by less restrictive conditions on the distribution function and imposes
an additional restriction on the agent’s utility function. The use of the first-
order approach for solving the insurance broking problem also needs to be
justified.

Two questions will be answered in this paper: (i) What is the general shape of
the optimal reward function under the insurance brokerage problem with a
risk-averse principal, a risk-neutral agent, and MPSR agent’s effort? (ii) Under
what conditions is the first-order approach justified under the insurance
brokerage problem? The paper is organized as follows. The next section states

1 Whitt (1980) and Rogerson (1985) suggest that the MLRC implies that a rise in the agent’s

effort results in a first-order stochastic dominating change in the principal’s outcome and hence

a rise in the principal’s average outcome.
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and solves the principal-agent insurance brokerage problem using the first-
order approach. The subsequent section derives the shape of the optimal
reward function. The penultimate section derives the conditions that guarantee
the validity of the first-order approach. The final section concludes.

A principal-agent insurance brokerage model

A risk-averse principal (an insured) faces an insurable risk, x̃. The principal hires
a risk-neutral agent (an insurance broker) to search for appropriate insurance
coverage. For convenience, this class of risk management problems will be called
“insurance brokerage problems” from now on. Let aX0 be the agent’s effort with
cost function c satisfying c(a)>0, c0(a)>0, c00(a)>0, 8a>0 and lima-0c

0(a)¼0.2

Assume x̃ has realizations x, support [x, �x], distribution function F, and density
function f:[x, �x]�Rþ-[0, 1] with f (x, a)>0, 8xA[x, �x] and 8a. Assume f is twice
continuously differentiable in a and that both fa and f are twice continuously
differentiable in x. Let s:[x, �x]-Rþ be the reward function.

Assume that the principal is incapable of observing a (see, e.g., Holmstrom,
1979). This assumption may or may not hold in general. However, in property
and liability insurance, the ultimate coverage received is often very complicated
depending on a lot of factors, such as coinsurance rate, deductibles or excesses
on different exposures, policy limits (e.g., per claim limits and aggregate limits),
exclusions, and endorsements. It can be too difficult and costly for the insured
to observe a. Therefore, the unobservability assumption seems reasonable.
Alternatively, one may assume partial observability.

The principal is risk-averse with thrice differentiable utility function v
satisfying v 0>0 and v 00o0. The principal’s maximization problem is

max
fsð�Þ; ag

Zx

x

v½x� sðxÞ� fðx; aÞdx ð1Þ

subject to the risk-neutral agent’s incentive compatibility (IC) constraint
given by

a 2 argmax

Zx

x

sðxÞ fðx; aÞdx� cðaÞ: ð2Þ

2 In insurance brokerage, to increase coverage, an insurance broker has to dedicate more

resources and effort to search among different insurance policies offered in the market and to

bargain with insurers to raise indemnity rates, to lower deductibles, to delete exclusions, or to

add endorsements to broaden the coverage under a standard policy. An alternative

interpretation is that the insured has many small independent insurable risk units such that

the agent’s cost rises as a higher percentage of these risk units receives coverage.
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The principal, therefore, chooses reward function s that is used to “control”
the agent’s choice of a via the agent’s IC constraint. Here, the IC constraint
simply says that given reward function s, the agent chooses a optimally to
maximize its net expected reward. In addition to the IC constraint, the
principal is also subject to the agent’s individual rationality constraint,

Zx

x

sðxÞ fðx; aÞdx� cðaÞXR; ð3Þ

where R is the agent’s reservation utility.
According to the first-order approach, the IC constraint may be replaced by

the first-order condition of the agent’s maximization problem (2), namely,3

Zx

x

sðxÞ faðx; aÞdx� c0ðaÞ ¼ 0: ð4Þ

Using the optimal control technique, the first-order conditions are given by:

v0½x� sðxÞ� ¼ lþ m
faðx; aÞ
fðx; aÞ ; ð5Þ

Zx

x

v½x� sðxÞ� faðx; aÞdxþ m
Zx

x

sðxÞ faaðx; aÞdx� c00ðaÞ

2
64

3
75 ¼ 0: ð6Þ

To further investigate the optimal solution of the insurance brokerage
problem, some assumptions should be made explicit. In particular, it is
assumed that a unique interior solution of a exists for the principal’s problem.4

Moreover, it is necessary to specify the nature of the agent’s effort. Let us focus
on an actuarially fair or unbiased risk transfer under which a rise in coverage

3 Araujo and Moreira (2001) show how the traditional principal-agent problem can be solved

without using the first-order approach.
4 Notice that even if it is assumed that lima-0c

0(a)¼0, the risk-neutral agent may not exert a>0

when the agent’s effort is MPSR, as will be defined below, depending on the reward function.

Particularly, the readers can check that when m¼0 and s(x)¼x�k, where k is a constant, (4)�(6)

are satisfied at a¼0. By integration by parts, with an MPSR effort, (4) holds even when a¼0.

The Geneva Risk and Insurance Review

192



reduces the spread of the random outcome without changing its mean in the
Rothschild-Stiglitz sense.

Definition An agent’s effort is said to be MPSR if
R
x
xFa(y, a)dyo0, 8a and

8xA(x, �x) and
R
x
�xFa(y, a)dy¼0, 8a.5

Pick any Da>0. For all xA(x, �x), integrating
R
x
x Fa(y, a)dyo0 from a to

aþDa gives
R
x
x [F (y, a)�F(y, aþDa)]dx>0. Similarly,

R
x
�x Fa(y, a)dy¼0 impliesR

x
�x [F (y, a)�F(yþDa)]dy¼0. Now, for any two distributions G(y) and H(y), G

is a Rothschild-Stiglitz mean-preserving spread of H if
R
x
x [H(y)�G(y)]dy>0,

8xA[x, �x) and
R
x
�x [H(y)�G(y)]dy¼0. Letting G(y)¼F (y, aþDa) andH(y)¼F (y, a)

certainly yields that any increase in a satisfying the MPSR definition preserves
the mean while reduces the spread of the random outcome in the Rothschild-
Stiglitz sense.

Clearly, if an insurance broker’s effort is to raise the indemnity rate of a fair
coinsurance-type insurance policy, it should satisfy the MPSR condition. This
is also true for a rise in insurance deductible or policy limit and for a risk
management department that hedges a higher percentage of the company’s
exchange rate or price risk by purchasing more commodity forwards or in the
future. Let w be the initial wealth of the principal and ỹ be an insurable risk
(with density function h, distribution function H, and support [ y, �y]) faced by
the principal. The insurance broker exerts effort to raise indemnity rate aA[0, 1]
of a fair coinsurance-type policy such that the principal’s net worth equals

w� ~yþ að~y� E~yÞ � sð~xÞ;

where aEỹ is the fair premium. Let x̃¼w�ỹþ a(ỹ�Eỹ). The support of x̃, [x, �x],
now equals [w��yþ a(�y�Eỹ ), w�yþ a(y�Eỹ)]. The principal’s net payoff is
exactly x̃�s(x̃).

To see that the distribution of x̃ satisfies the MPSR condition, notice that

Fðx; aÞ ¼
Zx

x

fðx; yÞdy ¼
Zy

y

hðxÞdx ¼
Zy

w�x�aE~y
1�a

hðxÞdx

5 The MPSR concept can be specified as non-strict satisfying
R
x
xFa(y, a)dyp0, 8a and 8xA(x, �x)

with
R
x
xFa(y, a)dyo0, 8a for some subsets of (x, �x) having positive measures, andR

x
�xFa(y, a)dy¼0.
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such that when ao1,

Faðx; aÞ ¼ �ð1� aÞ�2ðw� x� E~yÞ � h w� x� aE~y

1� a

� �
: ð7Þ

Now, Fa(�x, a)¼0. The right side of (7) changes from negative to positive
(as �(w�x�Eỹ) changes from negative to positive) when x increases. This
certainly implies that the MPSR condition is satisfied as

R
x
x Fa(y, a)dyo0 for all

xA(x, �x) because
R
x
�x Fa(x, a)dx¼0. The last equality is due to

Zx

x

xfðx; aÞdx ¼ E~x ¼ E½w� ~yþ að~y� E~yÞ� ¼ w� E~y

regardless of the value of a such that

0 ¼ dE~x

da
¼

Zx

x

xfaðx; aÞdx ¼ xFaðx; aÞ

�
Zx

x

Faðx; aÞdx ¼ �
Zx

x

Faðx; aÞdx:

The shape of the optimal reward function

Intuition suggests that the optimal reward function should create some spread
in the agent’s net reward, so that the agent will take the principal’s risk attitude
into account when exerting MPSR effort. Before investigating the shape of the
optimal reward function, it is necessary to first check that multipliers l and m
are strictly positive.

Lemma Suppose the agent’s effort is MPSR and a has an interior solution.
When the principal is risk-averse and the agent is risk-neutral, l>0 and m>0.

Proof Interested readers can obtain the proof from the author on request.
The first task is to compare the shape of the reward function of the insurance
brokerage problem with that of the traditional principal-agent problem. It is
well-known (see, e.g., Jewitt, 1988) that the reward function and the fa/f ratio
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move in the same direction as x increases under the traditional problem. When
fa/ f is monotonically increasing satisfying the MLRC (to be defined formally in
the next section), so is the reward function.

Denote the Arrow-Pratt coefficient of absolute risk aversion for utility
function v by Av¼�v00/v0. v is said to exhibit decreasing absolute risk aversion if
Av0o0, non-increasing absolute risk aversion (NIARA) if Av0p0, and constant
absolute risk aversion (CARA) if Av0¼0. It is generally believed that NIARA
is consistent with many reasonable economic behaviours (see, e.g., Arrow,
1963; Mossin, 1968). The following theorem states the relation between the
principal’s net payoff (i.e., x�s(x)) and the fa/ f ratio, and the shape of reward
function s:

Theorem 1 Suppose the principal is risk-averse and the agent is risk-neutral.

(a) 1�s0(x) and ( fa/ f )x have opposite signs.
(b) If v exhibits NIARA and ( fa/ f )xxo0, 8xA[x, �x], then s00(x)o0.6

Proof See Appendix.
Theorem 1(a) suggests that the principal’s optimal net return, x�s(x), and the
fa/ f ratio move in opposite directions as x increases, whereas the agent’s
optimal reward s(x) may rise or fall when fa/ f rises. This result is obviously
different from that of the traditional problem in which the risk-averse agent’s
optimal reward and the fa/ f ratio move in the same direction.

Theorem 1(b) suggests that the reward function s is concave in x whenever
fa/ f is concave in x and the principal’s utility function exhibits NIARA.
Theorem 1(b) is intuitive. To induce the risk-neutral insurance broker to exert
costly effort to search for appropriate insurance coverage to reduce the risk,
the insured should concavify the broker’s payoff function so that the broker
will act as if it is risk-averse. It will be apparent in the next section that the
conditions stated in Theorem 1(b) are important for justifying the first-order
approach for the insurance brokerage problem because s00o0 guarantees that
the agent’s expected payoff is concave in a.

Justifying the first-order approach to the insurance brokerage problem

As pointed out by Mirrlees (1975), the first-order approach to principal-agent
problems may not be valid in general. Rogerson (1985) justifies the first-order

6 The assumption of ( fa/f )xxo0, 8xA[x, �x] can be replaced by ( fa/f )xxp0 with (fa/f )xx¼0 iff

( fa/f )xa0, 8xA[x, �x].
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approach to the traditional principal-agent problems by using the following
conditions:

Definition An agent’s effort is said to satisfy the MLRC if ( fa/ f )xX0,
8xA[x, �x] and ( fa/ f )x>0 for some subsets of [x, �x] with positive measures.7

Definition An agent’s effort is said to satisfy the CDFC if Faa(x, a)X0 for all a
and all xA[x, �x].

Jewitt (1988, p. 1177) gives a simple example to argue that “most of the
distributions commonly occurring in statistics (and economics) do not have the
CDF property”. He maintains the MLRC, but relaxes the CDFC by imposing
other restrictions.8 Later, LiCalzi and Spaeter (2003) show that some reaso-
nable classes of distributions actually satisfy both the MLRC and the CDFC.

The following states that the MLRC contradicts with the MPSR condition
so that Rogerson’s (1985) and Jewitt’s (1988) conditions cannot be used to
justify the first-order approach under the insurance brokerage problem.

Claim The MPSR condition and the MLRC cannot hold simultaneously.

Proof See Appendix.
The pertinent question is whether the first-order approach can be justified
under the insurance brokerage problem in which the principal is risk-averse,
the agent is risk-neutral, and the agent’s effort is MPSR. The following
theorem provides an answer to the question:

Theorem 29 Suppose the principal is risk-averse, the agent is risk-neutral, and
the agent’s effort is MPSR. The first-order approach is valid such that an

7 The literature often defines the MLRC such that the distribution of the random outcome

satisfies ( fa/ f )xX0, 8xA[x, �x] (see, e.g., Rogerson, 1985, p. 1361; Jewitt, 1988, condition 2.11).

The readers can verify that in the special case with ( fa/ f )x¼0, 8xA[x, �x], a>0 cannot be optimal

under the traditional principal-agent problem.
8 Sinclair-Desgagné (1994) also justifies the first-order approach for the multi-signal principal-

agent problem by maintaining the MLRC. Brown et al. (1986) do not utilize the MLRC in part

(i) of their theorem, whereas the other three parts of their theorem all assume that the MLRC

holds. However, part (i) of Brown et al.’s (1986) theorem states that the first-order approach is

valid when the risk-averse agent’s utility is sufficiently concave without stating how concave the

agent’s utility function really needs to be.
9 One can replace condition (a) by

R
x
xFaa(y, a)dyX0, 8a and 8xA[x, �x] with

R
x
xFaa(y, a)dy>0 for

some subsets of [x, �x] with positive measures. Moreover, one can replace condition (b) by

( fa/ f )xxp0 with ( fa/ f )xx¼0 iff ( fa/ f )xa0, 8a and 8xA[x, �x].
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interior solution for a can be sustained by the agent’s first-order condition and
can be optimal to the agent’s problem if

(a)
R
x
x Faa(y, a)dy>0, 8a and 8xA[x, �x],

(b) ( fa/ f )xxo0, 8a and 8xA[x, �x], and
(c) v exhibits NIARA.

Proof See Appendix.
Theorem 2 presents a new set of conditions that justifies the first-order
approach without using either the MLRC or the CDFC. These conditions are
simpler than those of Jewitt (1988). Two reasons for such simplification are (i)
the replacement of risk-neutral principals/risk-averse agents by risk-averse
principals/risk-neutral agents and (ii) the nature of MPSR activities giving rise
to Fa(�x, a)¼0. Notice that condition (a) of Theorem 2 is also used by Jewitt
(1988, Theorem 2) to replace the CDFC. Condition (b) in its strict or non-strict
form is satisfied by some commonly encountered distribution functions, such
as normal, truncated normal, exponential, and some members of generalized
gamma distributions, under the coinsurance-type insurance problem discussed
in the section “A principal-agent insurance brokerage model”. Condition (c) is
similar to but less complicated than condition (2.12) of Jewitt’s Theorem 2
(1988), namely, o00(z)p0, 8z>0, where o(z)¼u[u0�1(1/z)]. According to Jewitt,
his condition (2.12) essentially requires that the coefficient of absolute risk
aversion of the agent’s utility must not decrease too quickly.

The intuition of Theorem 2 becomes apparent when one observes from
Theorem 1 that conditions (b) and (c) of Theorem 2 imply that reward function
s is concave. The concavity of s in x renders the agent’s expected payoff
concave in a as shown in the proof of Theorem 2. With concave expected
payoff, the risk-neutral agent is induced to exert optimal MPSR effort as if it is
risk-averse (or the agent is simply forced to take account of the risk-averse
attitude of the principal as a result of the concave reward function). Notice
from the proof of Theorem 2 (particularly Eq. (15)) that a constant or a linear
reward function cannot be optimal because a>0 cannot be sustained by the
agent’s first-order condition when s00¼0.

Remark In general, an agent (e.g., a risk manager) may be risk-averse.
Allowing for risk-averse agents makes the insurance brokerage problem
more complicated. To yield results similar to those stated in Theorems 1 and
2, one needs to impose restrictions (such as CARA) on the utility functions
of both the principal and the agent. Moreover, one needs to explicitly assume
m>0 as the inequality is no longer guaranteed. Interested readers can obtain
additional results for the case with risk-averse agents from the author on
request.
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Conclusion

This paper has analysed the principal-agent insurance brokerage problem by
introducing the concept of “mean-preserving, spread-reducing” effort. It has
been shown that when the principal’s utility exhibits NIARA, the concavity of
the fa/ f ratio gives rise to a concave optimal reward function inducing the
risk-neutral agent to exert MPSR effort. The same conditions together with
an additional condition on the distribution function of the risk (similar
but simpler than those imposed by Jewitt, 1988) guarantee the validity of the
first-order approach, without using either the MLRC or the CDFC.

In reality, however, a reward function that is concave in the random
outcome is seldom observed in insurance brokering. There are several possible
explanations. First, the insurance brokering market may face market
imperfection and market concentration (see, e.g., Tommy, 2000) so that
brokerage commissions may be set by large brokers. Second, the insurance
brokerage problem may be complicated by the moral hazard problem of the
principal who can affect the loss distribution, and hence the actual reward
made to the broker. Third, a broker may provide other tied-in risk-
management services, such as risk analysis, claim settlement, and legal advice.
This paper may be extended to cover the case of multiple agents’ activities
along the line of Holmstrom and Milgrom’s (1991) paper in the future. Finally,
reputation and long-term repeated relations between principals and agents, not
taken care of in this paper, may generate optimal reward functions that would
not arise in the static setting (see, e.g., Bull, 1987; MacLeod and Malcomson,
1989).
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Appendix

Proof of Theorem 1: To prove part (a), differentiate both sides of (5) with
respect to x to get

v00ðx� sðxÞÞð1� s0ðxÞÞ ¼ mð fa=f Þx: ð8Þ

Substituting m>0 from the Lemma and v00o0 into (8) gives sgn[1�s0(x)]¼�sgn
[( fa/ f )x].

To prove part (b), rewrite (8) as Av � (s0�1)v0¼m( fa/ f )x and differentiate both
sides with respect to x to get

�Av 0 ðs0 � 1Þ2v0 þ Avs
00v0 � Avðs0 � 1Þ2v00 ¼ mð fa=f Þxx: ð9Þ
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According to (9), s00o0 if and only if

�Av 0 ðs0 � 1Þ2v0 � Avðs0 � 1Þ2v004mð fa=f Þxx: ð10Þ

The inequality in (10) is satisfied as v00o0, Av>0, (s0�1)2X0, Av0p0, m>0,
and ( fa/ f )xxo0. &

Proof of Claim Suppose the MLRC is satisfied such that (fa/ f )xX0, 8xA[x, �x]
with (fa/ f )x>0 for some subsets of [x, �x] with positive measures. Now,

0 ¼ Faðx; aÞ ¼
Zx

x

faðx; aÞdx ð11Þ

implies that fa/ f must change sign on (x, �x) at least once. This together with the
MLRC implies that fa/ f must change sign exactly once. However, notice that
fa/ f may equal zero for a subset of (x, �x) with positive measure. Therefore,
9x0 ¼ inffxjx 2 ðx; xÞ and fa=f ¼ 0g such that fa / fo0, 8xA[x, x0) and 9x1 ¼
supfxjx 2 ðx; xÞ and fa=f ¼ 0g such that fa/ f>0, 8xA(x1, �x]. Notice that
Fa(x, a)o0, 8xA(x, x0]. Moreover, Fa(x, a)o0 is constant on [x0, x1]. Now,
consider any x2A(x1, �x). Rewrite (11) as

0 ¼ Faðx; aÞ ¼
Zx0
x

ðfa=fÞfdxþ
Zx1
x0

0 � fdx

þ
Zx2
x1

ðfa=fÞfdxþ
Zx

x2

ðfa=fÞfdx:

ð12Þ

Now, fa/ f>0, 8xA(x1, �x] implies that
R x

x2
ðfa=f Þ fdx40 and hence Faðx2; aÞ ¼R x2

x ð fa=f Þ fdxo0 according to (12). Since x2 can be chosen arbitrarily close to
x1 or �x, one has Fa(x, a)o0, 8xA(x1, �x). This together with Fa (x, a)o0,
8xA(x, x1] implies that

R
x
x Fa(y, a)dyo0, 8xA(x, �x] violating the MPSR

condition at x¼�x. &

Proof of Theorem 2
As suggested by Jewitt (1988), it suffices to show that the agent’s second-order
condition holds, that is,

Zx

x

sðxÞfaaðx; aÞdx� c00ðaÞo0: ð13Þ
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Integrating the first term on the left side of (13) by parts twice gives

Zx

x

sðxÞfaaðx; aÞdx ¼ sðxÞ
Zx

x

faaðx; aÞdx�
Zx

x

s0ðxÞ
Zx

x

faaðy; aÞxy

2
64

3
75dx

¼ �
Zx

x

s0ðxÞ
Zx

x

faaðy; aÞdy

2
64

3
75dx

¼ �s0ðxÞ
Zx

x

Faaðx; aÞdxþ
Zx

x

s00ðxÞ
Zx

x

Faaðy; aÞdy

2
64

3
75dx

¼
Zx

x

s00ðxÞ
Zx

x

Faaðy; aÞdy

2
64

3
75dx:

ð14Þ

The second equality in (14) is because of
R
x
�x faa(x, a)dx¼Faa(�x, a)¼0

(as Fa(�x, a)¼0). The fourth equality is because of
R
x
�xFaa(x, a)dx¼0 (asR

x
�x Fa(x, a)dx¼0 for an MPSR effort). Now, conditions (b) and (c) imply that

s00o0 according to Theorem 1. This together with
R
x
xFaa(y, a)dy>0, 8xA(x, �x)

clearly implies that the right side of the last equality of (14) is strictly negative.
Therefore, (13) holds as c00>0. Next, replacing faa and Faa by fa and Fa in (14)
and using Fa(�x, a)¼0 and

R
x
�x Fa(x, a)dx¼0 gives

Zx

x

sðxÞfaðx; aÞdx ¼
Zx

x

s00ðxÞ
Zx

x

Faðy; aÞdy

2
64

3
75dx: ð15Þ

R
x
xFa(y, a)dyo0, 8xA(x, �x) together with s00o0 implies that the right side of

(15) is strictly positive. This together with c00>0 and lima-0c
0(a)¼0 implies that

there exists a>0 such that the agent’s first-order condition (4) holds. &
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