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Advances in the use of molecular markers to elucidate the inheritance of quantitative traits enable the
integration of genetic information on physiological traits into crop growth models. The objective of
this study was to assess the ability of a crop growth model with QTL-based estimates of physiological
input parameters to predict the yield of recombinant inbred lines (RILs) of barley. The model used
predicts yield as spike biomass accumulated over the post-¯owering period. We describe a two-stage
procedure for predicting trait values from estimated additive and epistatic e�ects of QTLs. Values of
physiological traits estimated by that procedure or measured in the ®eld were used as input to the crop
growth model. The output values (yield and shoot biomass) from the growth model using these two
types of input values were highly correlated, indicating that QTL information can successfully replace
measured input parameters. With the current crop growth model, however, both types of input values
often resulted in large discrepancies between observed and predicted values. Improvement of
performance may be achieved by incorporating physiological processes not yet included in the model.
The prospects of using QTL-based predictions of model-input traits to identify new, high yielding
barley genotypes are discussed.

Keywords: barley, crop growth model, Hordeum vulgare L., plant physiology, QTL mapping,
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Introduction

Crop growth models have been developed during the
last decades by integrating knowledge across disciplines
such as crop ecophysiology, micrometeorology and soil
science (Loomis et al., 1979). These models were

conventionally used to predict the performance of given
cultivars under various environmental conditions, and
are now increasingly being used in breeding programmes
(Aggarwal et al., 1997), for example to assist in the
design of new plant types (Haverkort & Kooman, 1997).
Many crop growth models use as input physiological

parameters that account for di�erences among cultivars.
These parameters, often regarded as environment-
independent genotype coe�cients, allow the models to
predict performance of diverse cultivars under di�erent
growing conditions. The models can therefore poten-
tially resolve genotype-by-environment interactions into
underlying physiological parameters (Hunt et al., 1993).
Because these parameters are genotypic, information
from genetic studies can be incorporated into crop
models to guide prediction of genotypic di�erences in
growth or development. For instance, White & Hoogen-
boom (1996) presented a gene-based model for the
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growth of the common bean (Phaseolus vulgaris)33 , in
which they applied linear regression to estimate values
for more than 20 physiological model-input traits from
allelic information of seven known genes. Their results
and a subsequent evaluation study of the gene-based
model (Hoogenboom et al., 1997) highlighted the
potential use of genetic information to represent cultivar
di�erences in crop models. This makes the biological
meaning of model parameters more explicit, and simpli-
®es calibration of new cultivars in crop models, a
recognized di�culty with existing models (Hunt et al.,
1993). However, the approach of White & Hoogenboom
(1996) implies that all the model-input traits were
controlled by pleiotropic e�ects of the seven genes,
ignoring e�ects of possible additional trait-speci®c genes.

It is now possible to dissect variation of a trait
exhibiting quantitative inheritance into the e�ects of
discrete genetic loci ±± quantitative trait loci (QTLs) ±±
linked to markers on a molecular marker map (e.g.
Paterson et al., 1988). The use of molecular markers to
identify QTLs can help to elucidate the inheritance of
speci®c model-input traits (Hoogenboom et al., 1997;
Stam, 1998). Using such techniques, Yin et al. (1999b)
have shown that input traits in a model for predicting
barley biomass and yield production were controlled by
separate QTLs, though many of them were associated
with the same major gene. The QTL mapping of
physiological model-input traits might open up oppor-
tunities to predict the yield potential of a speci®c
genotype in various environments on the basis of
individual genetic factors (Aggarwal et al., 1997). The
objective of this study was to assess the ability of a crop
growth model with QTL-based estimates of input
parameters to predict the yield of recombinant inbred
lines (RILs) of barley (Hordeum vulgare L.).

Materials and methods

The crop growth model

The QTL-based crop growth model used in this study
was derived from the model SYP-BL as described by
Yin et al. (2000). It quanti®es barley growth as a�ected
by radiation, temperature and plant nitrogen status.
Leaf photosynthesis is estimated based on radiation
¯ux, leaf nitrogen concentration (LNC) and speci®c leaf
area (SLA). Total daily crop photosynthesis is calcula-
ted by integrating instantaneous photosynthesis rates
over the leaf area index and over the day. Daily growth
rate is estimated after subtraction of dark respiration.
The biomass produced is distributed among organs
based on partitioning coe�cients that depend on devel-
opment stages (DS). The DS is de®ned as 0 at
emergence, 1 at ¯owering and 2 at maturity, and is

calculated as the accumulation of daily development
rates, which increase proportionally with the e�ective
temperature between 0°C and 26°C. The model calcu-
lates yield as spike biomass accumulated over the
post¯owering period. The detrimental e�ect of lodging
on yield is simulated through reduction in canopy
photosynthesis, for which the completely lodged canopy
is assumed to be a single large horizontal leaf.

Major physiological model-input traits were pre-¯ow-
ering duration (Pre-F), post-¯owering duration (Post-F),
LNC, SLA, fraction of total biomass partitioned to roots
and shoots, and fraction of shoot biomass partitioned to
leaves and spikes (FPleaf and FPspike). The fraction of
shoot biomass partitioned to stems is 1 ) FPleaf )
FPspike. Environmental model inputs were daily radi-
ation and temperature. For a given set of physiological
and environmental input values, the model produces
predictions of yield (spike biomass) and shoot biomass.

Field experiments

Field experiments were conducted to allow identi®cation
of QTLs for model input parameters and to measure
model-output traits (yield and shoot biomass). Ninety-
four RILs, produced by eight generations of single-seed
descent from a cross of two two-row spring barley
cultivars, Prisma and Apex, were grown in 1996 and
1997 on alluvial clay soil at Wageningen (52°N latitude),
The Netherlands. A randomized incomplete block design
was used, with two replicates for each RIL. Crops were
grown under conditions to ensure that plants were free of
pests, disease, and weeds. Nitrogen application was
greater in 1997 (104 kg ha)1) than in 1996 (50 kg ha)1),
originally for the purpose of evaluating the performance
of the SYP-BL model in di�erent nitrogen environments.
A complete set of physiological model-input traits were
determined for each RIL in 1997; only Post-F and LNC
were measured in 1996. The model output traits, yield (at
14% moisture content) and total shoot biomass, were
measured in both years. Some RILs lodged after ¯ower-
ing in 1997 and the lodging severity was scored during the
post¯owering period. Additional details of the ®eld trials
are given by Yin et al. (2000).

QTLs for model-input traits

QTLs for the physiological model-input traits were
identi®ed as described in earlier reports (Yin et al.,
1999a,b), using an approximate multiple QTL mapping
method assuming no epistasis (Jansen, 1993; Jansen &
Stam, 1994), as implemented in the softwareMapQTL3.0
(Van Ooijen & Maliepaard, 1996). Because root weight
was not measured in our experiments, biomass partition-
ing between root and shoot was ignored. QTLs for the six

540 X. YIN ET AL.

Ó The Genetical Society of Great Britain, Heredity, 85, 539±549.



other physiological model-input traits (Pre-F, Post-F,
LNC, SLA, FPleaf, and FPspike), identi®ed using the
1997 data, are summarized in Table 1. Of these traits,
SLA and biomass partitioning coe�cients were DS-
dependent; QTL analysis was therefore conducted at
several DS for each of these traits (Table 1). Most of the
traits were found to be associatedwith themajor dwar®ng
gene, denso (also designated as sdw1, Franckowiak, 1996),
which was segregating in our population. The parental
variety Prisma carried the mutant (dwarf) denso allele.
This genewasmapped at 126.4 cMMon chromosome 3 (3H)
of our marker map (Yin et al., 1999b), by segregation
analysis of the distinctive prostrate juvenile growth habit
(Haahr & Von Wettstein, 1976).

Predicting model-input trait values

We could not readily obtain predicted trait values for
each RIL from the original QTL-mapping analyses
because neither ®tted values nor all quantities needed for

computing them are included in the output of MapQTL.
More importantly, interactions among QTLs were not
modelled in the mapping stage. However, once attention
was restricted to a limited set of putative QTL positions,
we could estimate joint genotype probabilities for the
QTLs readily and use these to model simultaneously
the e�ects of multiple QTLs. From these models, we
obtained predicted trait values while allowing for
possible interactions among QTLs.

Estimating joint QTL-genotype probabilities We used
information on a framework of 190 AFLP markers (Yin
et al., 1999b) to estimate the joint genotype probabilities
for a set of previously identi®ed QTLs for each trait. Let
Xj be a binary random variable taking value 1 if a RIL
has genotype QQ and 0 if the RIL has genotype qq at
QTL j ( j� 1, 2, ¼, J ). In addition, let h represent the
complete set of marker genotypes in a RIL. Then we
require, for each RIL, probabilities of the form,
pr(X1� x1,¼,XJ� xJ | h), where xj Î {0, 1}.

Table 1 QTLs for physiological model-input traits, identi®ed using the 1997 data. Traits are de®ned in Abbreviations.
Estimated QTL positions are relative to the marker map described by Yin et al. (1999b). QTLs for SLA were reported by Yin
et al. (1999a); those for other traits by Yin et al. (1999b). Only LOD-pro®le peaks of at least 2.5 are included. No QTLs were
identi®ed for traits SLA at DS = 0.20, DS = 0.50, and DS = 0.80, and FPleaf at DS = 0.10. Additive e�ect = (mean of
lines with Prisma allele ) mean of lines with Apex allele)/2. The percentage of phenotypic variation (R2

adj) accounted for by
the joint e�ects of QTLs was estimated by two methods: Method Q, weighted regression on QTL genotypes; Method M,
regression on genotypes of markers closest to the QTLs. h2, estimated broad-sense heritability of line mean

Position Additive
R2
adj (%)

Model-input trait Chromosome (cMM) LOD e�ect Method Q Method M h2

Pre-F (°Cd) 3 (3H) 126.4 40.4 31.52 89 89 1.00
5 (1H) 100.5 4.9 )7.16
5 (1H) 151.7 2.8 )5.08
7 (5H) 96.6 2.6 )4.93

Post-F (°Cd) 2 (2H) 57.5 4.0 11.27 20 21 1.00
3 (3H) 132.4 3.4 12.27

LNC (g kg)1) 3 (3H) 125.2 3.7 )0.84 19 32 0.47
5 (1H) 122.1 4.3 1.36
7 (5H) 77.8 2.6 0.93

SLA, DS = 0.35 (m2 kg)1) 3 (3H) 33.7 2.5 0.43 15 18 0.49
7 (5H) 37.6 2.9 0.41

SLA, DS = 1.00 (m2 kg)1) 4 (4H) 4.0 3.2 0.81 12 14 0.42

SLA, DS = 1.28 (m2 kg)1) 3 (3H) 126.4 7.7 1.32 31 35 0.73
4 (4H) 2.0 2.9 0.81

FPleaf, DS = 0.27 1 (7H) 88.0 3.4 )0.0113 20 21 0.40
3 (3H) 128.4 2.5 0.0106

FPleaf, DS = 0.47 3 (3H) 125.2 27.2 0.0383 68 71 0.72

FPleaf, DS = 0.59 3 (3H) 123.2 5.7 0.0249 26 26 0.31

FPspike, DS = 1.15 1 (7H) 93.3 2.7 )0.0253 45 48 0.66
3 (3H) 125.2 14.5 0.0568
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For a single QTL, the probability, pr(Xj� xj | h), of
each of the possible QTL genotypes in each RIL,
conditional on the observed marker genotypes in that
RIL, was estimated using the recombination frequencies
between the QTL position and the markers ¯anking that
position. If the score for a ¯anking marker was missing
in a particular RIL, the scores for additional markers
linked to that position were used to supply the missing
information. Such an `all-marker' procedure has been
described previously by Jansen & Stam (1994) and
equivalently, by Haley et al. (1994). Because we are
working with RILs, r¢, the probability of an odd number
of observable crossover events in an interval over eight
generations of single-seed descent, must be used in these
calculations in place of r, the usual recombination
frequency per meiosis. We assumed no crossover inter-
ference, so that recombination in one interval was taken
to be independent of recombination in any other
interval. For computational simplicity, we made two
additional approximations. First, we computed r¢ as 2r/
(1 + 2r), a relation that holds strictly only for an
in®nite number of generations of single-seed descent.
Second, if a ¯anking-marker score was missing, we used
at most the ®ve most closely linked markers to the left of
the QTL or the ®ve to the right of the QTL to supply
additional information for estimating the QTL genotype
probabilities.

For independently segregating QTLs, or QTLs sep-
arated by at least one marker having a non-missing
genotype score, the joint probability, pr(X1� x1,¼,
XJ� xJ | h), can be obtained by multiplication of the
marginal probabilities, pr(Xj� xj | h), j� 1, 2,¼,J.
Otherwise, the joint probability is obtained by relations
such as

pr X1 � x1; X2 � x2 j h� �
� pr X1 � x1 j X2 � x2; h� � pr�X2 � x2 j h� ��;

and obvious extensions for more than two QTLs.
Conditional probabilities such as pr(X1� x1 | X2�
x2, h) were computed by adding QTL 2 to a marker
map as if it were a marker, once separately for each
possible genotype at QTL 2, and then estimating
pr(X1� x1 | h¢) as before, where h¢� (X2, h). All calcu-
lations were done using custom-written functions in
SS-PLUSPLUS (Data Analysis Products Division, MathSoft,
1997).

Using estimated QTL-genotype probabilities to predict
trait values We obtained predicted trait values by (a)
replicating the trait value for each RIL so that there was
one copy (case) for each multiple-QTL genotype with
nonzero probability; and (b) performing weighted mul-
tiple regression of the observed trait values on the set of

possible QTL genotypes, using the joint QTL-genotype
probabilities as weights.

From one to four putative QTLs were identi®ed for
each of the traits used in this study (Table 1). For traits
with two or three QTLs, all interaction terms were
included in the regression models. For the one trait
(Pre-F) with four QTLs, only two-way interactions were
included in the regression model used for prediction.
The predictions obtained using the full model containing
all interaction terms di�ered little from those obtained
from the restricted model containing only up to two-way
interactions.

The fraction of total variance explained jointly by the
QTLs identi®ed for a trait was estimated by the adjusted
multiple-correlation coe�cient (R2) for weighted
multiple regression on the QTL genotypes (Method
Q). Most statistical computer packages do not use the
correct value for the degrees of freedom when compu-
ting the mean-square values, and thus R2 values, for a
weighted regression model. The total degrees of freedom
in our context should be the sum of the weights, not the
total number of observations after replication of RILs.
Therefore, care must be taken when obtaining an
adjusted R2 value for such a model. This estimate was
compared with a more commonly used estimate, the
adjusted R2 for multiple regression on the genotypes of
the marker nearest to each QTL (Method M).

Evaluation of the QTL-based crop growth model

Physiological model-input trait values predicted by the
above method were used in the SYP-BL model to
replace the original measured model-input values. This
generated a QTL-based crop growth model for barley,
QTL-BL.

Performance of both the SYP-BL and the QTL-BL
models was evaluated ®rst against the observed output
(yield and shoot biomass) from the 1997 experiment; this
was the experiment from which the QTLs for model-
input traits had been identi®ed. For this evaluation,
traits measured in 1997 provided all the physiological
input to SYP-BL; traits predicted by QTL genotypes
provided all the physiological input to QTL-BL. Because
lodging, which occurred in 1997 for many tall RILs, was
not considered as a physiological trait, observed lodging
scores were used as input to both models.

To assess external validity of the models, performance
was next evaluated against the observed output from the
independent 1996 experiment. Values of the traits Pre-F,
SLA, FPleaf, and FPspike measured in 1997 provided
input to SYP-BL; values for these four traits predicted
by QTL genotypes provided input to QTL-BL. How-
ever, since nitrogen application di�ered between the
years, values of LNC from 1997 were not appropriate
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for 1996. Therefore, predictions from both the SYP-BL
and QTL-BL models for 1996 were obtained using
measured values of LNC from 1996. Similarly, due to
the lower nitrogen application in 1996, Post-F was
shorter in 1996 than in 1997 (Yin et al., 2000), as a result
of nitrogen translocation from vegetative organs to meet
nitrogen requirements for grain growth (Sinclair & De
Wit, 1975). Therefore, values of Post-F measured in
1996 also were used when obtaining predictions from
both the models for 1996. One replicate per RIL from
the 1996 ®eld trial was excluded from all analyses
because heterogeneity in soil fertility in the blocks
containing those replicates led to large di�erences in
plant nitrogen status among RILs (Yin et al., 2000),
which obscured the in¯uence of the physiological model-
input traits.

Results

Joint QTL effects

Estimates of broad-sense heritability for the mean over
replicate plots of physiological model-input traits for
which QTLs were identi®ed ranged from 0.31 to 1.00

(Table 1). The heritability of shoot biomass was 0.73
and that of yield was 0.93.
The percentage of phenotypic variance explained by

segregation at a set of QTLs for each physiological
model-input trait is given in Table 1. The estimates
based on marker genotypes (Method M) were very
similar to, and never less than, those based on
QTL-genotype probabilities (Method Q). The two
methods gave substantially di�erent results only for
the trait LNC (Method Q: 19%, Method M: 32%). The
proportion of phenotypic variance explained ranged
from 12 to 89% for the various traits.

Performance of crop growth models

The 1997 yields predicted by the SYP-BL model
correlated well with the observed values (Fig. 1a,
Table 2), although clearly there remained substantial
variation in the observed values that was not explained
by the model. The correlation was due largely to the
accurately predicted e�ect on yield of segregation at
the denso locus. An analysis in which we ®t a separate
slope for each denso genotype class showed no signi-
®cant correlation between observed and predicted yield

Fig. 1 Comparison between observed
values of yield (in tons/hectare) and
those predicted by the SYP-BL

and QTL-BL models, for the 1997
and 1996 experiments. ·, Prisma
denso genotype; s, Apex denso geno-

type. Simple linear regression lines for
all RILs combined ())))), the Pris-
ma denso-genotype class (ÐÐÐÐ), and

the Apex denso-genotype class (±±±±±)
are shown.
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within either class (Table 2). The correlation between
the 1997 yields predicted from the QTL-BL model and
the observed yields was slightly higher than that
between the SYP-BL predictions and the observed
values (Fig. 1b, Table 2). Again, this correlation was
due largely to the accurately predicted e�ect of
segregation at the denso locus. The range of predicted
values from the QTL-BL model for each denso
genotype class was smaller than that from the SYP-
BL model (Fig. 1a,b).

The correlations between observed yield and yield
predicted by SYP-BL and QTL-BL for all lines in the
independent 1996 experiment were much less than those
for 1997 (Fig. 1c, Table 2). Here, however, the correla-
tion was not due to the e�ect of segregation at the denso
locus, since we observed no such e�ect. We observed,
rather, signi®cant correlation between observed and
predicted yield for lines with the Prisma denso allele but
not for those with the Apex allele (Table 2). As in 1997,
the correlation between the yields predicted from the
QTL-BL model and the observed yields (Fig. 1d,
Table 2) was slightly higher than that between the
SYP-BL predictions and the observed values.

Compared to yield, the 1997 shoot biomass predicted
by the SYP-BL model correlated less well with the
observed values (Fig. 2a, Table 2). We detected no
signi®cant correlation between observed and predicted
shoot biomass within each denso genotype class
(Table 2), indicating that this correlation also was due
solely to the accurately predicted e�ect on shoot
biomass of segregation at the denso locus. The correla-
tion between the 1997 shoot biomass values predicted
from the QTL-BL model and the observed values
(Fig. 2b, Table 2) was slightly higher than that between
the SYP-BL predictions and the observed values. Again,

this correlation was due solely to the accurately predic-
ted e�ect of segregation at the denso locus.

In contrast to 1997, we observed no signi®cant
correlation between observed shoot biomass and pre-
dicted values from either the SYP-BL or QTL-BL
models for all lines in the independent 1996 experiment
(Table 2). Just as for yield, we observed a signi®cant
correlation between observed and predicted shoot bio-
mass for lines with the Prisma denso allele only
(Table 2). Shoot biomass predictions from the QTL-
BL and SYP-BL models were equally well correlated
with observed values. The e�ect on observed shoot
biomass of segregation at the denso locus in 1996,
although much less than that in 1997, appeared to be in
the opposite direction (Fig. 2). In 1997 observed shoot
biomass for the lines with the Prisma (dwarf) denso allele
was on average higher than that for lines with the Apex
allele (mean 13.37 t/ha vs. 12.53 t/ha). In 1996, in con-
trast, it was on average slightly lower (mean 8.87 t/ha
vs. 9.05 t/ha). Neither SYP-BL nor QTL-BL was able to
account adequately for this interaction between denso
e�ect and year. Hence, predicted shoot biomass was on
average higher for the lines with the Prisma denso allele
in both 1997 (mean 13.00 t/ha vs. 12.21 t/ha for SYP-
BL) and 1996 (mean 9.82 t/ha vs. 8.85 t/ha for SYP-
BL). This had the net e�ect of reducing the correlation
between observed and predicted values in 1996 when all
lines, irrespective of denso genotype, were considered
together.

We directly compare the predictions of the two crop
growth models in Fig. 3. For both yield and shoot
biomass in 1997, the predictions of the two models were
highly correlated (Fig. 3a,b). This was also the case
within each of the denso genotype classes, although the
correlation coe�cients are reduced. The slopes of the

Table 2 Correlation between observed trait values (yield and shoot biomass) and those predicted by models SYP-BL and
QTL-BL. Correlation Coe�cient, estimated Pearson correlation coe�cient; F, F-statistic to test whether there was a
signi®cant linear relationship between observed and predicted trait values; P, P-value for the F-test; a + b, value for all lines,
regardless of denso genotype; a, value for lines with Prisma denso allele; b, value for lines with Apex denso allele. The model
and residual degrees of freedom for all F-tests are 1 and 45, respectively

Growth
Correlation Coe�cient F P

Year Trait model a + b a b a b a b

1997 Yield QTL-BL 0.72 0.03 )0.25 0.03 2.96 0.86 0.09
SYP-BL 0.61 )0.05 )0.08 0.13 0.28 0.72 0.60

1997 Shoot QTL-BL 0.50 0.23 )0.23 2.60 2.42 0.11 0.13
Biomass SYP-BL 0.38 0.04 0.03 0.08 0.05 0.77 0.83

1996 Yield QTL-BL 0.20 0.35 )0.04 6.43 0.09 0.02 0.77
SYP-BL 0.17 0.27 )0.07 3.65 0.23 0.06 0.64

1996 Shoot QTL-BL 0.12 0.37 0.10 7.10 0.48 0.01 0.49
Biomass SYP-BL 0.08 0.33 0.06 5.63 0.17 0.02 0.69
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regression lines are less than one, re¯ecting that on
average the QTL-BL model produced less extreme
predictions than did the SYP-BL model (Fig. 3a,b).
In 1996, the correlations between predictions of the two
models were extremely high (Fig. 3c,d). Correlations
based on all values and those based on the values for
the individual denso genotype classes were almost the
same.

Discussion

Prediction of input-trait values from
estimated QTL effects

We introduced in this study a methodology for devel-
oping QTL-based crop growth models, by using both
additive and epistatic e�ects of QTLs identi®ed for
individual model-input traits. We used a two-stage
procedure for predicting model-input trait values from
QTL e�ects. First, we identi®ed putative QTL positions
by mapping analyses that allowed for multiple QTLs in
an approximate manner, but not for interactions among
QTLs. Second, we estimated QTL-genotype probabili-
ties for putative QTLs identi®ed in the ®rst stage, and

used these probabilities to predict trait values, while
allowing for interactions among QTLs. Possible failure
to detect some QTLs was the price we paid for ignoring
interactions in the ®rst stage.
In principle, predicted trait values could have been

obtained directly from ®rst-stage multiple-QTL map-
ping analyses that did include interactions among QTLs.
However, the di�culties of model selection (e.g. decid-
ing which interactions to include) and the computa-
tional burden would be exacerbated in the context of a
full optimization in multiple dimensions, in which
attention were not restricted to a preselected set of
map positions.
A common way of inferring a QTL genotype is to use

the genotype of its nearest neighbouring marker (e.g.
Bachmann & Hombergen, 1997). Such an approach
assumes no recombination between markers and a QTL;
violation of this assumption will lead to less accurate
trait predictions. Moreover, it is not clear what to do in
such an approach if scores for markers linked to a QTL
are not available in a particular line. Missing marker
scores are no problem for our method; if no marker
information is available, QTL-genotype probabilities
are estimated to be 0.5.

Fig. 2 Comparison between observed
values of total shoot biomass (in tons/
hectare) and those predicted by the

SYP-BL and QTL-BL models, for the
1997 and 1996 experiments. ·, Prisma
denso genotype; s, Apex denso geno-

type. Simple linear regression lines for
all RILs combined ())))), the Pris-
ma denso-genotype class (ÐÐÐÐ), and

the Apex denso-genotype class (±±±±±)
are shown.

USING QTL INFORMATION IN A CROP GROWTH MODEL 545

Ó The Genetical Society of Great Britain, Heredity, 85, 539±549.



For all model-input traits except LNC, regression on
marker scores (Method M) yielded predicted trait values
almost identical to those from the weighted regression
on QTL genotypes (Method Q) (results not shown). This
is consistent with the similarities between the adjusted
R2 values for the two methods (Table 1). This presum-
ably is because there was at least one marker closely
linked to each of the QTLs for those traits, and thus
recombination between a QTL and its nearest marker
was negligible. For LNC, however, the two methods
yielded quite di�erent predicted trait values, and di�er-
ent adjusted R2 values (Table 1). This probably is
because two of the QTLs identi®ed for LNC were
located near the centre of 40- and 10-cMM marker
intervals, respectively. For such a case, our method Q
should provide more accurate predictions of trait values;
it is unclear which of the methods, M or Q, yields a more
accurate estimator of explained variance. Inaccuracies in
the method-M estimator arise from ignoring recombi-
nation between markers and QTLs. However, Xu (1995,
1998) has shown that R2 estimators from regression
mapping of QTLs tend to underestimate the true value.
The method-Q estimates reported here always exceeded
the corresponding estimates from regression mapping

(results not shown), but the properties of this estimator
remain to be studied in more detail.

Given that QTL-genotype probabilities have been
obtained by some suitable method, there also are
various possibilities for how they are used to predict
trait values. We used a so-called `expansion' method
(Chasalow & Dourleijn, 1997), but regression on the
probabilities themselves, such as is done in regression
mapping of QTLs (Haley & Knott, 1992; Martinez &
Curnow, 1992), or iteratively reweighted least squares
(Xu, 1998) may be reasonable alternatives. How all
these possible approaches for predicting trait values
based on QTL genotypes compare when judged by a
criterion such as prediction error requires further study.

Performance of the QTL-based crop growth model

For both yield and shoot biomass, the high correlations
between predicted values from the SYP-BL and QTL-
BL models (Fig. 3) suggest that input traits estimated
using QTL information can successfully replace meas-
ured input parameters. The range of output values
predicted by the QTL-BL model was smaller than that
for the SYP-BL model (Fig. 3) because the range of

Fig. 3 Comparison between predic-
tions of yield and total shoot biomass
from the QTL-BL model and those

from the SYP-BL model. For the
1997 experiment, each point repre-
sents the mean of two replicates for a
single RIL. For the 1996 experiment,

each point represents a single plot of a
RIL. ·, Prisma denso genotype; s,
Apex denso genotype. Simple linear

regression lines for all RILs combined
())))), the Prisma denso-genotype
class (ÐÐÐÐ), and the Apex denso-

genotype class (±±±±±) are shown.
Pearson correlation coe�cients are
shown for all points (denso genotype

a + b), for only RILs with the
Prisma denso allele (genotype a), and
for only RILs with the Apex denso
allele (genotype b).
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estimated input traits was smaller than the range of the
measured values (results not shown). The di�erence in
performance between QTL-BL and SYP-BL for 1996
was smaller than that for 1997 (Fig. 3). The close
agreement of the two models in 1996 was probably due,
at least in part, to the fact that in 1996 (but not in 1997)
measured values for the model input traits LNC and
Post-F were used in both models. These two traits varied
substantially between the years for a given RIL, due to
di�erent nitrogen applications in the two years (Yin
et al., 2000). Thus the QTL-based estimates of values for
these traits were not appropriate for 1996. The depend-
ence on environment of some model-input traits sug-
gests an inadequacy of the model. Since model-input
traits are considered as genetic coe�cients (Hunt et al.,
1993), the model should be improved such that its
physiological input traits are solely genetically deter-
mined (Yin et al., 2000).
Discrepancies between observed and predicted values

can arise from errors in the model-input parameters.
The measured input traits used in the SYP-BL model
included measurement and environmental errors.
Random errors in measured values of physiological
traits, relative to morphological and agronomic traits,
can be especially large when, as is often the case,
measurements require several steps and are obtained
from a small sample of plants in a plot. This also is a
likely reason that the heritabilities of model-input traits
were less than those of the output traits yield and shoot
biomass. The QTL-based input parameters used in the
QTL-BL model contained less measurement and envi-
ronmental error than did the measured values. This
might explain why the QTL-BL model performed
slightly better than the SYP-BL model (Table 2).
However, values of the QTL-based input parameters
included additional errors caused by ignoring some
genetic e�ects. Moreover, in using input parameters
estimated from QTL e�ects in 1997 to predict output
traits for 1996, we assumed an absence of QTL±year
interactions. The QTL analysis of Yin et al. (1999b)
showed some evidence for such interactions: the mag-
nitudes of the additive e�ects of some QTLs di�ered
between the years. It might be informative to test the
model performance in 1997 using the e�ects of QTLs
identi®ed in 1996. Measurements in 1996, however, do
not allow full estimation of all the required model input
traits.
Storms and high nitrogen conditions in 1997 caused

severe lodging, giving advantage to the short (mutant)
denso genotypes (Yin et al., 2000). This was predicted
adequately by both the SYP-BL and QTL-BL models
(Figs 1a, 1b, 2a, 2b). However, within each denso
genotype group, there was no signi®cant association
between observed and predicted values for the high-

yielding conditions of 1997 (Table 2). This suggests that
the models are not su�ciently robust for practical use in
breeding, given the desire of breeders to select for high
yields within short-strawed lines. For the low-yielding
conditions of 1996, in contrast, there was little e�ect of
denso genotype on yield (Fig. 1c,d). There was an e�ect
on shoot biomass in that year: mutant denso genotypes
had on average smaller values than did the nonmutant
genotypes (Fig. 2c,d), an e�ect opposite to that seen
in 1997. However, both models predicted that these
genotypes would have larger values in both years.
Because the models di�er in physiological model-input
trait values but not in model structure, such dependen-
cies of the performance of both models on environmen-
tal conditions most likely re¯ect de®ciencies in model
structure.
Because the measurement of root mass was not

feasible for such a large number of individual RILs
under ®eld conditions, the model-input trait for root-
shoot partitioning was assumed not to be RIL-speci®c
(Yin et al., 2000). Invalidity of this assumption might
have been an important source of error in the model
predictions of di�erences among RILs in di�erent
environments. Extension of crop growth models to
account for genotypic di�erences in the e�ects of
environment on root/shoot partitioning would be an
important advance. Furthermore, our models use only
the well-tested routines for predicting biomass produc-
tion (source) developed over the last decades by the
Wageningen crop modelling group. An earlier analysis
(Yin et al., 2000) found that most source-determining
input traits (including LNC, SLA, FPleaf, and Post-F)
were not signi®cantly related to yield. Recent evidence
from other studies indicates that processes not included
in our model, especially those related to sink capacity,
also are important for determining yield potential (e.g.
Bindraban, 1997). Yield di�erences among RILs within
each denso allelic group may have been due to their
di�erences in sink capacity. Further physiological stud-
ies are needed to quantify root±shoot relations and
identify additional important factors that have not yet
been incorporated into the model.

Future prospects

Results of this study and an earlier report (Yin et al.,
2000) provide clues to improving the structure of the
crop growth model, so that it can better explain yield
di�erences among the relatively similar lines in a single
segregating population. Development of improved crop
growth models is an important challenge for the future.
Using such an improved model, combined with the
approach described in this report for incorporating QTL
information, we should be able to identify the most
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promising multiple-QTL genotype, whether or not this
genotype already exists in our population. This is the
genotype for which the predicted model-input trait
values would give the highest predicted yield. For
instance, for the 12 genome regions harbouring segre-
gating QTLs for yield-determining traits used in the
existing crop growth model (Table 1), a total of 4096
(212) joint QTL genotypes are possible. It is therefore
extremely unlikely that the most favourable genotype
was present in the set of 94 RILs we used. However, we
could pyramid the favourable QTL alleles, thus creating
desirable genotypes, by crossing a number of suboptimal
RILs that are complementary with respect to their QTL
genotypes. Van Berloo & Stam (1998) have described a
procedure to identify the most promising pairs of RILs;
those which, upon crossing, have the largest probability
of producing the most favourable genotype among their
o�spring.

In general, extrapolation of QTL mapping results to
other segregating populations is not straightforward. In
another cross not only may a di�erent set of QTLs
segregate, the alleles of QTLs that are in common
between the crosses also may di�er. In addition, as the
genetic background in another cross will, in general, be
di�erent, the e�ect of speci®c QTL alleles may vary
when moving from one cross to the next, particularly
when epistatic e�ects are important. Nevertheless, Virk
et al. (1996) showed that quantitative variation of many
agronomic traits in the rice germplasm is associated with
allelic variation of DNA markers. This indicates that
marker-trait associations not only may be present in
segregating populations, but can also be manifest across
a germplasm collection of a crop species. At present it is
not clear to what extent this phenomenon generalizes to
crops other than rice. If it turns out to be more general,
the approach described in this paper may possibly be
applicable not only to a segregating population, but to a
germplasm collection as well.
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