Skip to main content

Advertisement

Log in

Ozone—climate interactions and effects on solar ultraviolet radiation

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This report assesses the effects of stratospheric ozone depletion and anticipated ozone recovery on the intensity of ultraviolet (UV) radiation at the Earth’s surface. Interactions between changes in ozone and changes in climate, as well as their effects on UV radiation, are also considered. These evaluations focus mainly on new knowledge gained from research conducted during the last four years. Furthermore, drivers of changes in UV radiation other than ozone are discussed and their relative importance is assessed. The most important of these factors, namely clouds, aerosols and surface reflectivity, are related to changes in climate, and some of their effects on short- and long-term variations of UV radiation have already been identified from measurements. Finally, projected future developments in stratospheric ozone, climate, and other factors affecting UV radiation have been used to estimate changes in solar UV radiation from the present to the end of the 21st century. New instruments and methods have been assessed with respect to their ability to provide useful and accurate information for monitoring solar UV radiation at the Earth’s surface and for determining relevant exposures of humans. Evidence since the last assessment reconfirms that systematic and accurate long-term measurements of UV radiation and stratospheric ozone are essential for assessing the effectiveness of the Montreal Protocol and its Amendments and adjustments. Finally, we have assessed aspects of UV radiation related to biological effects and human health, as well as implications for UV radiation from possible solar radiation management (geoengineering) methods to mitigate climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. See the Photochem. Photobiol. Sci. themed issue entitled: Environmental effects of ozone depletion and its interaction with climate change: 2018 assessment, Photochem. Photobiol. Sci., 2019, 18(3).

  2. A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14, 19–52.

    Article  CAS  PubMed  Google Scholar 

  3. G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. von der Gathen, K. A. Walker and N. S. Zinoviev, Unprecedented Arctic ozone loss in 2011, Nature, 2011, 478, 469–475.

    Article  CAS  PubMed  Google Scholar 

  4. WMO, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project, Geneva, Switzerland, 2018, in press.

  5. M. Weber, M. Coldewey-Egbers, V. E. Fioletov, S. M. Frith, J. D. Wild, J. P. Burrows, C. S. Long and D. Loyola, Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery, Atmos. Chem. Phys., 2018, 18, 2097–2117.

    Article  CAS  Google Scholar 

  6. WMO, (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project, Report No. 55, Geneva, Switzerland, 2014.

  7. J. Kuttippurath and P. J. Nair, The signs of Antarctic ozone hole recovery, Sci. Rep., 2017, 7, 585.

  8. S. Solomon, D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely and A. Schmidt, Emergence of healing in the Antarctic ozone layer, Science, 2016, 353, 269–274.

    Article  CAS  PubMed  Google Scholar 

  9. S. E. Strahan and A. R. Douglass, Decline in Antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations, Geophys. Res. Lett., 2018, 45, 382–390.

    Article  CAS  Google Scholar 

  10. D. J. Ivy, S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt and R. R. Neely, The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model, Geophys. Res. Lett., 2017, 44, 2556–2561.

    Article  CAS  Google Scholar 

  11. K. A. Stone, S. Solomon, D. E. Kinnison, M. C. Pitts, L. R. Poole, M. J. Mills, A. Schmidt, R. R. Neely, D. Ivy, M. J. Schwartz, J.-P. Vernier, B. J. Johnson, M. B. Tully, A. R. Klekociuk, G. König-Langlo and S. Hagiya, Observing the impact of Calbuco volcanic aerosols on South Polar ozone depletion in 2015, J. Geophys. Res.: Atmos., 2017, 122, 11862–11879.

    Article  CAS  Google Scholar 

  12. E. R. Nash, S. E. Strahan, N. Kramarova, C. S. Long, M. C. Pitts, P. A. Newman, B. Johnson, M. L. Santee, I. Petropavlovskikh and G. O. Braathen, Antarctic ozone hole, in: State of the Climate in 2011, Bull. Am. Meteorol. Soc., 2015, 97, S168–S172.

  13. S. Solomon, D. Ivy, M. Gupta, J. Bandoro, B. Santer, Q. Fu, P. Lin, R. R. Garcia, D. Kinnison and M. Mills, Mirrored changes in Antarctic ozoneand stratospheric temperature in the late 20th versus early 21st centuries, J. Geophys. Res.: Atmos., 2017, 122, 8940–8950.

    Article  CAS  Google Scholar 

  14. A. Pazmiño, S. Godin-Beekmann, A. Hauchecorne, C. Claud, S. Khaykin, F. Goutail, E. Wolfram, J. Salvador and E. Quel, Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring, Atmos. Chem. Phys., 2018, 18, 7557–7572.

    Article  CAS  Google Scholar 

  15. M. P. Chipperfield, S. Bekki, S. Dhomse, N. R. P. Harris, B. Hassler, R. Hossaini, W. Steinbrecht, R. Thiéblemont and M. Weber, Detecting recovery of the stratospheric ozone layer, Nature, 2017, 549, 211–218.

    Article  CAS  PubMed  Google Scholar 

  16. S. S. Dhomse, D. Kinnison, M. P. Chipperfield, R. J. Salawitch, I. Cionni, M. I. Hegglin, N. L. Abraham, H. Akiyoshi, A. T. Archibald, E. M. Bednarz, S. Bekki, P. Braesicke, N. Butchart, M. Dameris, M. Deushi, S. Frith, S. C. Hardiman, B. Hassler, L. W. Horowitz, R. M. Hu, P. Jöckel, B. Josse, O. Kirner, S. Kremser, U. Langematz, J. Lewis, M. Marchand, M. Lin, E. Mancini, V. Marécal, M. Michou, O. Morgenstern, F. M. O’Connor, L. Oman, G. Pitari, D. A. Plummer, J. A. Pyle, L. E. Revell, E. Rozanov, R. Schofield, A. Stenke, K. Stone, K. Sudo, S. Tilmes, D. Visioni, Y. Yamashita and G. Zeng, Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 2018, 18, 8409–8438.

    Article  CAS  Google Scholar 

  17. W. T. Ball, J. Alsing, D. J. Mortlock, J. Staehelin, J. D. Haigh, T. Peter, F. Tummon, R. Stübi, A. Stenke, J. Anderson, A. Bourassa, S. M. Davis, D. Degenstein, S. Frith, L. Froidevaux, C. Roth, V. Sofieva, R. Wang, J. Wild, P. Yu, J. R. Ziemke and E. V. Rozanov, Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys., 2018, 18, 1379–1394.

    Article  CAS  Google Scholar 

  18. K. A. Stone, S. Solomon and D. E. Kinnison, On the identification of ozone recovery, Geophys. Res. Lett., 2018, 45, 5158–5165.

    Article  CAS  Google Scholar 

  19. M. P. Chipperfield, S. Dhomse, R. Hossaini, W. Feng, M. L. Santee, M. Weber, J. P. Burrows, J. D. Wild, D. Loyola and M. Coldewey-Egbers, On the cause of recent variations in lower stratospheric ozone, Geophys. Res. Lett., 2018, 45, 5718–5726.

    Article  Google Scholar 

  20. K. Wargan, C. Orbe, S. Pawson, J. R. Ziemke, L. D. Oman, M. A. Olsen, L. Coy and K. E. Knowland, Recent decline in extratropical lower stratospheric ozone attributed to circulation changes, Geophys. Res. Lett., 2018, 45, 5166–5176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. H. Butler, J. S. Daniel, R. W. Portmann, A. R. Ravishankara, P. J. Young, D. W. Fahey and K. H. Rosenlof, Diverse policy implications for future ozone and surface UV in a changing climate, Environ. Res. Lett., 2016, 11, 064017.

    Article  CAS  Google Scholar 

  22. S. Meul, M. Dameris, U. Langematz, J. Abalichin, A. Kerschbaumer, A. Kubin and S. Oberländer-Hayn, Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure, Geophys. Res. Lett., 2016, 43, 2919–2927.

    Article  CAS  Google Scholar 

  23. A. F. Bais, R. L. McKenzie, G. Bernhard, P. J. Aucamp, M. Ilyas, S. Madronich and K. Tourpali, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2015, 14(1), 19–52.

  24. R. R. Garcia, D. E. Kinnison and D. R. Marsh, “World avoided” simulations with the Whole Atmosphere Community Climate Model, J. Geophys. Res., 2012, 117(D23), DOI: 10.1029/2012JD018430.

  25. P. A. Newman and R. McKenzie, UV impacts avoided by the Montreal Protocol, Photochem. Photobiol. Sci., 2011, 10, 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  26. M. P. Chipperfield, S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders and J. A. Pyle, Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol, Nat. Commun., 2015, 6, 7233.

    Article  CAS  PubMed  Google Scholar 

  27. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes and R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90060D.

  28. J. F. Bornman, P. W. Barnes, T. M. Robson, S. A. Robinson, M. A. K. Jansen, C. L. Ballaré and S. D. Flint, Linkages between stratospheric ozone, UV radiation, and climate change and their implications for terrestrial ecosystems, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90061B.

  29. C. E. Williamson, P. J. Neale, S. Hylander, K. C. Rose, F. L. Figueroa, S. A. Robinson, D.-P. Häder, S.-Å. Wängberg and R. C. Worrest, The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems, Photochem. Photobiol. Sci., 2019, 19, DOI: 10.1039/C8PP90062K.

  30. S. A. Montzka, G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller and J. W. Elkins, An unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 2018, 557, 413–417.

    Article  CAS  PubMed  Google Scholar 

  31. R. Hossaini, M. P. Chipperfield, S. A. Montzka, A. A. Leeson, S. S. Dhomse and J. A. Pyle, The increasing threat to stratospheric ozone from dichloromethane, Nat. Commun., 2017, 8, 15962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. Hu, S. A. Montzka, S. J. Lehman, D. S. Godwin, B. R. Miller, A. E. Andrews, K. Thoning, J. B. Miller, C. Sweeney, C. Siso, J. W. Elkins, B. D. Hall, D. J. Mondeel, D. Nance, T. Nehrkorn, M. Mountain, M. L. Fischer, S. C. Biraud, H. Chen and P. P. Tans, Considerable contribution of the Montreal Protocol to declining greenhouse gas emissions from the United States, Geophys. Res. Lett., 2017, 44, 8075–8083.

    Article  CAS  Google Scholar 

  33. G. J. M. Velders, D. W. Fahey, J. S. Daniel, S. O. Andersen and M. McFarland, Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions, Atmos. Environ., 2015, 123, 200–209.

    Article  CAS  Google Scholar 

  34. M. M. Hurwitz, E. L. Fleming, P. A. Newman, F. Li and Q. Liang, Early action on HFCs mitigates future atmospheric change, Environ. Res. Lett., 2016, 11, 114019.

  35. Y. Xu, D. Zaelke, G. J. M. Velders and V. Ramanathan, The role of HFCs in mitigating 21st century climate change, Atmos. Chem. Phys., 2013, 13, 6083–6089.

    Article  CAS  Google Scholar 

  36. O. Morgenstern, P. Braesicke, M. M. Hurwitz, F. M. O’Connor, A. C. Bushell, C. E. Johnson and J. A. Pyle, The world avoided by the Montreal Protocol, Geophys. Res. Lett., 2008, 35, L16811.

  37. P. A. Newman, L. D. Oman, A. R. Douglass, E. L. Fleming, S. M. Frith, M. M. Hurwitz, S. R. Kawa, C. H. Jackman, N. A. Krotkov, E. R. Nash, J. E. Nielsen, S. Pawson, R. S. Stolarski and G. J. M. Velders, What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 2009, 9, 2113–2128.

    Article  CAS  Google Scholar 

  38. Y. Wu, L. M. Polvani and R. Seager, The importance of the Montreal Protocol in protecting Earth’s hydroclimate, J. Clim., 2013, 26, 4049–4068.

    Article  Google Scholar 

  39. L. M. Polvani, S. J. Camargo and R. R. Garcia, The importance of the Montreal Protocol in mitigating the potential intensity of tropical cyclones, J. Clim., 2016, 29, 2275–2289.

    Article  Google Scholar 

  40. W. D. Nordhaus, The economics of hurricanes and implications of global warming, Climate Change Econom., 2010, 01, 1–20.

    Article  Google Scholar 

  41. N. Stern, Stern Review: The economics of climate change, HM Treasury, UK Report No, Cambridge University Press, 2006, http://www.cambridge.org/9780521700801.

  42. V. Matthias, A. Dörnbrack and G. Stober, The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016, Geophys. Res. Lett., 2016, 43, 12287–12294.

    Article  Google Scholar 

  43. G. H. Bernhard, V. E. Fioletov, J.-U. Grooß, I. Ialongo, B. Johnsen, K. Lakkala, G. L. Manneybron and R. Müller, Ozone and UV radiation, in State of the Climate in 2016, Bull. Am. Meteorol. Soc., 2017, S154–S156.

  44. U. Langematz, S. Meul, K. Grunow, E. Romanowsky, S. Oberländer, J. Abalichin and A. Kubin, Future Arctic temperature and ozone: The role of stratospheric composition changes, J. Geophys. Res.: Atmos., 2014, 119, 2092–2112.

    Article  CAS  Google Scholar 

  45. E. M. Bednarz, A. C. Maycock, N. L. Abraham, P. Braesicke, O. Dessens and J. A. Pyle, Future Arctic ozone recovery: The importance of chemistry and dynamics, Atmos. Chem. Phys., 2016, 16, 12159–12176.

    Article  CAS  Google Scholar 

  46. N. Butchart, The Brewer-Dobson circulation, Rev. Geophys., 2014, 52, 157–184.

    Article  Google Scholar 

  47. F. Iglesias-Suarez, P. J. Young and O. Wild, Stratospheric ozone change and related climate impacts over 1850–2100 as modelled by the ACCMIP ensemble, Atmos. Chem. Phys., 2016, 16, 343–363.

    Article  CAS  Google Scholar 

  48. IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Report No, Cambridge, United Kingdom and New York, NY, USA, 2013, p. 1355. http://www.ipcc.ch/.

  49. J. Zhang, W. Tian, M. P. Chipperfield, F. Xie and J. Huang, Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades, Nat. Clim. Change, 2016, 6, 1094.

    Article  Google Scholar 

  50. J. Zhang, W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki, N. Butchart, M. Deushi, S. Dhomse, Y. Han, P. Jöckel, D. Kinnison, O. Kirner, M. Michou, O. Morgenstern, F. M. O’Connor, G. Pitari, D. A. Plummer, L. E. Revell, E. Rozanov, D. Visioni, W. Wang and G. Zeng, Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nat. Commun., 2018, 9, 206.

  51. W. J. M. Seviour, Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response?, Geophys. Res. Lett., 2017, 44, 3365–3373.

    Article  Google Scholar 

  52. P. A. Newman, L. Coy, S. Pawson and L. R. Lait, The anomalous change in the QBO in 2015–2016, Geophys. Res. Lett., 2016, 43, 8791–8797.

    Article  Google Scholar 

  53. S. M. Osprey, N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger and C. Zhang, An unexpected disruption of theatmospheric quasi-biennial oscillation, Science, 2016, 353, 1424–1427.

    Article  CAS  PubMed  Google Scholar 

  54. O. V. Tweedy, N. A. Kramarova, S. E. Strahan, P. A. Newman, L. Coy, W. J. Randel, M. Park, D. W. Waugh and S. M. Frith, Response of trace gases to the disrupted 2015–2016 quasi-biennial oscillation, Atmos. Chem. Phys., 2017, 17, 6813–6823.

    Article  CAS  Google Scholar 

  55. W. Tian, Y. Li, F. Xie, J. Zhang, M. P. Chipperfield, W. Feng, Y. Hu, S. Zhao, X. Zhou, Y. Yang and X. Ma, The relationship between lower-stratospheric ozone at southern high latitudes and sea surface temperature in the East Asian marginal seas in austral spring, Atmos. Chem. Phys., 2017, 17, 6705–6722.

    Article  CAS  Google Scholar 

  56. J. Zhang, W. Tian, Z. Wang, F. Xie and F. Wang, The influence of ENSO on northern midlatitude ozone during the winter to spring transition, J. Clim., 2015, 28, 4774–4793.

    Article  Google Scholar 

  57. WMO, Scientific Assessment of Ozone Depletion: 2006, World Meteorological Organisation Report No, Geneva, Switzerland, 2006, p. 572. https://acd-ext.gsfc.nasa.gov/Documents/O3_Assessments/Docs/WMO_2006/scientific-assessment2006.pdf.

  58. WMO, (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010, World Meteorological Organisation Report No. 52, Geneva, Switzerland, 2010, p. 438.

  59. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  PubMed  Google Scholar 

  60. UNEP, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2005, Photochem. Photobiol. Sci., 2006, 5, 13–24.

  61. B. Sulzberger, A. T. Austin, R. M. Cory, R. G. Zepp and N. D. Paul, Solar UV radiation in a changing world: Roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90063A.

  62. S. R. Wilson, S. Madronich, J. D. Longstreth and K. R. Solomon, Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90064G.

  63. A. L. Andrady, K. K. Pandey and A. M. Heikkilä, Interactive effects of solar UV radiation and climate change on material damage, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90065E.

  64. A. Solomon, L. M. Polvani, K. L. Smith and R. P. Abernathey, The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM), Geophys. Res. Lett., 2015, 42, 5547–5555.

    Article  Google Scholar 

  65. W. J. M. Seviour, A. Gnanadesikan, D. Waugh and M.-A. Pradal, Transient response of the Southern Ocean to changing ozone: Regional responses and physical mechanisms, J. Clim., 2017, 30, 2463–2480.

    Article  Google Scholar 

  66. S.-W. Son, B.-R. Han, C. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. Archibald, N. Butchart, M. Chipperfield, M. Dameris, M. Deushi, S. S. Dhomse, S. Hardiman, P. Jöckel, D. Kinnison, M. Michou, O. Morgenstern, F. M. O’Connor, L. D. Oman, D. A. Plummer, A. Pozzer, L. E. Revell, E. Rozanov, A. Stenke, K. Stone, S. Tilmes, Y. Yamashita and G. Zeng, Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 2018, 13, 054024.

  67. W. J. M. Seviour, D. W. Waugh, L. M. Polvani, G. J. P. Correa and C. I. Garfinkel, Robustness of the simulated tropospheric response to ozone depletion, J. Clim., 2017, 30, 2577–2585.

    Article  Google Scholar 

  68. J. Bandoro, S. Solomon, A. Donohoe, D. W. J. Thompson and B. D. Santer, Influences of the Antarctic ozone hole on southern hemispheric summer climate change, J. Clim., 2014, 27, 6245–6264.

    Article  Google Scholar 

  69. K. Bai, N.-B. Chang and W. Gao, Quantification of relative contribution of Antarctic ozone depletion to increased austral extratropical precipitation during 1979–2013, J. Geophys. Res.: Atmos., 2016, 121, 1459–1474.

    Article  CAS  Google Scholar 

  70. S. Brönnimann, M. Jacques-Coper, E. Rozanov, M. F. Andreas, O. Morgenstern, G. Zeng, H. Akiyoshi and Y. Yamashita, Tropical circulation and precipitation response to ozone depletion and recovery, Environ. Res. Lett., 2017, 12, 064011.

    Article  Google Scholar 

  71. B. Liebmann, C. S. Vera, L. M. V. Carvalho, I. A. Camilloni, M. P. Hoerling, D. Allured, V. R. Barros, J. Báez and M. Bidegain, An observed trend in Central South American precipitation, J. Clim., 2004, 17, 4357–4367.

  72. Y. Wu and L. M. Polvani, Recent trends in extreme precipitation and temperature over Southeastern South America: The dominant role of stratospheric ozone depletion in the CESM Large Ensemble, J. Clim., 2017, 30, 6433–6441.

    Article  Google Scholar 

  73. S. M. Kang, L. M. Polvani, J. C. Fyfe, S. W. Son, M. Sigmond and G. J. P. Correa, Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer, Geophys. Res. Lett., 2013, 40, 4054–4059.

    Article  Google Scholar 

  74. P. L. M. Gonzalez, L. M. Polvani, R. Seager and G. J. P. Correa, Stratospheric ozone depletion: A key driver of recent precipitation trends in South Eastern South America, Clim. Dyn., 2014, 42 ,1775–1792.

  75. H. Zhang, T. L. Delworth, F. Zeng, G. Vecchi, K. Paffendorf and L. Jia, Detection, attribution, and projection of regional rainfall changes on (multi-) decadal time scales: A Focus on Southeastern South America, J. Clim., 2016, 29, 8515–8534.

    Article  Google Scholar 

  76. L. Tao, Y. Hu and J. Liu, Anthropogenic forcing on the Hadley circulation in CMIP5 simulations, Clim. Dyn., 2016, 46, 3337–3350.

    Article  Google Scholar 

  77. D. J. Ivy, C. Hilgenbrink, D. Kinnison, R. A. Plumb, A. Sheshadri, S. Solomon and D. W. J. Thompson, Observed changes in the Southern hemispheric circulation in May, J. Clim., 2017, 30, 527–536.

    Article  Google Scholar 

  78. J. Turner and J. Comiso, Solve Antarctica’s sea-ice puzzle, Nature, 2017, 547, 275–277.

    Article  CAS  PubMed  Google Scholar 

  79. L. L. Landrum, M. M. Holland, M. N. Raphael and L. M. Polvani, Stratospheric ozone depletion: An unlikely driver of the regional trends in Antarctic Sea Ice in Austral fall in the late twentieth century, Geophys. Res. Lett., 2017, 44 ,11062–11070.

  80. D. Ferreira, J. Marshall, C. M. Bitz, S. Solomon and A. Plumb, Antarctic Ocean and sea ice response to ozone depletion: A two-time-scale problem, J. Clim., 2015, 28, 1206–1226.

    Article  Google Scholar 

  81. W. J. M. Seviour, A. Gnanadesikan and D. W. Waugh, The transient response of the Southern Ocean to stratospheric ozone depletion, J. Clim., 2016, 29, 7383–7396.

  82. M. M. Holland, L. Landrum, Y. Kostov and J. Marshall, Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models, Clim. Dyn., 2017, 49, 1813–1831.

    Article  Google Scholar 

  83. G. Chiodo, L. M. Polvani and M. Previdi, Large increase in incident shortwave radiation due to the ozone hole offset by high climatological albedo over Antarctica, J. Clim., 2017, 30, 4883–4890.

    Article  Google Scholar 

  84. T. C. Grenfell, S. G. Warren and P. C. Mullen, Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 1994, 99, 18669–18684.

    Article  Google Scholar 

  85. A. Y. Karpechko, L. Backman, L. Tholix, I. Ialongo, M. Andersson, V. Fioletov, A. Heikkila, B. Johnsen, T. Koskela, E. Kyrola, K. Lakkala, C. L. Myhre, M. Rex, V. F. Sofieva, J. Tamminen and I. Wohltmann, The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics, J. Geophys. Res.: Atmos., 2013, 118, 8649–8661.

    Article  CAS  Google Scholar 

  86. G. L. Manney and Z. D. Lawrence, The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 2016, 16, 15371–15396.

    Article  CAS  Google Scholar 

  87. D. J. Ivy, S. Solomon, N. Calvo and D. W. J. Thompson, Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate, Environ. Res. Lett., 2017, 12, 024004.

  88. F. Xie, J. Li, W. Tian, Q. Fu, F.-F. Jin, Y. Hu, J. Zhang, W. Wang, C. Sun, J. Feng, Y. Yang and R. Ding, A connection from Arctic stratospheric ozone to El Niño-Southern oscillation, Environ. Res. Lett., 2016, 11, 124026.

  89. E. A. Barnes and J. A. Screen, The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, Wiley Interdiscip. Rev. Clim. Change, 2015, 6, 277–286.

    Article  Google Scholar 

  90. J. A. Francis and S. J. Vavrus, Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., 2015, 10, 014005.

    Article  Google Scholar 

  91. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  PubMed  Google Scholar 

  92. D. Serrano, M. J. Marín, M. Núñez, M. P. Utrillas, S. Gandía and J. A. Martínez-Lozano, Wavelength dependence of the effective cloud optical depth, J. Atmos. Sol-Terr. Phys., 2015, 130–131, 14–22.

    Article  Google Scholar 

  93. A. Kylling, A. Albold and G. Seckmeyer, Transmittance of a cloud is wavelength-dependent in the UV- range: Physical interpretation, Geophys. Res. Lett., 1997, 24, 397–400.

    Article  CAS  Google Scholar 

  94. A. Lindfors and A. Arola, On the wavelength-dependent attenuation of UV radiation by clouds, Geophys. Res. Lett., 2008, 35, L05806.

  95. M. Antón, A. Cazorla, D. Mateos, M. J. Costa, F. J. Olmo and L. Alados-Arboledas, Sensitivity of UV erythemal radiation to total ozone changes under different sky conditions: Results for Granada, Spain, Photochem. Photobiol., 2016, 92, 215–219.

    Article  PubMed  CAS  Google Scholar 

  96. R. McKenzie, B. Liley, M. Kotkamp and P. Disterhoft, Peak UV: Spectral contributions from cloud enhancements, AIP Conf. Proc., 2017, 1810, 110008.

    Article  Google Scholar 

  97. J. Badosa, J. Calbó, R. McKenzie, B. Liley, J.-A. González, B. Forgan and C. N. Long, Two methods for retrieving UV Index for all cloud conditions from sky imager products or total sw radiation measurements, Photochem. Photobiol., 2014, 90, 941–951.

    CAS  PubMed  Google Scholar 

  98. J. Calbó, J.-A. González, J. Badosa, R. McKenzie and B. Liley, How large and how long are UV and total radiation enhancements?, AIP Conf. Proc., 2017, 1810, 110002.

  99. J. Crawford, R. E. Shetter, B. Lefer, C. Cantrell, W. Junkermann, S. Madronich and J. Calvert, Cloud impacts on UV spectral actinic flux observed during the International Photolysis Frequency Measurement and Model Intercomparison (IPMMI), J. Geophys. Res.: Atmos., 2003, 108, D002731.

  100. G. Pfister, R. L. McKenzie, J. B. Liley, A. Thomas and M. J. Uddstrom, Cloud climatology for New Zealand and implications for radiation fields, in UV Radiation and its Effects Workshop, RSNZ, 2002.

  101. R. D. García, V. E. Cachorro, E. Cuevas, C. Toledano, A. Redondas, M. Blumthaler and Y. Benounna, Comparison of measured and modelled spectral UV irradiance at Izaña high mountain station: Estimation of the underlying effective albedo, Int. J Climatol., 2016, 36, 377–388.

    Article  Google Scholar 

  102. D. Mateos, G. Pace, D. Meloni, J. Bilbao, A. di Sarra, A. de Miguel, G. Casasanta and Q. Min, Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation, J. Geophys. Res.: Atmos., 2014, 119, D020309.

  103. M. O. Andreae, D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo and M. A. F. Silva-Dias, Smoking rain clouds over the Amazon, Science, 2004, 303, 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  104. J. Mok, N. A. Krotkov, A. Arola, O. Torres, H. Jethva, M. Andrade, G. Labow, T. F. Eck, Z. Li, R. R. Dickerson, G. L. Stenchikov, S. Osipov and X. Ren, Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin, Sci. Rep., 2016, 6, 36940.

  105. S. Kazadzis, P. Raptis, N. Kouremeti, V. Amiridis, A. Arola, E. Gerasopoulos and G. L. Schuster, Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment, Atmos. Meas. Tech., 2016, 9, 5997–6011.

    Article  CAS  Google Scholar 

  106. J. Li, B. E. Carlson, O. Dubovik and A. A. Lacis, Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 2014, 14, 12271–12289.

    Article  CAS  Google Scholar 

  107. J. P. Putaud, F. Cavalli, S. Martins dos Santos and A. Dell’Acqua, Long-term trends in aerosol optical characteristics in the Po Valley, Italy, Atmos. Chem. Phys., 2014, 14, 9129–9136.

    Article  CAS  Google Scholar 

  108. A. R. Attwood, R. A. Washenfelder, C. A. Brock, W. Hu, K. Baumann, P. Campuzano-Jost, D. A. Day, E. S. Edgerton, D. M. Murphy, B. B. Palm, A. McComiskey, N. L. Wagner, S. S. de Sá, A. Ortega, S. T. Martin, J. L. Jimenez and S. S. Brown, Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing, Geophys. Res. Lett., 2014, 41, 7701–7709.

    Article  Google Scholar 

  109. D. Mateos, M. Antón, C. Toledano, V. E. Cachorro, L. Alados-Arboledas, M. Sorribas, M. J. Costa and J. M. Baldasano, Aerosol radiative effects in the ultraviolet, visible, and near-infrared spectral ranges using long-term aerosol data series over the Iberian Peninsula, Atmos. Chem. Phys., 2014, 14, 13497–13514.

    Article  CAS  Google Scholar 

  110. C. M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle and C. Wei, Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks, Atmos. Chem. Phys., 2014, 14, 1701–1715.

    Article  CAS  Google Scholar 

  111. R. Román, M. Antón, A. Valenzuela, J. E. Gil, H. Lyamani, A. De Miguel, F. J. Olmo, J. Bilbao and L. Alados-Arboledas, Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance, Tellus B, 2013, 65, 19578.

  112. H. Che, X. Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X. C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen and G. Shi, Ground-based aerosol climatology of China: Aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, Atmos. Chem. Phys., 2015, 15, 7619–7652.

    Article  CAS  Google Scholar 

  113. J. Li, Y. Jiang, X. Xia and Y. Hu, Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade, Environ. Res. Lett., 2017, 13, 034006.

    Article  CAS  Google Scholar 

  114. S. Hantson, A. Arneth, S. P. Harrison, D. I. Kelley, I. C. Prentice, S. S. Rabin, S. Archibald, F. Mouillot, S. R. Arnold, P. Artaxo, D. Bachelet, P. Ciais, M. Forrest, P. Friedlingstein, T. Hickler, J. O. Kaplan, S. Kloster, W. Knorr, G. Lasslop, F. Li, S. Mangeon, J. R. Melton, A. Meyn, S. Sitch, A. Spessa, G. R. van der Werf, A. Voulgarakis and C. Yue, The status and challenge of global fire modelling, Biogeosciences, 2016, 13, 3359–3375.

    Article  Google Scholar 

  115. M. D. Hurteau, A. L. Westerling, C. Wiedinmyer and B. P. Bryant, Projected effects of climate and development on California wildfire emissions through 2100, Environ. Sci. Technol., 2014, 48, 2298–2304.

    CAS  PubMed  Google Scholar 

  116. M. D. Flannigan, M. A. Krawchuk, W. J. de Groot, B. M. Wotton and L. M. Gowman, Implications of changing climate for global wildland fire, Int. J. Wildland Fire, 2009, 18, 483–507.

    Article  Google Scholar 

  117. J. T. Abatzoglou and A. P. Williams, Impact of anthropogenic climate change on wildfire across western US forests, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 11770–11775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. R. W. Bergstrom, P. B. Russell and P. Hignett, Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 2002, 59, 567–577.

    Article  Google Scholar 

  119. C. E. Williamson, E. P. Overholt, J. A. Brentrup, R. M. Pilla, T. H. Leach, S. G. Schladow, J. D. Warren, S. S. Urmy, S. Sadro, S. Chandra and P. J. Neale, Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services, Front. Ecol. Environ., 2016, 14, 102–109.

    Article  Google Scholar 

  120. D. V. Spracklen, L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan and A. L. Westerling, Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States, J. Geophys. Res., 2009, 114, D010966.

  121. X. Yue, L. J. Mickley, J. A. Logan and J. O. Kaplan, Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century, Atmos. Environ., 2013, 77, 767–780.

    Article  CAS  Google Scholar 

  122. J. C. Péré, B. Bessagnet, V. Pont, M. Mallet and F. Minvielle, Influence of the aerosol solar extinction on photochemistry during the 2010 Russian wildfires episode, Atmos. Chem. Phys., 2015, 15, 10983–10998.

    Article  CAS  Google Scholar 

  123. M. G. Tosca, J. T. Randerson and C. S. Zender, Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys., 2013, 13, 5227–5241.

    Article  CAS  Google Scholar 

  124. L. Frey, F. A. M. Bender and G. Svensson, Cloud albedo changes in response to anthropogenic sulfate and nonsulfate aerosol forcings in CMIP5 models, Atmos. Chem. Phys., 2017, 17, 9145–9162.

    Article  CAS  Google Scholar 

  125. S. Szopa, Y. Balkanski, M. Schulz, S. Bekki, D. Cugnet, A. Fortems-Cheiney, S. Turquety, A. Cozic, C. Déandreis, D. Hauglustaine, A. Idelkadi, J. Lathière, F. Lefevre, M. Marchand, R. Vuolo, N. Yan and J.-L. Dufresne, Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100, Clim. Dyn., 2013, 40, 2223–2250.

    Article  Google Scholar 

  126. J. López-Solano, A. Redondas, T. Carlund, J. J. Rodriguez-Franco, H. Diémoz, S. F. León-Luis, B. Hernández-Cruz, C. Guirado-Fuentes, N. Kouremeti, J. Gröbner, S. Kazadzis, V. Carreño, A. Berjón, D. Santana-Díaz, M. Rodríguez-Valido, V. De Bock, J. R. Moreta, J. Rimmer, A. R. D. Smedley, L. Boulkelia, N. Jepsen, P. Eriksen, A. F. Bais, V. Shirotov, J. M. Vilaplana, K. M. Wilson and T. Karppinen, Aerosol optical depth in the European Brewer Network, Atmos. Chem. Phys., 2018, 18, 3885–3902.

    Article  CAS  Google Scholar 

  127. T. Carlund, N. Kouremeti, S. Kazadzis and J. Gröbner, Aerosol optical depth determination in the UV using a four-channel precision filter radiometer, Atmos. Meas. Tech., 2017, 10, 905–923.

    Article  Google Scholar 

  128. M. Zhang, W. Gong, Y. Ma, L. Wang and Z. Chen, Transmission and division of total optical depth method: A universal calibration method for Sun photometric measurements, Geophys. Res. Lett., 2016, 43, 2974–2980.

    Article  Google Scholar 

  129. S. Kazadzis, N. Kouremeti, H. Diémoz, J. Gröbner, B. W. Forgan, M. Campanelli, V. Estellés, K. Lantz, J. Michalsky, T. Carlund, E. Cuevas, C. Toledano, R. Becker, S. Nyeki, P. G. Kosmopoulos, V. Tatsiankou, L. Vuilleumier, F. M. Denn, N. Ohkawara, O. Ijima, P. Goloub, P. I. Raptis, M. Milner, K. Behrens, A. Barreto, G. Martucci, E. Hall, J. Wendell, B. E. Fabbri and C. Wehrli, Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements, Atmos. Chem. Phys., 2018, 18, 3185–3201.

    Article  CAS  Google Scholar 

  130. G. Bernhard, Trends of solar ultraviolet irradiance at Barrow, Alaska, and the effect of measurement uncertainties on trend detection, Atmos. Chem. Phys., 2011, 11, 13029–13045.

    Article  CAS  Google Scholar 

  131. A. Damiani, R. R. Cordero, J. Carrasco, S. Watanabe, M. Kawamiya and V. E. Lagun, Changes in the UV Lambertian equivalent reflectivity in the Southern Ocean: Influence of sea ice and cloudiness, Rem. Sens. Environ., 2015, 169, 75–92.

    Article  Google Scholar 

  132. T. Koenigk, A. Devasthale and K. G. Karlsson, Summer Arctic sea ice albedo in CMIP5 models, Atmos. Chem. Phys., 2014, 14, 1987–1998.

    Article  CAS  Google Scholar 

  133. P. Arsenovic, E. Rozanov, J. Anet, A. Stenke, W. Schmutz and T. Peter, Implications of potential future grand solar minimum for ozone layer and climate, Atmos. Chem. Phys., 2018, 18, 3469–3483.

    Article  CAS  Google Scholar 

  134. P. Arsenovic, E. Rozanov, A. Stenke, B. Funke, J. M. Wissing, K. Mursula, F. Tummon and T. Peter, The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate, J. Atmos. Sol-Terr. Phys., 2016, 149, 180–190.

    Article  CAS  Google Scholar 

  135. J. R. Norris, R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell and S. A. Klein, Evidence for climate change in the satellite cloud record, Nature, 2016, 536, 72–75.

    Article  CAS  PubMed  Google Scholar 

  136. S.-Y. Jun, C.-H. Ho, J.-H. Jeong, Y.-S. Choi and B.-M. Kim, Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions, Tellus A, 2016, 68, 29130.

    Article  Google Scholar 

  137. M. Abe, T. Nozawa, T. Ogura and K. Takata, Effect of retreating sea ice on Arctic cloud cover in simulated recent global warming, Atmos. Chem. Phys., 2016, 16, 14343–14356.

    Article  CAS  Google Scholar 

  138. D. Perovich, W. Meier, M. Tschudi, S. Farrell, S. Gerland, S. Hendricks, T. Krumpen and C. Haas, Sea ice cover [in State of the Climate in 2016], Bull. Am. Meteorol. Soc., 2017, 98, S131–S133.

  139. J. C. Stroeve, T. Markus, L. Boisvert, J. Miller and A. Barrett, Changes in Arctic melt season and implications for sea ice loss, Geophys. Res. Lett., 2014, 41, 1216–1225.

    Article  Google Scholar 

  140. C. Derksen, R. Brown, L. Mudryk and K. Luojus, Terrestrial snow cover [in State of the Climate in 2016], Bull. Am. Meteorol. Soc., 2017, 98, S151–S154.

  141. J. R. Lee, B. Raymond, T. J. Bracegirdle, I. Chadès, R. A. Fuller, J. D. Shaw and A. Terauds, Climate change drives expansion of Antarctic ice-free habitat, Nature, 2017, 547, 49–54.

    Article  CAS  PubMed  Google Scholar 

  142. R. L. McKenzie, P. V. Johnston and G. Seckmeyer, UV spectro-radiometry in the network for the detection of stratospheric change (NDSC), in Solar Ultraviolet Radiation. Modelling, Measurements and Effects, ed. C. S. Zerefos and A. F. Bais, Springer-Verlag, Berlin, 1997, vol. 1.52, pp. 279–287.

  143. M. De Mazière, A. M. Thompson, M. J. Kurylo, J. Wild, G. Bernhard, T. Blumenstock, J. Hannigan, J. C. Lambert, T. Leblanc, T. J. McGee, G. Nedoluha, I. Petropavlovskikh, G. Seckmeyer, P. C. Simon, W. Steinbrecht, S. Strahan and J. T. Sullivan, The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives, Atmos. Chem. Phys. Disc., 2017, 18, 4935–4964.

    Article  CAS  Google Scholar 

  144. R. R. Cordero, A. Damiani, J. Jorquera, E. Sepúlveda, M. Caballero, S. Fernandez, S. Feron, P. J. Llanillo, J. Carrasco, D. Laroze and F. Labbe, Ultraviolet radiation in the Atacama Desert, Antonie van Leeuwenhoek, 2018, 111, 1301–1313.

    Article  CAS  PubMed  Google Scholar 

  145. A. F. McKinlay and B. L. Diffey, A reference action spectrum for ultra-violet induced erythema in human skin, in Human Exposure to Ultraviolet Radiation: Risks and Regulations, ed. W. F. Passchier and B. F. M. Bosnajakovic, Elsevier, Amsterdam, 1987, pp. 83–87.

    Google Scholar 

  146. R. McKenzie, UV radiation in the melanoma capital of the world: What makes New Zealand so different?, AIP Conf. Proc., 2017, 1810, 020003.

    Article  Google Scholar 

  147. G. Bernhard, C. Booth and J. Ehramjian, Climatology of ultraviolet radiation at high latitudes derived from measurements of the National Science Foundation’s Ultraviolet Spectral Irradiance Monitoring Network, in UV Radiation in Global Climate Change, ed. W. Gao, J. Slusser and D. Schmoldt, Springer, Berlin Heidelberg, 2010, pp. 48–72.

    Book  Google Scholar 

  148. G. Seckmeyer, C. Mustert, M. Schrempf, R. L. McKenzie, J. B. Liley, M. Kotkamp, A. F. Bais, D. Gillotay, H. Slaper, A.-M. Siani, A. R. D. Smedley and A. Webb, Why is it so hard to gain enough Vitamin D by solar exposure in the European winter?, Metero. Zeits., 2018, 27, 223–233.

    Google Scholar 

  149. G. Bernhard, C. R. Booth and J. C. Ehramjian, Version 2 data of the National Science Foundation’s Ultraviolet Radiation Monitoring Network: South Pole, J. Geophys. Res.: Atmos., 2004, 109, D21207.

  150. M. Beckmann, T. Václavík, A. M. Manceur, L. Šprtová, H. von Wehrden, E. Welk and A. F. Cord, glUV: A global UV-B radiation data set for macroecological studies, Methods Ecol. Evol., 2014, 5, 372–383.

    Article  Google Scholar 

  151. S. Madronich and S. Flocke, Theoretical Estimation of Biologically Effective UV Radiation at the Earth’s Surface, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 23–48.

  152. K. Eleftheratos, S. Kazadzis, C. S. Zerefos, K. Tourpali, C. Meleti, D. Balis, I. Zyrichidou, K. Lakkala, U. Feister, T. Koskela, A. Heikkila and J. M. Karhu, Ozone and spectroradiometric UV changes in the past 20 years over high latitudes, Atmos.-Ocean, 2015, 53, 117–125.

    Article  CAS  Google Scholar 

  153. G. Bernhard, C. R. Booth, J. C. Ehramjian and S. E. Nichol, UV climatology at McMurdo station, Antarctica, based on version 2 data of the National Science Foundation’s Ultraviolet Spectral Irradiance Monitoring Network,J. Geophys. Res.: Atmos., 2006, 111, D11201.

  154. I. Fountoulakis, A. F. Bais, K. Fragkos, C. Meleti, K. Tourpali and M. M. Zempila, Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds, Atmos. Chem. Phys., 2016, 16 ,2493–2505.

    Article  CAS  Google Scholar 

  155. K. Fragkos, A. F. Bais, I. Fountoulakis, D. S. Balis, K. Tourpali, C. Meleti and P. Zanis, Extreme total column ozone events and effects on UV solar radiation at Thessaloniki, Greece, Theotet. Appl. Climatol., 2016, 126, 505–517.

    Article  Google Scholar 

  156. A. Sanchez-Lorenzo, A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt and M. Z. Hakuba, Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010, Remote Sens. Environ., 2017, 189, 108–117.

    Article  Google Scholar 

  157. R. J. Hooke, M. P. Higlett, N. Hunter and J. B. O’Hagan, Long term variations in erythema effective solar UV at Chilton, UK, from 1991 to 2015, Photochem. Photobiol. Sci., 2017, 16, 1596–1603.

    Article  CAS  PubMed  Google Scholar 

  158. V. De Bock, H. De Backer, R. Van Malderen, A. Mangold and A. Delcloo, Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium, Atmos. Chem. Phys., 2014, 14, 12251–12270.

    Article  CAS  Google Scholar 

  159. A. Lindfors and L. Vuilleumier, Erythemal UV at Davos (Switzerland), 1926–2003, estimated using total ozone, sunshine duration, and snow depth, J. Geophys. Res.: Atmos., 2005, 110, D02104.

  160. M. Posyniak, A. Szkop, A. Pietruczuk, J. Podgórski and J. Krzyścin, The long-term (1964–2014) variability of aerosol optical thickness and its impact on solar irradiance based on the data taken at Belsk, Poland, Acta Geophys., 2016, 64, 1858–1874.

    Article  Google Scholar 

  161. K. Čížková, K. Láska, L. Metelka and M. Staněk, Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years, Atmos. Chem. Phys., 2018, 18, 1805–1818.

    Article  CAS  Google Scholar 

  162. R. Román, J. Bilbao and A. de Miguel, Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011, Atmos. Chem. Phys., 2015, 15, 375–391.

    Article  CAS  Google Scholar 

  163. J. W. Krzyścin and P. S. Sobolewski, Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995), Atmos. Chem. Phys., 2018, 18, 1–11.

    Article  CAS  Google Scholar 

  164. H. Liu, B. Hu, L. Zhang, X. J. Zhao, K. Z. Shang, Y. S. Wang and J. Wang, Ultraviolet radiation over China: Spatial distribution and trends, Renewable Sustainable Energy Rev., 2017, 76, 1371–1383.

    Article  Google Scholar 

  165. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn and M. Ilyas, Changes in biologically-active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2007, 6(3), 218–231.

  166. I. Fountoulakis and A. F. Bais, Projected changes in erythemal and vitamin D effective irradiance over northern-hemisphere high latitudes, Photochem. Photobiol. Sci., 2015, 14 ,1251–1264.

    Article  CAS  Google Scholar 

  167. O. Morgenstern, M. I. Hegglin, E. Rozanov, F. M. O’Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki, N. Butchart, M. P. Chipperfield, M. Deushi, S. S. Dhomse, R. R. Garcia, S. C. Hardiman, L. W. Horowitz, P. Jöckel, B. Josse, D. Kinnison, M. Lin, E. Mancini, M. E. Manyin, M. Marchand, V. Marécal, M. Michou, L. D. Oman, G. Pitari, D. A. Plummer, L. E. Revell, D. Saint-Martin, R. Schofield, A. Stenke, K. Stone, K. Sudo, T. Y. Tanaka, S. Tilmes, Y. Yamashita, K. Yoshida and G. Zeng, Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 2017, 10, 639–671.

    Article  Google Scholar 

  168. V. Eyring, I. Cionni, G. E. Bodeker, A. J. Charlton-Perez, D. E. Kinnison, J. F. Scinocca, D. W. Waugh, H. Akiyoshi, S. Bekki, M. P. Chipperfield, M. Dameris, S. Dhomse, S. M. Frith, H. Garny, A. Gettelman, A. Kubin, U. Langematz, E. Mancini, M. Marchand, T. Nakamura, L. D. Oman, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, T. G. Shepherd, K. Shibata, W. Tian, P. Braesicke, S. C. Hardiman, J. F. Lamarque, O. Morgenstern, J. A. Pyle, D. Smale and Y. Yamashita, Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 2010, 10, 9451–9472.

    Article  CAS  Google Scholar 

  169. T. Masui, K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata and M. Kainuma, An emission pathway for stabilization at 6 Wm–2 radiative forcing, Clim. Change, 2011, 109, 59.

    Article  CAS  Google Scholar 

  170. K. E. Taylor, R. J. Stouffer and G. A. Meehl, An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 2012, 93, 485–498.

    Article  Google Scholar 

  171. B. Mayer and A. Kylling, Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use, Atmos. Chem. Phys., 2005, 5, 1855–1877.

    Article  CAS  Google Scholar 

  172. P. J. Crutzen, Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Clim. Change, 2006, 77, 211–220.

    Article  CAS  Google Scholar 

  173. M. I. Budyko, Climatic changes, American Geophysical Society, Washington DC, 1977.

    Book  Google Scholar 

  174. M. Boettcher and S. Schäfer, Reflecting upon 10 years of geoengineering research: Introduction to the Crutzen + 10 special issue, Earth’s Future, 2017, 5, 266–277.

    Article  Google Scholar 

  175. D. G. MacMartin, B. Kravitz, J. C. S. Long and P. J. Rasch, Geoengineering with stratospheric aerosols: What do we not know after a decade of research?, Earth’s Future, 2016, 4, 543–548.

    Article  Google Scholar 

  176. D. W. Keith and P. J. Irvine, Solar geoengineering could substantially reduce climate risks—A research hypothesis for the next decade, Earth’s Future, 2016, 4, 549–559.

    Article  Google Scholar 

  177. A. Robock, Albedo enhancement by stratospheric sulfur injections: More research needed, Earth’s Future, 2016, 4, 644–648.

    Article  CAS  Google Scholar 

  178. G. Pitari, V. Aquila, B. Kravitz, A. Robock, S. Watanabe, I. Cionni, N. D. Luca, G. D. Genova, E. Mancini and S. Tilmes, Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP), J. Geophys. Res.: Atmos., 2014, 119, 2629–2653.

    Article  CAS  Google Scholar 

  179. S. Tilmes, D. E. Kinnison, R. R. Garcia, R. Salawitch, T. Canty, J. Lee-Taylor, S. Madronich and K. Chance, Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere, Atmos. Chem. Phys., 2012, 12, 10945–10955.

    Article  CAS  Google Scholar 

  180. T. Li, E. Heuvelink, T. A. Dueck, J. Janse, G. Gort and L. F. M. Marcelis, Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors, Ann. Bot., 2014, 114, 145–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. L. Xia, A. Robock, S. Tilmes and R. R. Neely Iii, Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate, Atmos. Chem. Phys., 2016, 16, 1479–1489.

    Article  CAS  Google Scholar 

  182. A. Redondas, V. Carreño, S. F. León-Luis, B. Hernández-Cruz, J. López-Solano, J. J. Rodriguez-Franco, J. M. Vilaplana, J. Gröbner, J. Rimmer, A. F. Bais, V. Savastiouk, J. R. Moreta, L. Boulkelia, N. Jepsen, K. M. Wilson, V. Shirotov and T. Karppinen, EUBREWNET RBCC-E Huelva 2015 Ozone Brewer Intercomparison, Atmos. Chem. Phys., 2018, 18, 9441–9455.

    Article  CAS  Google Scholar 

  183. G. Hülsen and J. Gröbner, Second International UV Filter Radiometer Intercomparison UVC-II (GAW Report- No. 240), Report No, Geneva, 2018, p. 212. https://library.wmo.int/doc_num.php?explnum_id=4557.

  184. P. Gies, R. Hooke, R. McKenzie, J. O’Hagan, S. Henderson, A. Pearson, M. Khazova, J. Javorniczky, K. King, M. Tully, M. Kotkamp, B. Forgan and S. Rhodes, International intercomparison of solar UVR Spectral Measurement Systems in Melbourne in 2013, Photochem. Photobiol., 2015, 91, 1237–1246.

    Article  CAS  PubMed  Google Scholar 

  185. G. Hülsen, J. Gröbner, S. Nevas, P. Sperfeld, L. Egli, G. Porrovecchio and M. Smid, Traceability of solar UV measurements using the Qasume reference spectroradiometer, Appl. Opt., 2016, 55, 7265–7275.

    Article  PubMed  Google Scholar 

  186. J. Gröbner, J. Schreder, S. Kazadzis, A. F. Bais, M. Blumthaler, P. Gorts, R. Tax, T. Koskela, G. Seckmeyer, A. R. Webb and D. Rembges, Traveling reference spectroradiometer for routine quality assurance of spectral solar ultraviolet irradiance measurements, Appl. Opt., 2005, 44, 5321–5331.

    Article  PubMed  Google Scholar 

  187. L. Egli, J. Gröbner, G. Hülsen, L. Bachmann, M. Blumthaler, J. Dubard, M. Khazova, R. Kift, K. Hoogendijk, A. Serrano, A. Smedley and J. M. Vilaplana, Quality assessment of solar UV irradiance measured with array spectroradiometers, Atmos. Meas. Tech., 2016, 9, 1553–1567.

    Article  Google Scholar 

  188. S. Nevas, J. Gröbner, L. Egli and M. Blumthaler, Stray light correction of array spectroradiometers for solar UVmeasurements, Appl. Opt., 2014, 53, 4313–4319.

    Article  PubMed  Google Scholar 

  189. R. Zuber, P. Sperfeld, S. Riechelmann, S. Nevas, M. Sildoja and G. Seckmeyer, Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range, Atmos. Meas. Tech., 2018, 2477–2484.

    Google Scholar 

  190. R. Zuber, M. Ribnitzky, M. Tobar, K. Lange, K. Dimitri, M. Schrempf, A. Niedzwiedz and G. Seckmeyer, Global spectral irradiance array spectroradiometer validation according to WMO, Meas. Sci. Technol., 2018, 29, 105801.

  191. J. F. Bornman, P. W. Barnes, S. A. Robinson, C. L. Ballaré, S. D. Flint and M. M. Caldwell, Solar ultraviolet radiation and ozone depletion-driven climate change: Effects on terrestrial ecosystems, Photochem. Photobiol. Sci., 2015, 14, 88–107.

    Article  CAS  PubMed  Google Scholar 

  192. N. A. Cabrol, U. Feister, D.-P. Häder, H. Piazena, E. A. Grin and A. Klein, Record solar UV irradiance in the tropical Andes, Front. Environ. Sci., 2014, 2, 19.

  193. R. L. McKenzie, B. Liley and S. Madronich, Critical appraisal of data used to infer record UVI in the tropical Andes, Photochem. Photobiol. Sci., 2017, 16, 785–794.

    Article  CAS  PubMed  Google Scholar 

  194. WMO, (World Meteorological Organization): Report of the 10th Meeting of the Ozone Research Managers of the Parties to the Vienna Convention for the Protection of the Ozone Layer, Global Ozone Research and Monitoring Project, Report No. 57, Geneva, Switzerland, 2017.

  195. J. R. Herman, N. Krotkov, E. Celarier, D. Larko and G. Labow, Distribution of UV radiation at the Earth’s surface from TOMS-measured UV-backscattered radiances, J. Geophys. Res., 1999, 104, 12059–12076.

    Article  CAS  Google Scholar 

  196. A. Tanskanen, N. A. Krotkov, J. R. Herman and A. Arola, Surface ultraviolet irradiance from OMI, IEEE Trans. Geosci. Remote Sens., 2006, 44, 1267–1271.

    Article  Google Scholar 

  197. A. Arola, S. Kazadzis, N. Krotkov, A. Bais, J. Gröbner and J. R. Herman, Assessment of TOMS UV bias due to absorbing aerosols, J. Geophys. Res., 2005, 110, D23211.

  198. M.-M. Zempila, M.-E. Koukouli, A. Bais, I. Fountoulakis, A. Arola, N. Kouremeti and D. Balis, OMI/Aura UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece, Atmos. Environ., 2016, 140, 283–297.

    Article  CAS  Google Scholar 

  199. G. Bernhard, A. Arola, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, T. Svendby and J. Tamminen, Comparison of OMI UV observations with ground-based measurements at high northern latitudes, Atmos. Chem. Phys., 2015, 15, 7391–7412.

    Article  CAS  Google Scholar 

  200. C. Brogniez, F. Auriol, C. Deroo, A. Arola, J. Kujanpää, B. Sauvage, N. Kalakoski, M. R. A. Pitkänen, M. Catalfamo, J. M. Metzger, G. Tournois and P. Da Conceicao, Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time, Atmos. Chem. Phys., 2016, 16, 15049–15074.

    Article  CAS  Google Scholar 

  201. J.-M. Cadet, H. Bencherif, T. Portafaix, K. Lamy, K. Ncongwane, G. Coetzee and C. Wright, Comparison of ground-based and satellite-derived solar UV Index levels at six South African sites, Int. J. Environ. Res. Public Health, 2017, 14, 1384.

    Article  PubMed Central  Google Scholar 

  202. L. Fan, W. Li, A. Dahlback, J. J. Stamnes, S. Stamnes and K. Stamnes, Long-term comparisons of UV index values derived from a NILU-UV instrument, NWS, and OMI in the New York area, Appl. Opt., 2015, 54, 1945–1951.

    Article  CAS  PubMed  Google Scholar 

  203. M. M. Zempila, J. H. G. M. van Geffen, M. Taylor, I. Fountoulakis, M. E. Koukouli, M. van Weele, R. J. van der A, A. Bais, C. Meleti and D. Balis, TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece, Atmos. Chem. Phys., 2017, 17, 7157–7174.

    Article  CAS  Google Scholar 

  204. J. Herman, L. Huang, R. McPeters, J. Ziemke, A. Cede and K. Blank, Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit, Atmos. Meas. Tech., 2018, 11, 177–194.

    Article  CAS  Google Scholar 

  205. J. B. Liley and R. L. McKenzie, Where on Earth has the highest UV?, National Institute of Water and Atmospheric Research (NIWA) Report No. not provided, Lauder, Central Otago, New Zealand, 2006, vol. 2006, p. 2.

  206. R. L. McKenzie, S. Madronich, G. Bernhard and F. Zaratti, Comment on “Record solar UV irradiance in the tropical Andes, by Cabrol et al.”, Front. Environ. Sci., 2015, 3, 00026.

  207. R. R. Cordero, G. Seckmeyer, A. Damiani, S. Riechelmann, J. Rayas, F. Labbe and D. Laroze, The world’s highest levels of surface UV, Photochem. Photobiol. Sci., 2014, 13, 70–81.

    Article  CAS  PubMed  Google Scholar 

  208. A. Cede, E. Luccini, L. Nunez, R. D. Piacentini and M. Blumthaler, Monitoring of erythemal irradiance in the Argentine ultraviolet network, J. Geophys. Res.: Atmos., 2002, 107, D001206.

  209. F. Zaratti, R. D. Piacentini, H. A. Guillen, S. H. Cabrera, J. Ben Liley and R. L. McKenzie, Proposal for a modification of the UVI risk scale, Photochem. Photobiol. Sci., 2014, 13, 980–985.

    Article  CAS  PubMed  Google Scholar 

  210. T. VoPham, J. E. Hart, K. A. Bertrand, Z. Sun, R. M. Tamimi and F. Laden, Spatiotemporal exposure modeling of ambient erythemal ultraviolet radiation, Environ. Health, 2016, 15, 111.

    Article  PubMed  PubMed Central  Google Scholar 

  211. J. Kujanpää and N. Kalakoski, Operational surface UV radiation product from GOME-2 and AVHRR/3 data, Atmos. Meas. Tech., 2015, 8, 4399–4414.

    Article  Google Scholar 

  212. J. Peltoniemi, M. Gritsevich, T Hakala, P. Dagsson-Waldhauserová, Ó. Arnalds, K. Anttila, H.-R. Hannula, N. Kivekäs, H. Lihavainen and O. Meinander, Soot on snow experiment: bidirectional reflectance factor measurements of contaminated snow, Cryosphere, 2015, 9, 2323–2337.

    Article  Google Scholar 

  213. G. Seckmeyer, S. Riechelmann, M. Schrempf, A. Stuhrmann and A. Niedzwiedz, Solar simulators for a healthy vitamin D synthesis, Anticancer Res., 2015, 35, 3607–3607.

    Google Scholar 

  214. M. Schrempf, D. Haluza, S. Simic, S. Riechelmann, K. Graw and G. Seckmeyer, Is multidirectional UV exposure responsible for increasing melanoma prevalence with altitude? A hypothesis based on calculations with a 3D-human exposure model, Int. J. Environ. Res. Public Health, 2016, 13, 961.

    Article  PubMed Central  Google Scholar 

  215. A. Religi, C. Backes, L. Moccozet, L. Vuilleumier, D. Vernez and J.-L. Bulliard, Body anatomical UV protection predicted by shade structures: A modeling study, Photochem. Photobiol., 2018, 27, 1289–1296.

    Article  CAS  Google Scholar 

  216. M. Hess and P. Koepke, Modelling UV irradiances on arbitrarily oriented surfaces: Effects of sky obstructions, Atmos. Chem. Phys., 2008, 8, 3583.

  217. R. Carrasco-Hernandez, A. R. D. Smedley and A. Webb, Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level, Theotet. Appl. Climatol., 2015, 124, 1065–1077.

    Article  Google Scholar 

  218. M. Schrempf, N. Thuns, K. Lange and G. Seckmeyer, Impact of orientation on the vitamin D weighted exposure of a human in an urban environment, Int. J. Environ. Res. Public Health, 2017, 14, 920.

    Article  PubMed Central  CAS  Google Scholar 

  219. P. Setlow and L. Li, Photochemistry and photobiology of the Spore Photoproduct: A 50-year journey, Photochem. Photobiol., 2015, 91, 1263–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. A. M. Siani, G. R. Casale, S. Modesti, A. V. Parisi and A. Colosimo, Investigation on the capability of polysulphone for measuring biologically effective solar UV exposures, Photochem. Photobiol. Sci., 2014, 13, 521–530.

    Article  CAS  PubMed  Google Scholar 

  221. G. R. Casale, M. Borra, A. Colosimo, M. Colucci, A. Militello, A. M. Siani and R. Sisto, Variability among polysulphone calibration curves, Phys. Med. Biol., 2006, 51, 4413–4427.

    Article  CAS  PubMed  Google Scholar 

  222. M.-A. Serrano, J. Canada, J. C. Moreno and G. Gurrea, Personal UV exposure for different outdoor sports, Photochem. Photobiol. Sci., 2014, 13, 671–679.

    Article  CAS  PubMed  Google Scholar 

  223. G. Seckmeyer, M. Klingebiel, S. Riechelmann, I. Lohse, R. L. McKenzie, J. Ben Liley, M. W. Allen, A.-M. Siani and G. R. Casale, A critical assessment of two types of personal UV dosimeters, Photochem. Photobiol., 2012, 88, 215–222.

    Article  CAS  PubMed  Google Scholar 

  224. R. K. R. Scragg, A. W. Stewart, R. L. McKenzie, A. I. Reeder, J. B. Liley and M. W. Allen, Sun exposure and 25-hydroxyvitamin D3 levels in a community sample: Quantifying the association with electronic dosimeters, J. Expos. Anal. Envion. Epid., 2017, 27, 471–477.

    Article  CAS  Google Scholar 

  225. A. Russell, M. Gohlan, A. Smedley and M. Densham, The ultraviolet radiation environment during an expedition across the Drake Passage and on the Antarctic Peninsula, Antarct. Sci., 2015, 27, 307–316.

    Article  Google Scholar 

  226. M. Gröbner, J. Gröobner and G. Hulsen, Quantifying UV exposure, vitamin D status and their relationship in a group of high school students in an alpine environment, Photochem. Photobiol. Sci., 2015, 14, 352–357.

    Article  PubMed  CAS  Google Scholar 

  227. U. Feister, G. Meyer, G. Laschewski and C. Boettcher, Validation of modeled daily erythemal exposure along tropical and subtropical shipping routes by ship-based and satellite-based measurements, J. Geophys. Res.: Atmos., 2015, 120 ,4117–4131.

    Article  Google Scholar 

  228. G. R. Casale, A. M. Siani, H. Diémoz, G. Agnesod, A. V. Parisi and A. Colosimo, Extreme UV index and solar exposures at Plateau Rosà (3500 m a.s.l.) in Valle d’Aosta Region, Italy, Sci. Total Environ., 2015, 512–513, 622–630.

  229. V. Nurse, C. Y. Wright, M. Allen and R. L. McKenzie, Solar ultraviolet radiation exposure of South African marathon runners during competition marathon runs and training sessions: A feasibility study, Photochem. Photobiol., 2015, 91 ,971–979.

  230. A. W. Schmalwieser and A. M. Siani, Review on nonoccupational personal solar UV exposure measurements, Photochem. Photobiol., 2018, 94, 900–915.

    Article  CAS  PubMed  Google Scholar 

  231. C. D. Mobley and B. L. Diffey, The solar ultraviolet environment at the ocean, Photochem. Photobiol., 2018, 94, 611–617.

    Article  CAS  PubMed  Google Scholar 

  232. B. L. Diffey and C. D. Mobley, Sunburn at the seaside, Photodermatol., Photoimmunol. Photomed., 2018, 34, 298–301.

    Article  Google Scholar 

  233. J. Guzikowski, A. E. Czerwińska, J. W. Krzyścin and M. A. Czerwiński, Controlling sunbathing safety during the summer holidays - The solar UV campaign at Baltic Sea coast in 2015, J. Photochem. Photobiol., B, 2017, 173, 271–281.

    Article  CAS  Google Scholar 

  234. J. Guzikowski, J. Krzyścin, A. Czerwińska and W. Raszewska, Adequate vitamin D3 skin synthesis versus erythema risk in the Northern Hemisphere midlatitudes, J. Photochem. Photobiol., B, 2018, 179, 54–65.

    Article  CAS  Google Scholar 

  235. W. A. Tellez, W. Nieto-Gutierrez and A. Taype-Rondan, Sunscreen mobile apps: A content analysis, Eu. Res. Telemed., 2017, 6, 157–163.

    Article  Google Scholar 

  236. D. B. Buller, M. Berwick, K. Lantz, et al., Evaluation of immediate and 12-week effects of a smartphone sun-safety mobile application: A randomized clinical trial, JAMA Dermatol., 2015, 151, 505–512.

    Article  PubMed  PubMed Central  Google Scholar 

  237. J. Burke and R. L. McKenzie, Story behind the two UVI Apps: uv2Day and GlobalUV, in NIWA UV Workshop, ed. R. L. McKenzie, Wellington, Zew Zealand, 2018, p. 2.

  238. D. P. Igoe, A. Amar, A. V. Parisi and J. Turner, Characterisation of a smartphone image sensor response to direct solar 305 nm irradiation at high air masses, Sci. Total Environ., 2017, 587, 407–413.

    Article  PubMed  CAS  Google Scholar 

  239. B. Mei, R. Li, W. Cheng, J. Yu and X. Cheng, Ultraviolet radiation measurement via smart devices, IEEE Internet of Things Journal, 2017, 4, 934–944.

    Article  Google Scholar 

  240. A. McGonigle, T. Wilkes, T. Pering, J. Willmott, J. Cook, F. Mims and A. Parisi, Smartphone Spectrometers, Sensors, 2018, 18, 223.

    Article  CAS  PubMed Central  Google Scholar 

  241. R. Bouillon, J. Eisman, M. Garabedian, M. Holick, J. Kleinschmidt, T. Suda and K. Lucas, Action spectrum for the production of previtamin D3 in human skin, CIE Report No. 174:2006, Vienna, 2006.

    Google Scholar 

  242. CIE, Erythema reference action spectrum and standard erythema dose, Commission Internationale de l’Eclairage Report No. S 007/E-1998, Vienna, Austria, 1998, p. 4.

  243. F. Snik, J. H. H. Rietjens, A. Apituley, H. Volten, B. Mijling, A. D. Noia, S. Heikamp, R. C. Heinsbroek, O. P. Hasekamp, J. M. Smit, J. Vonk, D. M. Stam, G. Harten, J. Boer and C. U. Keller, Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters, Geophys. Res. Lett., 2014, 41, 7351–7358.

    Article  Google Scholar 

  244. H. Araki, J. Kim, S. Zhang, A. Banks, K. E. Crawford, X. Sheng, P. Gutruf, Y. Shi, R. M. Pielak and J. A. Rogers, Materials and device designs for an epidermal UV colorimetric dosimeter with near field communication capabilities, Adv. Funct. Mater., 2017, 27, 1604465.

  245. Y. Shi, M. Manco, D. Moyal, G. Huppert, H. Araki, A. Banks, H. Joshi, R. McKenzie, A. Seewald, G. Griffin, E. Sen-Gupta, D. Wright, P. Bastien, F. Valceschini, S. Seité, J. A. Wright, R. Ghaffari, J. Rogers, G. Balooch and R. M. Pielak, Soft, stretchable, epidermal sensor with integrated electronics and photochemistry for measuring personal UV exposures, PLoS One, 2018, 13, e0190233.

  246. B. Diffey and B. Cadars, An appraisal of the need for infrared radiation protection in sunscreens, Photochem. Photobiol. Sci., 2016, 15, 361–364.

    Article  CAS  PubMed  Google Scholar 

  247. B. Diffey and U. Osterwalder, Labelled sunscreen SPFs may overestimate protection in natural sunlight, Photochem. Photobiol. Sci., 2017, 16, 1519–1523.

    Article  CAS  PubMed  Google Scholar 

  248. M. Norval, L. O. Björn and F. R. D. Gruijl, Is the action spectrum for the UV-induced production of previtamin D3 in human skin correct?, Photochem. Photobiol. Sci., 2009, 9, 11–17.

    Article  PubMed  Google Scholar 

  249. A. van Dijk, P. den Outer, H. van Kranen and H. Slaper, The action spectrum for vitamin D3: initial skin reaction and prolonged exposure, Photochem. Photobiol. Sci., 2016, 15, 896–909.

    Article  PubMed  CAS  Google Scholar 

  250. J. W. Krzyścin, J. Jarosiawski, B. Rajewska-Więch, P. S. Sobolewski, J. Narbutt, A. Lesiak and M. Pawlaczyk, Effectiveness of heliotherapy for psoriasis clearance in low and mid-latitudinal regions: A theoretical approach, J. Photochem. Photobiol., B, 2012, 115, 35–41.

    Article  CAS  Google Scholar 

  251. J. W. Krzyścin, J. Guzikowski, A. Czerwińska, A. Lesiak, J. Narbutt, J. Jaroslawski, P. S. Sobolewski, B. Rajewska-Więch and J. Wink, 24 hours forecast of the surface UV for the antipsoriatic heliotherapy in Poland, J. Photochem. Photobiol., B, 2015, 148, 136–144.

    Article  CAS  Google Scholar 

  252. X. Fang, A. R. Ravishankara, G. J. M. Velders, M. J. Molina, S. Su, J. Zhang, J. Hu and R. G. Prinn, Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal Protocol, Environ. Sci. Technol., 2018, 52, 11359–11366.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Bais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bais, A.F., Bernhard, G., McKenzie, R.L. et al. Ozone—climate interactions and effects on solar ultraviolet radiation. Photochem Photobiol Sci 18, 602–640 (2019). https://doi.org/10.1039/c8pp90059k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp90059k

Navigation