Skip to main content
Log in

meso-Mono-[4-(1,4,7-triazacyclononanyl)]-tri(phenyl)]porphyrin and the respective zinc(ii)-complex: complete characterization and biomolecules binding abilities

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We aimed to synthesize a new series of triazacyclononanyl-porphyrins (4 and 5) with the potential ability to bind DNA. For this, the free-base porphyrin 4 and the corresponding Zn(ii)-complex 5 were synthesized by the Schiff base formation reaction. The binding ability of the porphyrin derivatives 4 and 5 with DNA from calf-thymus was studied by UV-vis and emission spectroscopy. Detailed analysis of the results suggests that the interaction of these systems most probably occurs through π-stacking and secondary hydrogen interaction surface binding with ct-DNA. Moreover, we also demonstrate the substantial ability of porphyrins 4 and 5 to generate 1O2 and to photocleave plasmid DNA after irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Fukuzumi, Development of bioinspired artificial photosynthetic systems, Phys. Chem. Chem. Phys., 2008, 10, 2283–2297.

    Article  CAS  PubMed  Google Scholar 

  2. L.-L. Li, E. W.-G. Diau, Porphyrin-sensitized solar cells, Chem. Soc. Rev., 2013, 42, 291–304.

    Article  CAS  PubMed  Google Scholar 

  3. T. S. Balaban, Tailoring Porphyrins and Chlorins for Self-Assembly in Biomimetic Artificial Antenna Systems, Acc. Chem. Res., 2005, 38, 612–623.

    Article  CAS  PubMed  Google Scholar 

  4. M. Jurow, A. E. Schuckman, J. D. Batteas and C. M. Drain, Porphyrins as molecular electronic components of functional devices, Coord. Chem. Rev., 2010, 254, 2297–2310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. For catalysis see

  6. H. Shinokubo and A. Osuka, Marriage of porphyrin chemistry with metal-catalysed reactions, Chem. Commun., 2009, 1011–1021.

    Google Scholar 

  7. S. Nakagaki, G. K. B. Ferreira, A. L. Marçal and K. J. Ciuffi, Metalloporphyrins Immobilized on Silica and Modified Silica as Catalysts in Heterogeneous Processes, Curr. Org. Synth., 2014, 11, 67–88.

    Article  CAS  Google Scholar 

  8. M. J. F. Calvete, M. Silva, M. M. Pereira and H. D. Burrows, Inorganic helping organic: recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports, RSC Adv., 2013, 3, 22774–22789.

    Article  CAS  Google Scholar 

  9. M. J. F. Calvete, A. V. C. Simões, C. A. Henriques, S. M. A. Pinto and M. M. Pereira, Tetrapyrrolic Macrocycles: Potentialities in Medical Imaging Technologies, Curr. Org. Synth., 2014, 11, 127–140.

    Article  CAS  Google Scholar 

  10. P. Skupin-Mrugalska, J. Piskorz, T. Goslinski, J. Mielcarek, K. Konopka, N. Düzgüneş, Current status of liposomal porphyrinoid photosensitizers, Drug Discovery Today, 2013, 18, 776–784.

    Article  CAS  PubMed  Google Scholar 

  11. P. A. Waghorn, Radiolabelled porphyrins in nuclear medicine, J. Labelled Compd. Radiopharm., 2014, 57, 304–309.

    Article  CAS  Google Scholar 

  12. F. Giuntini, R. Boyle, M. Sibrian-Vazquez and M. G. H. Vicente, Porphyrin Conjugates for Cancer Therapy, in The Handbook of Porphyrin Science, ed. G. Ferreira, World Scientific Publishers, Singapore, 2013, 27, 303–416

    Article  Google Scholar 

  13. A. M. Rkein and D. M. Ozog, Photodynamic Therapy, Dermatol. Clin., 2014, 32, 415–425.

    Article  CAS  PubMed  Google Scholar 

  14. J. N. Silva, P. Filipe, P. Morlière, J.-C. Mazière, J. P. Freitas, M. M. Gomes and R. Santus, Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic, Bio-Med. Mater. Eng., 2008, 18, 319–327.

    Article  CAS  Google Scholar 

  15. J. N. Silva, A. Galmiche, J. P. C. Tomé, A. Boullier, M. G. P. M. S. Neves, E. M. P. Silva, J.-C. Capiod, J. A. S. Cavaleiro, R. Santus, J.-C. Mazière, P. Filipe, P. Morlière, Chain-dependent photocytotoxicity of tricationic porphyrin conjugates and related mechanisms of cell death in proliferating human skin keratinocytes, Biochem. Pharmacol., 2010, 80, 1373–1385.

    Article  CAS  PubMed  Google Scholar 

  16. J.-X. Zhang, J.-W. Zhou, C.-F. Chan, T. C.-K. Lau, D. W. J. Kwong, H.-L. Tam, N.-K. Mak, K.-L. Wong, W.-K. Wong, Comparative Studies of the Cellular Uptake, Subcellular Localization, and Cytotoxic and Phototoxic Antitumor Properties of Ruthenium(ii)–Porphyrin Conjugates with Different Linkers, Bioconjugate Chem., 2012, 23, 1623–1638.

    Article  CAS  Google Scholar 

  17. B. P. P. McCormick, M. F. Pansa, L. N. M. Sanabria, C. M. B. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, N. B. R. Vittar and V. A. Rivarola, Cationic porphyrin derivatives for application in photodynamic therapy of cancer, Laser Phys., 2014, 24, 045603.

    Article  CAS  Google Scholar 

  18. F. Figueira, P. M. R. Pereira, S. Silva, J. A. S. Cavaleiro, J. P. C. Tomé, Porphyrins and phthalocyanines decorated with dendrimers: Synthesis and biomedical applications, Curr. Org. Synth., 2014, 11, 110–126.

    Article  CAS  Google Scholar 

  19. M. Ethirajan, Y. Chen, P. Joshi and R. K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy, Chem. Soc. Rev., 2011, 40, 340–362.

    Article  CAS  PubMed  Google Scholar 

  20. V. Sol, J. C. Blais, V. Carré, R. Granet, M. Guilloton, M. Spiro and P. J. Krausz, Synthesis, Spectroscopy, and Photocytotoxicity of Glycosylated Amino Acid Porphyrin Derivatives as Promising Molecules for Cancer Phototherapy, J. Org. Chem., 1999, 64, 4431–4444.

    Article  CAS  Google Scholar 

  21. V. V. Serra, A. Zamarrón, M. A. F. Faustino, M. C. I.-D. L. Cruz, A. Blázquez, J. M. M. Rodrigues, M. G. P. M. S. Neves, J. A. S. Cavaleiro, A. Juarranz, F. Sanz-Rodríguez, New porphyrin amino acid conjugates: Synthesis and photodynamic effect in human epithelial cells, Bioorg. Med. Chem., 2010, 18, 6170–6178.

    Article  CAS  PubMed  Google Scholar 

  22. A. Viola, P. Mannoni, M. Chanon, M. Julliard, G. Mehta, B. G. Maiya, S. Muthusamy and T. J. Sambaiah, Phototoxicity of some novel porphyrin hybrids against the human leukemic cell line TF-1, J. Photochem. Photobiol., B, 1997, 40, 263–273.

    Article  CAS  Google Scholar 

  23. H. Ibrahim, A. Kasselouri, C. You, P. Maillard, V. Rosilio, R. Pansu and P. J. Prognon, Meso-tetraphenyl porphyrin derivatives: The effect of structural modifications on binding to DMPC liposomes and albumin, J. Photochem. Photobiol., A, 2011, 217, 10–21.

    Article  CAS  Google Scholar 

  24. A. M. G. Silva, P. S. S. Lacerda, A. C. Tomé, M. G. P. M. S. Neves, A. M. S. Silva, J. A. S. Cavaleiro, E. A. Makarova and E. A. Lukyanets, Porphyrins in 1,3-Dipolar Cycloaddition Reactions. Synthesis of New Porphyrin–Chlorin and Porphyrin–Tetraazachlorin Dyads, J. Org. Chem., 2006, 71, 8352–8356.

    Article  CAS  PubMed  Google Scholar 

  25. R. M. Burger, Cleavage of nucleic acids by bleomycin, Chem. Rev., 1998, 98, 1153–1170.

    Article  CAS  PubMed  Google Scholar 

  26. B. Armitage, Photocleavage of Nucleic Acids, Chem. Rev., 1998, 98, 1171–1200.

    Article  CAS  PubMed  Google Scholar 

  27. F. Mancin and P. Tecilla, Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids, New J. Chem., 2007, 31, 800–817.

    Article  CAS  Google Scholar 

  28. C. Liu, M. Wang, T. Zhang and H. Sun, DNA hydrolysis promoted by di- and multi-nuclear metal complexes, Coord. Chem. Rev., 2004, 248, 147–168.

    Article  CAS  Google Scholar 

  29. K. P. Wainwright, Synthetic and structural aspects of the chemistry of saturated polyaza macrocyclic ligands bearing pendant coordinating groups attached to nitrogen, Coord. Chem. Rev., 1997, 166, 35–90.

    Article  CAS  Google Scholar 

  30. A. Singh, Q. Yao, L. Tong, W. C. Still and D. Sames, Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett., 2000, 41, 9601–9605.

    Article  CAS  Google Scholar 

  31. M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr., Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates, Chem. Rev., 2004, 104, 939–986.

    Article  CAS  PubMed  Google Scholar 

  32. See example

  33. J. D. Burstyn and K. A. Deal, Selective catalytic hydrolysis of a simple phosphodiester by a macrocyclic copper(II) complex, Inorg. Chem., 1993, 32, 3585–3586.

    Article  CAS  Google Scholar 

  34. E. L. Hegg and J. N. Burstyn, Toward the development of metal-based synthetic nucleases and peptidases: a rationale and progress report in applying the principles of coordination chemistry, Coord. Chem. Rev., 1998, 173, 133–165.

    Article  CAS  Google Scholar 

  35. N. H. Williams, W. Cheung and J. Chin, Reactivity of Phosphate Diesters Doubly Coordinated to a Dinuclear Cobalt(III) Complex: Dependence of the Reactivity on the Basicity of the Leaving Group, J. Am. Chem. Soc., 1998, 120, 8079–8087.

    Article  CAS  Google Scholar 

  36. P. Rossi, F. Felluga, P. Tecilla, F. Formaggio, M. Crisma, C. Toniolo and P. Scrimin, A bimetallic helical heptapeptide as a transphosphorylation catalyst in water, J. Am. Chem. Soc., 1999, 121, 6948–6949.

    Article  CAS  Google Scholar 

  37. E. L. Hegg, S. H. Mortimore, C. Li Cheung, J. E. Huyett, D. R. Powell and J. N. Burstyn, Structure–Reactivity Studies in Copper(II)-Catalyzed Phosphodiester Hydrolysis, Inorg. Chem., 1999, 38, 2961–2968.

    Article  CAS  PubMed  Google Scholar 

  38. B. R. Bodsgard and J. N. Burstyn, Silica-bound copper(II) triazacyclononane: a robust material for the heterogeneous hydrolysis of a phosphodiester, Chem. Commun., 2001, 647–648.

    Google Scholar 

  39. E. L. Hegg and J. D. Burstyn, Copper(II) Macrocycles Cleave Single-Stranded and Double-Stranded DNA under Both Aerobic and Anaerobic Conditions, Inorg. Chem., 1996, 35, 7474–7481.

    Article  CAS  Google Scholar 

  40. K. M. Deck, T. A. Tseng and J. N. Burstyn, Triisopropyltriazacyclononane Copper(II): An Efficient Phosphodiester Hydrolysis Catalyst and DNA Cleavage Agent, Inorg. Chem., 2002, 41, 669–677.

    Article  CAS  PubMed  Google Scholar 

  41. E. K. Barefield, Coordination chemistry of N-tetraalkylated cyclam ligands—A status report, Coord. Chem. Rev., 2010, 254, 1607–1627.

    Article  CAS  Google Scholar 

  42. S. Hermann and W. Frank, Complex Formation with Tetraazacycloalkane-N,N′,N′′,N′′′-tetraacetic Acids as a Function of Ring Size, Angew. Chem., Int. Ed. Engl., 1976, 15, 686.

    Google Scholar 

  43. P. Chaudhuri and K. Wieghardt, The chemistry of 1,4,7-Triazacyclononane and Related Tridentade Macrocyclic Compounds, Prog. Inorg. Chem., 1987, 35, 329–436.

    CAS  Google Scholar 

  44. C. P. Gros, A. Eggenspiller, A. Nonat, J.-M. Barbe and F. Denat, New potential bimodal imaging contrast agents based on DOTA-like and porphyrin macrocycles, Med. Chem. Commun., 2011, 2, 119–125.

    Article  CAS  Google Scholar 

  45. A. Eggenspiller, C. Michelin, N. Desbois, P. Richard, J.-M. Barbe, F. Denat, C. Licona, C. Gaiddon, A. Sayeh, P. Choquet and C. P. Gros, Design of Porphyrin-dota-Like Scaffolds as All-in-One Multimodal Heterometallic Complexes for Medical Imaging, Eur. J. Org. Chem., 2013, 6629–6643.

    Google Scholar 

  46. W.-J. Yi, X.-C. Yu, B. Wang, J. Zhang, Q.-Y. Yu, X.-D. Zhou, X.-Q. Yu, TACN-based oligomers with aromatic backbones for efficient nucleic acid delivery, Chem. Commun., 2014, 6454–6457.

    Google Scholar 

  47. M. Fang, L. Wei, Z. Lin, G.-Y. Lu, Synthesis and DNA Cleavage Properties of Triazacrown Derivatives, Chin. J. Chem., 2014, 32, 142–150.

    Article  CAS  Google Scholar 

  48. D. Montagner, V. Gandin, C. Marzano and A. Erxleben, Phosphate Diester Cleavage, DNA Interaction and Cytotoxic Activity of a Bimetallic Bis(1,4,7-triazacyclononane) Zinc Complex, Eur. J. Inorg. Chem., 2014, 4084–4092.

    Google Scholar 

  49. V. R. de Almeida, F. R. Xavier, R. E. H. M. B. Osório, L. M. Bessa, E. L. Schilling, T. G. Costa, T. Bortolotto, A. Cavalett, F. A. V. Castro, F. Vilhena, O. C. Alves, H. Terenzi, E. C. A. Eleutherio, M. D. Pereira, W. Haase, Z. Tomkowicz, B. Szpoganicz, A. J. Bortoluzzi and A. Neves, In vitro and in vivo activity of a new unsymmetrical dinuclear copper complex containing a derivative ligand of 1,4,7-triazacyclononane: catalytic promiscuity of [Cu2(L)Cl3], Dalton Trans., 2013, 42, 7059–7073.

    Article  PubMed  CAS  Google Scholar 

  50. R. R. Gagne, C. A. Koval and G. C. Lisensky, Ferrocene as an internal standard for electrochemical measurements, Inorg. Chem., 1980, 19, 2854–2855.

    Article  CAS  Google Scholar 

  51. J. Kang, H. Wu, X. Lu, Y. Wang and L. Zhou, Study on the interaction of new water-soluble porphyrin with DNA, Spectrochim. Acta, Part A, 2005, 61, 2041–2047.

    Article  CAS  Google Scholar 

  52. M. Ibrahim, I. S. Shehatta, A. A. Al-Nayeli, Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA, J. Pharm. Biomed. Anal., 2002, 28, 217–225.

    Article  CAS  PubMed  Google Scholar 

  53. P. Kluson, M. Drobek, A. Kalaji, S. Zarubova, J. Krysa and J. Rakusan, Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions, J. Photochem. Photobiol., A, 2008, 199, 267–273.

    Article  CAS  Google Scholar 

  54. A. Sreedhara, J. D. Freed and J. A. Cowan, Efficient Inorganic Deoxyribonucleases. Greater than 50-Million-Fold Rate Enhancement in Enzyme-Like DNA Cleavage, J. Am. Chem. Soc., 2000, 122, 8814–8824.

    Article  CAS  Google Scholar 

  55. J. Yan, A. M. Lewis, N. H. Gokhale, E. C. Long and J. A. Cowan, Influence of Stereochemistry and Redox Potentials on the Single- and Double-Strand DNA Cleavage Efficiency of Cu(II)· and Ni(II)·Lys-Gly-His-Derived ATCUN Metallopeptides, J. Am. Chem. Soc., 2007, 129, 8353–8361.

    Article  CAS  Google Scholar 

  56. M. F. Shubsda, J. Goodisman and J. C. Dabrowiak, Quantitation of ethidium-stained closed circular DNA in agarose gels, J. Biochem. Biophys. Methods, 1997, 34, 73–79.

    Article  CAS  PubMed  Google Scholar 

  57. W. Xu, X. Yang, L. Yang, Z. Jia, L. Wei, F. Liu and G. Lu, Synthesis and DNA cleavage activity of triazacrown-anthraquinone conjugates, New J. Chem., 2010, 34, 2654–2661.

    Article  CAS  Google Scholar 

  58. S. Sharma and N. Nath, Synthesis of meso-substituted dihydro-1,3-oxazinoporphyrins, Beilstein J. Org. Chem., 2013, 9, 496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D. J. Walaszek, K. Maximova, K. Rybicka-Jasińska, A. Lipke and D. Gryko, Synthesis of chiral porphyrins and their use in photochemical oxidation of carbonyl compounds, J. Porphyrins Phthalocyanines, 2014, 18, 493–505.

    Article  CAS  Google Scholar 

  60. M. C. Gomes, S. Silva, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, A. Almeida, A. Cunha, J. P. C. Tomé, Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2, Photochem. Photobiol. Sci., 2013, 12, 262–271.

    Article  CAS  Google Scholar 

  61. J. M. Zaleski, C. K. Chang, G. E. Leroi, R. I. Cukier and D. G. Nocera, Role of solvent dynamics in the charge recombination of a donor/acceptor pair, J. Am. Chem. Soc., 1992, 114, 3564–3565.

    Article  CAS  Google Scholar 

  62. B. A. Iglesias, M. Hörner, H. E. Toma and K. Araki, 5-(1-(4-phenyl)-3-(4-nitrophenyl)triazene)-10,15,20-triphenylporphyrin: a new triazene-porphyrin dye and its spectroelectrochemical properties, J. Porphyrins Phthalocyanines, 2012, 16, 200–209.

    Article  CAS  Google Scholar 

  63. D. A. Al-Mutairi, J. D. Craik, I. Batinic-Haberle and L. T. Benov, Induction of oxidative cell damage by photo-treatment with zinc meta N-methylpyridylporphyrin, Free Radical Res., 2007, 41, 89–96.

    Article  CAS  Google Scholar 

  64. M. G. Alvarez, C. Prucca, M. E. Milanesio, E. N. Durantini and V. Rivarola, Photodynamic activity of a new sensitizer derived from porphyrin-C60 dyad and its biological consequences in a human carcinoma cell line, Int. J. Biochem. Cell Biol., 2006, 38, 2092–2101.

    Article  CAS  PubMed  Google Scholar 

  65. D. Samaroo, E. Perez, A. Aggarwal, A. Wills, N. O’Connor, Strategies for delivering porphyrinoid-based photosensitizers in therapeutic applications, Ther. Delivery, 2014, 5, 859–872.

    Article  CAS  Google Scholar 

  66. E. Barragán, B. Gordillo, G. Vargas and L. Velazco, The role of cobalt, copper, nickel, and zinc in the DNA replication inhibitory activity of p-aminophenyl triphenylporphyrin, Appl. Organomet. Chem., 2004, 18, 311–317.

    Article  CAS  Google Scholar 

  67. T. Murashima, K. Hayata, Y. Saiki, J. Matsui, D. Miyoshi, T. Yamada, T. Miyazawa and N. Sugimoto, Synthesis, structure and thermal stability of fully hydrophobic porphyrin–DNA conjugates, Tetrahedron Lett., 2007, 48, 8514–8517.

    Article  CAS  Google Scholar 

  68. A. Wolfe, G. H. Shimer Jr. and T. Meehan, Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA, Biochemistry, 1987, 26, 6392–6396.

    Article  CAS  PubMed  Google Scholar 

  69. J. E. N. Dolatabadi, Molecular aspects on the interaction of quercetin and its metal complexes with DNA, Int. J. Biol. Macromol., 2011, 48, 227–233.

    Article  CAS  PubMed  Google Scholar 

  70. H. Chao, W.-J. Mei, Q.-W. Huang, L.-N. Ji, DNA binding studies of ruthenium(II) complexes containing asymmetric tridentate ligands, J. Inorg. Biochem., 2002, 92, 165–170.

    Article  CAS  PubMed  Google Scholar 

  71. K. Araki, C. A. Silva, H. E. Toma, L. H. Catalani, M. H. G. Medeiros, P. Di Mascio, Zinc tetraruthenated porphyrin binding and photoinduced oxidation of calf-thymus DNA, J. Inorg. Biochem., 2000, 78, 269–273.

    Article  CAS  PubMed  Google Scholar 

  72. P. Kubát, K. Lang, V. Král and F. P. Schmidtchen, Photophysical properties of two novel tetraphenylporphyrins substituted by guanidiniocarbonyl and monocyclic guanidine groups, Int. J. Photoenergy, 2001, 3, 147–151.

    Article  Google Scholar 

  73. R. J. Fiel, J. C. Howard and N. D. Gupta, Interaction of DNA with a porphyrin ligand: evidence for intercalation, Nucleic Acids Res., 1979, 6, 3093–3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. M. C. Gomes, S. M. Woranovicz-Barreira, M. A. F. Faustino, R. Fernandes, M. G. P. M. S. Neves, A. C. Tomé, N. C. M. Gomes, A. Almeida, J. A. S. Cavaleiro, A. Cunha, J. P. C. Tomé, Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  75. P. Zhao, J.-Z. Lu, J. He, W.-H. Chen, P.-P. Chen, D.-W. Chen, Q.-Y. Bin, Synthesis, DNA-Binding, and Photocleavage Properties of a Serious of Porphyrin-Daunomycin Hybrids, Nucleosides, Nucleotides Nucleic Acids, 2014, 33, 597–614.

    Article  CAS  PubMed  Google Scholar 

  76. S. Silva, P. M. R. Pereira, P. Silva, F. A. A. Paz, M. A. F. Faustino, J. A. S. Cavaleiro, J. P. C. Tomé, Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties, Chem. Commun., 2012, 48, 3608–3610.

    Article  CAS  Google Scholar 

  77. D. Kumar, B. A. Mishra, K. P. C. Shekar, A. Kumar, K. Akamatsu, R. Kurihara and T. Ito, Novel porphyrin–psoralen conjugates: synthesis, DNA interaction and cytotoxicity studies, Org. Biomol. Chem., 2013, 11, 6675–6679.

    Article  CAS  PubMed  Google Scholar 

  78. D. Montagner, V. Gandin, C. Marzano and A. Erxleben, DNA damage and induction of apoptosis in pancreatic cancer cells by a new dinuclear bis(triazacyclonane) copper complex, J. Inorg. Biochem., 2015, 145, 101–107.

    Article  CAS  PubMed  Google Scholar 

  79. S. K. Kim, B. Norbén, Methyl green - A DNA major-groove binding drug, FEBS Lett., 1993, 315, 61–64.

    Article  CAS  PubMed  Google Scholar 

  80. M. W. Van Dyke, R. P. Hertzberg and P. B. Dervan, Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II), Proc. Natl. Acad. Sci. U. S. A., 1982, 79, 5470–5474.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Y. Hiraku, S. Oikawa and S. Kawanishi, Distamycin A, a minor groove binder, changes enediyne-induced DNA cleavage sites and enhances apoptosis, Nucleic Acids Symp. Ser., 2002, 2, 95–96.

    Article  CAS  Google Scholar 

  82. H. Sugiyama, C. Lian, M. Isomura, I. Saito, A. H.-J. Wang, Distamycin A modulates the sequence specificity of DNA alkylation by duocarmycin A, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 14405–14410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Y. Sugiura, T. Shiraki, M. Konishi and T. Oki, DNA intercalation and cleavage of an antitumor antibiotic dynemicin that contains anthracycline and enediyne cores, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 3831–3835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. K. Yamamoto, H. Sugiyama and S. Kawanishi, Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A, Biochemistry, 1993, 32, 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  85. R. Kuroda and H. Tanaka, DNA–porphyrin interactions probed by induced CD spectroscopy, J. Chem. Soc., Chem. Commun., 1994, 1575–1576.

    Google Scholar 

  86. S. Kawanishi and Y. Hiraku, Amplification of Anticancer Drug-Induced DNA Damage and Apoptosis by DNA-Binding Compounds, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 415–419.

    CAS  PubMed  Google Scholar 

  87. W. F. Donahue, B. M. Turczyk and K. A. Jarrell, Group II Introns: Catalysis for Splicing, Genomic Change and Evolution, Nucleic Acids Res., 2002, 30, 95–96.

    Article  Google Scholar 

  88. S. Kawanishi, S. Oikawa, M. Kawanishi, H. Sugiyama, I. Saito, L. Strekowski and W. D. Wilson, Amplification of Pepleomycin-Mediated DNA Cleavage and Apoptosis by Unfused Aromatic Cations, Biochemistry, 2000, 39, 13210–13215.

    Article  CAS  PubMed  Google Scholar 

  89. T. P. Camargo, F. F. Maia, C. Chaves, B. de Souza, A. J. Bortoluzzi, N. Castilho, T. Bortolotto, H. Terenzi, E. E. Castellano, W. Haase, Z. Tomkowicz, R. A. Peralta and A. Neves, Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity, J. Inorg. Biochem., 2015, 146, 77–88.

    Article  CAS  PubMed  Google Scholar 

  90. Q. Jiang, N. Xiao, P. Shi, Y. Zhu and Z. Guo, Design of artificial metallonucleases with oxidative mechanism, Coord. Chem. Rev., 2007, 251, 1951–1972.

    Article  CAS  Google Scholar 

  91. S. Oikama, M. Kurasaki, Y. Kojima and S. Kawanishi, Oxidative and Nonoxidative Mechanisms of Site-Specific DNA Cleavage Induced by Copper-Containing Metallothioneins, Biochemistry, 1995, 34, 8763–8770.

    Article  Google Scholar 

  92. S.-H. Wan, F. Liang, X.-Q. Xiong, L. Yang, X.-J. Wu, P. Wang, X. Zhou, C.-T. Wu, DNA hydrolysis promoted by 1,7-dimethyl-1,4,7,10-tetraazacyclododecane, Bioorg. Med. Chem. Lett., 2006, 16, 2804–2806.

    Article  CAS  PubMed  Google Scholar 

  93. F. Mancin, P. Scrimin and P. Tecilla, Artificial metallonucleases, Chem. Commun., 2005, 2540–2548.

    Google Scholar 

  94. N. Raman, R. Jeyamurugan, A. Sakthivel and L. Mitu, Novel metal-based pharmacologically dynamic agents of transition metal(II) complexes: Designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity, Spectrochim. Acta, Part A, 2010, 75, 88–97.

    Article  CAS  Google Scholar 

  95. J. Lu, W. Pan, R. He, S. Jin, X. Liao, B. Wu, P. Zhao and H. Guo, DNA-binding and photocleavage studies of metallofluorescein–porphyrin complexes of zinc(II) and copper(II), Transition Met. Chem., 2012, 37, 497–503.

    Article  CAS  Google Scholar 

  96. B. de Souza, A. J. Bortoluzzi, T. Bortolotto, F. L. Fischer, H. Terenzi, D. E. C. Ferreira, W. R. Rocha and A. Neves, DNA photonuclease activity of four new copper(II) complexes under UV and red light: theoretical/experimental correlations with active species generation, Dalton Trans., 2010, 39, 2027–2035.

    Article  PubMed  Google Scholar 

  97. K. Wang, Q. Jin, X. Zhang, S.-H. Song, Synthesis, DNA Photocleavage and Singlet Oxygen Measurement of Cationic Bisporphyrins, J. Korean Chem. Soc., 2013, 57, 246–251.

    Article  CAS  Google Scholar 

  98. P. Sweigert, Z. Xu, Y. Hong and S. Swavey, Nickel, copper, and zinc centered ruthenium-substituted porphyrins: effect of transition metals on photoinduced DNA cleavage and photoinduced melanoma cell toxicity, Dalton Trans., 2012, 41, 5201–5208.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo A. Iglesias.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00016a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auras, B.L., Oliveira, V.A., Terenzi, H. et al. meso-Mono-[4-(1,4,7-triazacyclononanyl)]-tri(phenyl)]porphyrin and the respective zinc(ii)-complex: complete characterization and biomolecules binding abilities. Photochem Photobiol Sci 15, 564–579 (2016). https://doi.org/10.1039/c6pp00016a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00016a

Navigation