Skip to main content
Log in

Vertebrate ancient opsin and melanopsin: divergent irradiance detectors

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Both vertebrates and invertebrates respond to light by utilising a wide-ranging array of photosensory systems, with diverse photoreceptor organs expressing a characteristic photopigment, itself consisting of an opsin apoprotein linked to a light-sensitive retinoid chromophore based on vitamin A. In the eye, the pigments expressed in both cone and rod photoreceptors have been studied in great depth and mediate contrast perception, measurement of the spectral composition of environmental light, and thus classical image forming vision. By contrast, the molecular basis for non-visual and extraocular photoreception is far less understood; however, two photopigment genes have become the focus of much study, the vertebrate ancient (va) opsin and melanopsin (opn4). In this review, we discuss the history of discovery for each gene, as well as focusing on the evolution, expression profile, functional role and broader physiological significance of each photopigment. Recently, it has been suggested independently by Arendt et al. and Lamb that an ancestral opsin bifurcated in early metazoans and evolved into two quite different photopigments, one expressed in rhabdomeric photoreceptors and the other in ciliary photoreceptors. This interpretation of the evolution of the metazoan eye has provided a powerful framework for understanding photobiological organization. Their proposal, however, does not encompass all current experimental observations that would be consistent with what we term a central “Evolution of Photosensory Opsins with Common Heredity (EPOCH)” hypothesis to explain the complexity of animal photosensory systems. Clearly, many opsin genes (e.g. va opsin) simply do not fit neatly within this scheme. Thus, the review concludes with a discussion of these anomalies and their context regarding the phylogeny of photoreceptor and photopigment development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arendt, The evolution of cell types in animals: emerging principles from molecular studies, Nat. Rev. Genet., 2008, 9, 868–882.

    Article  CAS  PubMed  Google Scholar 

  2. B. G. Soni, A. R. Philp, B. E. Knox, R. G. Foster, Novel retinal photoreceptors, Nature, 1998, 394, 27–28.

    Article  CAS  PubMed  Google Scholar 

  3. D. M. Berson, F. A. Dunn, M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock, Science, 2002, 295, 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  4. S. Sekaran, R. G. Foster, R. J. Lucas, M. W. Hankins, Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons, Curr. Biol., 2003, 13, 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  5. I. Provencio, G. Jiang, W. J. DeGrip, W. P. Hayes, M. D. Rollag, Melanopsin: An opsin in melanophores, brain and eye, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. N. Peirson, P. H. Bovee-Geurts, D. Lupi, G. Jeffery, W. J. DeGrip, R. G. Foster, Expression of the candidate circadian photopigment melanopsin (Opn4) in the mouse retinal pigment epithelium, Mol. Brain Res., 2004, 123, 132–135.

    Article  CAS  PubMed  Google Scholar 

  7. L. Vollrath, in The Pineal Organ, ed. L. Vollrath and A. Oksche, Springer International Publishing, Berlin, Heidelberg, New York, 1981.

  8. S. Halford, S. S. Pires, M. Turton, L. Zheng, I. Gonzalez-Menendez, W. L. Davies, S. N. Peirson, J. M. Garcia-Fernandez, M. W. Hankins, R. G. Foster, VA opsin-based photoreceptors in the hypothalamus of birds, Curr. Biol., 2009, 19, 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  9. D. Whitmore, N. S. Foulkes, P. Sassone-Corsi, Light acts directly on organs and cells in culture to set the vertebrate circadian clock, Nature, 2000, 404, 87–91.

    Article  CAS  PubMed  Google Scholar 

  10. M. D. Rollag, I. Provencio, D. Sugden, C. B. Green, Cultured amphibian melanophores: a model system to study melanopsin photobiology, Methods Enzymol., 2000, 316, 291–309.

    Article  CAS  PubMed  Google Scholar 

  11. J. Shand, J. N. Lythgoe, The isolated iridescent cornea of the sand goby is photoresponsive, Photochem. Photobiol., 1990, 51, 737–739.

    Article  CAS  PubMed  Google Scholar 

  12. M. S. Freedman, R. J. Lucas, B. Soni, M. von Schantz, M. Munoz, Z. David-Gray, R. G. Foster, Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors, Science, 1999, 284, 502–504.

    Article  CAS  PubMed  Google Scholar 

  13. D. Lupi, H. Oster, S. Thompson, R. G. Foster, The acute light-induction of sleep is mediated by OPN4-based photoreception, Nat. Neurosci., 2008, 11, 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  14. A. Engbretson, Neurobiology of the lacertilian parietal eye system, Ethol. Ecol. Evol., 1992, 4, 89–107.

    Article  Google Scholar 

  15. J. T. Bagnara, M. E. Hadley, Endocrinology of the amphibian pineal, Am. Zool., 1970, 10, 201–216.

    Article  CAS  PubMed  Google Scholar 

  16. G. Tosini, M. Menaker, The pineal complex and melatonin affect the expression of the daily rhythm of behavioural thermoregulation in the green iguana, J. Comp. Physiol., A, 1996, 179, 135–142.

    Article  CAS  Google Scholar 

  17. R. J. Lucas, R. H. Douglas, R. G. Foster, Characterization of an ocular photopigment capable of driving pupillary constriction in mice, Nat. Neurosci., 2001, 4, 621–626.

    Article  CAS  PubMed  Google Scholar 

  18. R. G. Foster, M. W. Hankins, Non-rod, non-cone photoreception in the vertebrates, Prog. Retinal Eye Res., 2002, 21, 507–527.

    Article  Google Scholar 

  19. I. Provencio, H. M. Cooper, R. G. Foster, Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment, J. Comp. Neurol., 1998, 395, 417–439.

    Article  CAS  PubMed  Google Scholar 

  20. T. S. Kemp, The origin and early radiation of the therapsid mammallike reptiles: A palaeobiological hypothesis, J. Evol. Biol., 2006, 19, 1231–1247.

    Article  CAS  PubMed  Google Scholar 

  21. S. G. Lucas, Z. Lou, Adelobasileus from the upper Triassic of west Texas: the oldest mammal, J. Vertebr. Paleontol., 1993, 13, 309–334.

    Article  Google Scholar 

  22. J. Z. Young, in The Life of Vertebrates, ed. M. Nixon, Oxford University Press, Oxford, 3rd edn, 1981.

  23. R. G. Foster, M. Menaker, in Light and biological rhythms in man, ed. L. Wetterberg, Pergamon, 1993, pp. 73–91.

  24. J. Bellingham, R. G. Foster, Opsins and mammalian photoentrainment, Cell Tissue Res., 2002, 309, 57–71.

    Article  CAS  PubMed  Google Scholar 

  25. A. Terakita, The opsins, GenomeBiology, 2005, 6, 213.

    PubMed  PubMed Central  Google Scholar 

  26. B. Nickle, P. R. Robinson, The opsins of the vertebrate retina: insights from structural, biochemical, and evolutionary studies, Cell. Mol. Life Sci., 2007, 64, 2917–2932.

    Article  CAS  PubMed  Google Scholar 

  27. M. W. Hankins, S. N. Peirson, R. G. Foster, Melanopsin: an exciting photopigment, Trends Neurosci., 2008, 31, 27–36.

    Article  CAS  PubMed  Google Scholar 

  28. T. D. Lamb, Evolution of vertebrate retinal photoreception, Philos. Trans. R. Soc. London, Ser. B, 2009, 364, 2911–2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. N. Peirson, S. Halford, R. G. Foster, The evolution of irradiance detection: melanopsin and non-visual opsins, Philos. Trans. R. Soc. London, Ser. B, 2009, 364, 2849–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. K. D. Ridge, K. Palczewski, Visual rhodopsin sees the light: structure and mechanism of G protein signaling, J. Biol. Chem., 2007, 282, 9297–9301.

    Article  CAS  PubMed  Google Scholar 

  31. B. G. Soni, R. G. Foster, A novel and ancient vertebrate opsin, FEBS Lett., 1997, 406, 279–283.

    Article  CAS  PubMed  Google Scholar 

  32. T. Okano, T. Yoshizawa, Y. Fukada, Pinopsin is a chicken pineal photoreceptive molecule, Nature, 1994, 372, 94–97.

    Article  CAS  PubMed  Google Scholar 

  33. M. Max, P. J. McKinnon, K. J. Seidenman, R. K. Barrett, M. L. Applebury, J. S. Takahashi, R. F. Margolskee, Pineal opsin: a nonvisual opsin expressed in chick pineal, Science, 1995, 267, 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  34. P. Moutsaki, J. Bellingham, B. G. Soni, Z. K. David-Gray, R. G. Foster, Sequence, genomic structure, and tissue expression of carp (Cyprinus carpio L.) vertebrate ancient (VA) opsin, FEBS Lett., 2000, 473, 316–322.

    Article  CAS  PubMed  Google Scholar 

  35. D. Kojima, H. Mano, Y. Fukada, Vertebrate ancient-long opsin: a green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells, J. Neurosci., 2000, 20, 2845–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Kojima, M. Torii, Y. Fukada, J. E. Dowling, Differential expression of duplicated VAL-opsin genes in developing zebrafish, J. Neurochem., 2008, 104, 1364–1371.

    Article  CAS  PubMed  Google Scholar 

  37. T. Minamoto, I. Shimizu, A novel isoform of vertebrate ancient opsin in a smelt fish Plecoglossus altivelis, Biochem. Biophys. Res. Commun., 2002, 290, 280–286.

    Article  CAS  PubMed  Google Scholar 

  38. S. Yokoyama, H. Zhang, Cloning and characterization of the pineal gland-specific opsin gene of marine lamprey (Petromyzon marinus), Gene, 1997, 202, 89–93.

    Article  CAS  PubMed  Google Scholar 

  39. A. R. Philp, J. M. Garcia-Fernandez, B. G. Soni, R. J. Lucas, J. Bellingham, R. G. Foster, Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar), J. Exp. Biol., 2000, 203, 1925–1936.

    Article  CAS  PubMed  Google Scholar 

  40. A. Jenkins, M. Munoz, E. E. Tarttelin, J. Bellingham, R. G. Foster, M. W. Hankins, VA opsin, melanopsin, and an inherent light response within retinal interneurons, Curr. Biol., 2003, 13, 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  41. N. Cheng, T. Tsunenari, K. W. Yau, Intrinsic light response of retinal horizontal cells of teleosts, Nature, 2009, 460, 899–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Forsell, P. Ekstrom, I. N. Flamarique, B. Holmqvist, Expression of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts, J. Exp. Biol., 2001, 204, 2517–2525.

    Article  CAS  PubMed  Google Scholar 

  43. P. Ekstrom, H. Meissl, Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors, Philos. Trans. R. Soc. London, Ser. B, 2003, 358, 1679–1700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Z. Melyan, E. E. Tarttelin, J. Bellingham, R. J. Lucas, M. W. Hankins, Addition of human melanopsin renders mammalian cells photoresponsive, Nature, 2005, 433, 741–745.

    Article  CAS  PubMed  Google Scholar 

  45. J. Benoit, Stimulation par la lumiere artificielle du developpement testiculaire chez des canards aveugles par section du nerf optique, C. R. Seances. Soc. Biol. Fil., 1935, 120, 133–136.

    Google Scholar 

  46. J. Benoit, Le role des yeux dans l’action stimulante de la lumiere sur le developpement testiculaire chez le canard, C. R. Seances. Soc. Biol. Fil., 1935, 118, 669–671.

    Google Scholar 

  47. T. Yoshimura, S. Yasuo, M. Watanabe, M. Iigo, T. Yamamura, K. Hirunagi, S. Ebihara, Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds, Nature, 2003, 426, 178–181.

    Article  CAS  PubMed  Google Scholar 

  48. N. Nakao, H. Ono, T. Yamamura, T. Anraku, T. Takagi, K. Higashi, S. Yasuo, Y. Katou, S. Kageyama, Y. Uno, T. Kasukawa, M. Iigo, P. J. Sharp, A. Iwasawa, Y. Suzuki, S. Sugano, T. Niimi, M. Mizutani, T. Namikawa, S. Ebihara, H. R. Ueda, T. Yoshimura, Thyrotrophin in the pars tuberalis triggers photoperiodic response, Nature, 2008, 452, 317–322.

    Article  CAS  PubMed  Google Scholar 

  49. R. G. Foster, B. K. Follett, J. N. Lythgoe, Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail, Nature, 1985, 313, 50–52.

    Article  CAS  PubMed  Google Scholar 

  50. R. G. Foster, H. G. Korf, J. J. Schalken, Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail, Cell Tissue Res., 1987, 248, 161–167.

    Article  CAS  PubMed  Google Scholar 

  51. R. M. Das, N. J. Van Hateren, G. R. Howell, E. R. Farrell, F. K. Bangs, V. C. Porteous, E. M. Manning, M. J. McGrew, K. Ohyama, M. A. Sacco, P. A. Halley, H. M. Sang, K. G. Storey, M. Placzek, C. Tickle, V. K. Nair, S. A. Wilson, A robust system for RNA interference in the chicken using a modified microRNA operon, Dev. Biol., 2006, 294, 554–563.

    Article  CAS  PubMed  Google Scholar 

  52. M. O. Woodburne, T. H. Rich, M. S. Springer, The evolution of tribospheny and the antiquity of mammalian clades, Mol. Phylogenet. Evol., 2003, 28, 360–385.

    Article  CAS  PubMed  Google Scholar 

  53. I. Provencio, I. R. Rodriguez, G. Jiang, W. P. Hayes, E. F. Moreira, M. D. Rollag, A novel human opsin in the inner retina, J. Neurosci., 2000, 20, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. I. Provencio, M. D. Rollag, A. M. Castrucci, Photoreceptive net in the mammalian retina, Nature, 2002, 415, 493.

    Article  CAS  PubMed  Google Scholar 

  55. M. Koyanagi, K. Kubokawa, H. Tsukamoto, Y. Shichida, A. Terakita, Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells, Curr. Biol., 2005, 15, 1065–1069.

    Article  CAS  PubMed  Google Scholar 

  56. B. P. Grone, Z. Sheng, C. C. Chen, R. D. Fernald, Localization and diurnal expression of melanopsin, vertebrate ancient opsin, and pituitary adenylate cyclase-activating peptide mRNA in a teleost retina, J. Biol. Rhythms, 2007, 22, 558–561.

    Article  PubMed  PubMed Central  Google Scholar 

  57. O. Drivenes, A. M. Soviknes, L. O. Ebbesson, A. Fjose, H. C. Seo, J. V. Helvik, Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain, J. Comp. Neurol., 2003, 456, 84–93.

    Article  CAS  PubMed  Google Scholar 

  58. J. Bellingham, D. Whitmore, A. R. Philp, D. J. Wells, R. G. Foster, Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position, Mol. Brain Res., 2002, 107, 128–136.

    Article  CAS  PubMed  Google Scholar 

  59. E. Frigato, D. Vallone, C. Bertolucci, N. S. Foulkes, Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles, Naturwissenschaften, 2006, 93, 379–385.

    Article  CAS  PubMed  Google Scholar 

  60. S. S. Chaurasia, M. D. Rollag, G. Jiang, W. P. Hayes, R. Haque, A. Natesan, M. Zatz, G. Tosini, C. Liu, H. W. Korf, P. M. Iuvone, I. Provencio, Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types, J. Neurochem., 2005, 92, 158–170.

    Article  CAS  PubMed  Google Scholar 

  61. J. Bellingham, S. S. Chaurasia, Z. Melyan, C. Liu, M. A. Cameron, E. E. Tarttelin, P. M. Iuvone, M. W. Hankins, G. Tosini, R. J. Lucas, Evolution of melanopsin photoreceptors: discovery and characterization of a new melanopsin in nonmammalian vertebrates, PLoS Biol., 2006, 4, e254.

    Article  PubMed  PubMed Central  Google Scholar 

  62. S. S. Pires, J. Shand, J. Bellingham, C. A. Arrese, M. Turton, S. N. Peirson, R. G. Foster, S. Halford, Isolation and characterization of melanopsin (Opn4) from the Australian marsupial Sminthopsis crassicaudata (fat-tailed dunnart), Proc. R. Soc. London, Ser. B, 2007, 274, 2791–2799.

    CAS  Google Scholar 

  63. S. S. Pires, S. Hughes, M. Turton, Z. Melyan, S. N. Peirson, L. Zheng, M. Kosmaoglou, J. Bellingham, M. E. Cheetham, R. J. Lucas, R. G. Foster, M. W. Hankins, S. Halford, Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina, J. Neurosci., 2009, 29, 12332–12342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Hattar, H. W. Liao, M. Takao, D. M. Berson, K. W. Yau, Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity, Science, 2002, 295, 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. R. Hermann, L. Poppe, S. Pilbak, C. Boden, J. Maurer, S. Weber, A. Lerchl, Predicted 3D-structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus), Neurosci. Lett., 2005, 376, 76–80.

    Article  CAS  PubMed  Google Scholar 

  66. M. Semo, M. Munoz, R. G. Foster, G. Jeffery, Melanopsin (Opn4) positive cells in the cat retina are randomly distributed across the ganglion cell layer, Visual Neurosci., 2005, 22, 111–116.

    Article  Google Scholar 

  67. R. G. Foster and L. Kreitzman, in Rhythms of Life: The biological clocks that control the daily lives of every living thing, Profile Books, London, 2004.

    Google Scholar 

  68. R. G. Foster, I. Provencio, D. Hudson, S. Fiske, W. DeGrip, M. Menaker, Circadian photoreception in the retinally degenerate mouse (rd/rd), J. Comp. Physiol., A, 1991, 169, 39–50.

    Article  CAS  Google Scholar 

  69. I. Provencio, S. Wong, A. B. Lederman, S. M. Argamaso, R. G. Foster, Visual and circadian responses to light in aged retinally degenerate mice, Vision Res., 1994, 34, 1799–1806.

    Article  CAS  PubMed  Google Scholar 

  70. C. A. Czeisler, T. L. Shanahan, E. B. Klerman, H. Martens, D. J. Brotman, J. S. Emens, T. Klein, J. F. Rizzo, 3rd, Suppression of melatonin secretion in some blind patients by exposure to bright light, N. Engl. J. Med., 1995, 332, 6–11.

    Article  CAS  PubMed  Google Scholar 

  71. R. J. Lucas, M. S. Freedman, M. Munoz, J. M. Garcia-Fernandez, R. G. Foster, Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors, Science, 1999, 284, 505–507.

    Article  CAS  PubMed  Google Scholar 

  72. S. Hattar, R. J. Lucas, N. Mrosovsky, S. Thompson, R. H. Douglas, M. W. Hankins, J. Lem, M. Biel, F. Hofmann, R. G. Foster, K. W. Yau, Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice, Nature, 2003, 424, 75–81.

    Article  CAS  Google Scholar 

  73. D. M. Dacey, H. W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K. W. Yau, P. D. Gamlin, Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN, Nature, 2005, 433, 749–754.

    Article  CAS  PubMed  Google Scholar 

  74. M. W. Hankins, R. J. Lucas, The primary visual pathway in humans is regulated according to long-term light exposure through the action of a non-classical photopigment, Curr. Biol., 2002, 12, 191–198.

    Article  CAS  PubMed  Google Scholar 

  75. R. J. Lucas, S. Hattar, M. Takao, D. M. Berson, R. G. Foster, K. W. Yau, Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice, Science, 2003, 299, 245–247.

    Article  CAS  PubMed  Google Scholar 

  76. S. Panda, T. K. Sato, A. M. Castrucci, M. D. Rollag, W. J. DeGrip, J. B. Hogenesch, I. Provencio, S. A. Kay, Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting, Science, 2002, 298, 2213–2216.

    Article  CAS  PubMed  Google Scholar 

  77. S. Panda, I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag, A. M. Castrucci, M. T. Pletcher, T. K. Sato, T. Wiltshire, M. Andahazy, S. A. Kay, R. N. Van, Gelder, J. B. Hogenesch, Melanopsin is required for non-image-forming photic responses in blind mice, Science, 2003, 301, 525–527.

    Article  CAS  PubMed  Google Scholar 

  78. N. F. Ruby, T. J. Brennan, X. Xie, V. Cao, P. Franken, H. C. Heller, H. F. O’Hara, Role of melanopsin in circadian responses to light, Science, 2002, 298, 2211–2213.

    Article  CAS  PubMed  Google Scholar 

  79. X. Qiu, T. Kumbalasiri, S. M. Carlson, K. Y. Wong, V. Krishna, I. Provencio, D. M. Berson, Induction of photosensitivity by heterologous expression of melanopsin, Nature, 2005, 433, 745–749.

    Article  CAS  PubMed  Google Scholar 

  80. M. Torii, D. Kojima, T. Okano, A. Nakamura, A. Terakita, Y. Shichida, A. Wada, Y. Fukada, Two isoforms of chicken melanopsins show blue light sensitivity, FEBS Lett., 2007, 581, 5327–5331.

    Article  CAS  PubMed  Google Scholar 

  81. S. Panda, S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch, T. Jegla, Illumination of the melanopsin signaling pathway, Science, 2005, 307, 600–604.

    Article  CAS  PubMed  Google Scholar 

  82. A. Terakita, H. Tsukamoto, M. Koyanagi, M. Sugahara, T. Yamashita, Y. Shichida, Expression and comparative characterization of Gq-coupled invertebrate visual pigments and melanopsin, J. Neurochem., 2008, 105, 883–890.

    Article  CAS  PubMed  Google Scholar 

  83. S. Sekaran, G. S. Lall, K. l. Ralphs, A. J. Wolstenholme, R. J. Lucas, R. G. Foster, M. W. Hankins, 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo, J. Neurosci., 2007, 27, 3981–3986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. N. Peirson, H. Oster, S. L. Jones, M. Leitges, M. W. Hankins, R. G. Foster, Microarray analysis and functional genomics identify novel components of melanopsin signaling, Curr. Biol., 2007, 17, 1363–1372.

    Article  CAS  PubMed  Google Scholar 

  85. I. Provencio, R. G. Foster, Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics, Brain Res., 1995, 694, 183–190.

    Article  CAS  PubMed  Google Scholar 

  86. Z. K. David-Gray, J. W. Janssen, W. J. DeGrip, E. Nevo, R. G. Foster, Light detection in a ‘blind’ mammal, Nat. Neurosci., 1998, 1, 655–656.

    Article  CAS  PubMed  Google Scholar 

  87. P. M. Smallwood, B. P. Olveczky, G. L. Williams, G. H. Jacobs, B. E. Reese, M. Meister, J. Nathans, Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 11706–11711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. G. S. Lall, V. L. Revell, H. Momiji, J. A. Enezi, C. M. Altimus, A. D. Guler, C. Aguilar, M. A. Cameron, S. Allender, M. W. Hankins, R. J. Lucas, Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance, Neuron, 2010, 66, 417–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. S. Sekaran, D. Lupi, S. L. Jones, C. J. Sheely, S. Hattar, K. W. Yau, R. J. Lucas, R. G. Foster, M. W. Hankins, Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina, Curr. Biol., 2005, 15, 1099–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J. Nathans, D. S. Hogness, Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin, Cell, 1983, 34, 807–814.

    Article  CAS  PubMed  Google Scholar 

  91. I. M. Pepe, Rhodopsin and phototransduction, J. Photochem. Photobiol., B, 1999, 48, 1–10.

    Article  CAS  Google Scholar 

  92. S. S. Karnik, T. P. Sakmar, H. B. Chen, H. G. Khorana, Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 8459–8463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. R. R. Franke, T. P. Sakmar, R. M. Graham, H. G. Khorana, Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin, J. Biol. Chem., 1992, 267, 14767–14774.

    Article  CAS  PubMed  Google Scholar 

  94. P. A. Hargrave, The amino-terminal tryptic peptide of bovine rhodopsin. A glycoprotein containing two sites of oligosaccharide attachment, Biochim. Biophys. Acta, Protein Struct., 1977, 492, 83–94.

    Article  CAS  Google Scholar 

  95. Y. A. Ovchinnikov, N. G. Abdulaev, A. S. Bogachuk, Two adjacent cysteine residues in the C-terminal fragment of bovine rhodopsin are palmitoylated, FEBS Lett., 1988, 230, 1–5.

    Article  CAS  PubMed  Google Scholar 

  96. O. Fritze, S. Filipek, V. Kuksa, K. Palczewski, K. P. Hofmann, O. P. Ernst, Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 2290–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. L. Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

  98. A. Terakita, M. Koyanagi, H. Tsukamoto, T. Yamashita, T. Miyata, Y. Shichida, Counterion displacement in the molecular evolution of the rhodopsin family, Nat. Struct. Mol. Biol., 2004, 11, 284–289.

    Article  CAS  PubMed  Google Scholar 

  99. Z. Wang, A. B. Asenjo, D. D. Oprian, Identification of the Cl(−)-binding site in the human red and green color vision pigments, Biochemistry, 1993, 32, 2125–2130.

    Article  CAS  PubMed  Google Scholar 

  100. S. Yokoyama, H. Yang, W. T. Starmer, Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates, Genetics, 2008, 179, 2037–2043.

    Article  PubMed  PubMed Central  Google Scholar 

  101. H. Sun, J. P. Macke, J. Nathans, Mechanisms of spectral tuning in the mouse green cone pigment, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 8860–8865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. D. Arendt, H. Hausen, G. Purschke, The ‘division of labour’ model of eye evolution, Philos. Trans. R. Soc. London, Ser. B, 2009, 364, 2809–2817.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Z. Kozmik, J. Ruzickova, K. Jonasova, Y. Matsumoto, P. Vopalensky, I. Kozmikova, H. Strnad, S. Kawamura, J. Piatigorsky, V. Paces, C. Vlcek, Assembly of the cnidarian camera-type eye from vertebrate-like components, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 8989–8993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. M. Koyanagi, K. Takano, H. Tsukamoto, K. Ohtsu, F. Tokunaga, A. Terakita, Jellyfish vision starts with cAMP signalling mediated by opsin-Gs cascade, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 15576–15580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. S. R. Das, N. Bhardwaj, H. Kjeldbye, P. Gouras, Muller cells of chicken retina synthesize 11-cis-retinol, Biochem. J., 1992, 285, 907–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. B. X. Wu, G. Moiseyev, Y. Chen, B. Rohrer, R. K. Crouch, J. X. Ma, Identification of RDH10, an All-trans Retinol Dehydrogenase, in Retinal Muller Cells, Invest. Ophthalmol. Visual Sci., 2004, 45, 3857–3862.

    Article  Google Scholar 

  107. R. G. Foster, J. J. Schalken, A. M. Timmers, W. J. DeGrip, A comparison of some photoreceptor characteristics in the pineal and retina: I. The, Japanese quail (Coturnix coturnix), J. Comp. Physiol., A, 1989, 165, 553–563.

    Article  Google Scholar 

  108. T. G. Kusakabe, N. Takimoto, M. Jin, M. Tsuda, Evolution and the origin of the visual retinoid cycle in vertebrates, Philos. Trans. R. Soc. London, Ser. B, 2009, 364, 2897–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. E. A. Griffin Jr, D. Staknis, C. J. Weitz, Light-independent role of CRY1 and CRY2 in the mammalian circadian clock, Science, 1999, 286, 768–771.

    Article  CAS  PubMed  Google Scholar 

  110. E. van der Schalie, C. B. Green, Cryptochromes, Curr. Biol., 2005, 15, R785.

    Article  PubMed  CAS  Google Scholar 

  111. D. G. Higgins, J. D. Thompson, T. J. Gibson, Using CLUSTAL for multiple sequence alignments, Methods Enzymol., 1996, 266, 383–402.

    Article  CAS  PubMed  Google Scholar 

  112. M. Nei and S. Kumar, in Molecular Evolution and Phylogenetics, Oxford University Press, Oxford, UK, 2000.

    Google Scholar 

  113. K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is published as part of a themed issue on photosensitive visual pigments: opsins and retinoids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, W.L., Hankins, M.W. & Foster, R.G. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 9, 1444–1457 (2010). https://doi.org/10.1039/c0pp00203h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00203h

Navigation