Skip to main content
Log in

Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zincinsertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Φf, and singlet oxygen quantum yield ΦΔ), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Φf≤ 0.02; ΦΔ∼ 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zincinsertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic Therapy, J. Natl. Cancer Inst., 1998, 90, 899–905.

    Article  Google Scholar 

  2. P. G. Calzavara-Pinton, M. Venturini and R. Sala, Photodynamic therapy: update 2006 - Part 1: Photochemistry and photobiology, J. Eur. Acad. Dermatol., 2007, 21 3, 293–302.

    Article  CAS  Google Scholar 

  3. R. Bonnett, B. D. Djelal and A. Nguyen, Physical and chemical studies related to the development of m-THPC (FOSCAN ®) for the photodynamic therapy (PDT) of tumours, J. Porphyrins Phtalocyanines, 2001, 5 8, 652–661.

    Article  CAS  Google Scholar 

  4. R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. H. Childs and C. H. Sibata, Photosensitizers in Clinical PDT, Photodiagn. Photodyn. Ther., 2004, 1, 27–42.

    Article  CAS  Google Scholar 

  5. F. C. B. Vena, R. F. Turchiello, I. Laville, S. Pigaglio, J. Blais and A. C. Tedesco, 5-Aminolevulinic acid ester-induced protoporphyrin IX in a murine melanoma cell line, Laser Med. Sci., 2004, 19, 119–126.

    Article  Google Scholar 

  6. A. M. G. Silva;, K. T. de Oliveira, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, A. M. S. Silva, J. A. S. Cavaleiro, P. Brandão and V. Felix, Chemical Transformations of Mono- and Bis(buta-1,3-dien-1-yl)porphyrins: A New Synthetic Approach to Mono- and Dibenzoporphyrins, Eur. J. Org. Chem., 2008, 4, 704–712.

    Article  CAS  Google Scholar 

  7. A. P. J. Maestrin, A. O. Ribeiro, A. C. Tedesco, C. R. Neri, F. S. Vinhado, O. A. Serra, P. R. Martins, Y. Iamamoto, A. M. G. Silva, A. C. Tomé, M. G. P. M. S. Neves and J. A. S. Cavaleiro, A Novel Chlorin Derivative of Meso-tris(pentafluorophenyl)-4-pyridylporphyrin: Synthesis, Photophysics and Photochemical Properties, J. Brazil Chem. Soc., 2004, 15 6, 923–930.

    Article  CAS  Google Scholar 

  8. A. O. Ribeiro, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Y. Iamamoto and T. Torres, [1,2,3,4-tetrakis(alpha/beta-d-galactopyranos-6-yl)-phthalocyaninato]zinc(ii): a water-soluble phthalocyanine, Tetrahedron Lett., 2006, 47 52, 9177–9180.

    Article  CAS  Google Scholar 

  9. D. Gabrielli, E. Belisle, D. Severino, A. J. Kowaltowski and M. S. Baptista, Binding, Aggregation and Photochemical Properties of Methylene Blue in Mitochondrial Suspensions, Photochem. Photobiol., 2004, 79 3, 227–232.

    Article  CAS  PubMed  Google Scholar 

  10. D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli and M. S. Baptista, Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue, Photochem. Photobiol., 2003, 77 5, 459–468.

    Article  CAS  PubMed  Google Scholar 

  11. P. H. Hynninen and E. S. Nyman, Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy, J. Photochem. Photobiol. B, 2004, 73, 1–28.

    Article  PubMed  CAS  Google Scholar 

  12. I. E. Kochevar, M. C. Lynch, S. Zhuang and C. R. Lambert, Singlet Oxygen, but not Oxidizing Radicals, Induces Apoptosis in HL-60 Cells, Photochem. Photobiol., 2000, 72 4, 548–553.

    Article  CAS  PubMed  Google Scholar 

  13. D. Kessel, Y. Luo, Y. Deng and C. K. Chang, The role of subcellular localization in initiation of apoptosis by photodynamic therapy, Photochem. Photobiol., 1997, 65, 422–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. W. Zimmermann and T. H. Cernay, Selective photosensitization of mitochondria by the lipophilic cationic porphyrin POR10, J. Photoch. Photobiol. B, 1996, 34, 191–196.

    Article  Google Scholar 

  15. C. P. Lin, M. C. Lynch and I. E. Kochevar, Reactive oxidizing species produced near the plasma membrane induce apoptosis in bovine aorta endothelial cells, Exp. Cell Res., 2000, 259, 351–359.

    Article  CAS  PubMed  Google Scholar 

  16. F. Ricchelli, L. Franchi, G. Miotto, L. Borsetto, S. Gobbo, P. Nikolov, J. C. Bommer and E. Reddi, Meso-substituted tetra-cationic porphyrins photosensitize the death of human fibrosarcoma cells via lysossomal targeting, Int. J. Biochem. Cell B, 2005, 37 2, 306–319.

    Article  CAS  Google Scholar 

  17. I. Bronshtein, S. Aulova, A. Juzeniene, V. Iani, L. W. Ma, K. M. Smith, Z. Malik, J. Moan and B. Ehrenberg, In vitro and in vivo photosensitization by protoporphyrins possessing different lipophilicities and vertical localization in the membrane, Photochem. Photobiol., 2006, 82, 1319–1325.

    Article  CAS  Google Scholar 

  18. F. M. Engelmann, I. Mayer, D. S. Gabrielli, H. E. Toma, A. J. Kowaltowski, K. Araki and M. S. Baptista, Interaction of cationic meso-porphyrins with liposomes, mitochondria and erythrocytes, J. Bioenerg. Biomembr., 2007, 39, 175–185.

    Article  CAS  PubMed  Google Scholar 

  19. D. M. Nguyen and M. Hussain, The role of the mitochondria in mediating cytotoxicity of anti-cancer therapies, J. Bioenerg. Biomembr., 2007, 39, 13–21.

    Article  CAS  PubMed  Google Scholar 

  20. J. P. Tardivo, A. Del Giglio, C. S. Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. Turchiello and M. S. Baptista, Methylene Blue in Photodynamic Therapy: From Basic Mechanisms to Clinical Applications, Photodyag. Photodyn. Ther., 2005, 2/3, 175–191.

    Article  CAS  Google Scholar 

  21. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: What, where, why and how., Photochem. Photobio. Sci., 2002, 1, 1–21.

    Article  CAS  Google Scholar 

  22. G. Jori and C. Fabris, Relative apoptosis and random necrosis in tumor response to photodynamic therapy: effect of the chemical structure of Zn-phthalocyanines, J. Photoch. Photobiol B, 2000, 43, 181–185.

    Article  Google Scholar 

  23. D. Kessel and Y. Luo, Intracellular sites of photodamage as a factor in apoptotic cell death, J. Porphyr. Phtalocya., 2001, 5 2, 181–184.

    Article  CAS  Google Scholar 

  24. J. J. Reiners Jr, J. A. Caruso, P. Mathieu, B. Chelladurai, X.-M. Yin and D. Kessel, Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage, Cell Death Diff., 2002, 9, 934–944.

    Article  CAS  Google Scholar 

  25. T. Elangovan and V. Krishnan, Photophysical properties of porphyrin amphiphiles bearing pyridinium groups, Chem. Phys. Lett., 1992, 194 1,2, 139–146.

    Article  CAS  Google Scholar 

  26. X. He, Y. Zhou, L. Wang, T. Li, M. Zhang and T. Shen, Photophysical properties of amphiphilic porphyrins in different media, Dyes Pigments, 1998, 173–182.

    Google Scholar 

  27. X. He, G. Xia, Y. Zhou, M. Zhang and T. Shen, Comparative study of photophysical properties of isomeric tetrapyridyl- and tetra-(N-hexadecylpyridinium) porphyrins, Spectrochim. Acta A, 1999, 55, 873–880.

    Article  Google Scholar 

  28. D. A. Al-Mutairi, J. D. Craik, I. Batinic-Haberle and L. T. Benov, Photosensitizing action of isomeric zinc N-methylpyridylporphyrins in human carcinoma cells, Free Radical Res., 2006, 40 5, 477–483.

    Article  CAS  Google Scholar 

  29. A. A. Pashkovskaya, E. A. Sokolenko, V. S. Sokolov, E. A. Kotova and Y. N. Antonenko, Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: Contribuition of metal-phosphate coordination, Biochim. Biophys. Acta, 2007, 1768, 2459–2465.

    Article  CAS  PubMed  Google Scholar 

  30. M. Gouterman, Spectra of porphyrins, J. Mol. Spectrosc., 1961, 6, 138–163.

    Article  CAS  Google Scholar 

  31. M. Gouterman, G. H. Wagnière and L. C. Snyder, Spectra of porphyrins: Part II. Four, orbital model, J. Mol. Spectrosc., 1963, 108–127.

    Google Scholar 

  32. M. Neumann-Spallart and K. Kalyanasundaram, Photophysical and redox properties of water soluble porphyrins in aqueous media, J. Phys. Chem. US, 1982, 86 26, 5163–5169.

    Article  Google Scholar 

  33. D. J. Quimby and F. R. Longo, Luminescence Studies on several tetraarylporphins and their zinc derivatives, J. Am. Chem. Soc, 1975, 97 18, 5111.

    Article  CAS  Google Scholar 

  34. E. N. Durantini, V. Rivarola, J. J. Silber, C. D. Borsarelli, E. Y. Yslas, M. G. Alvarez and M. E. Milanesio, Photodynamic studies of metallo 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin: Photochemical characterization and biological consequences in a human carcinoma cell line, Photochem Photobiol., 2001, 74 1, 14–21.

    Article  PubMed  Google Scholar 

  35. J. Mosinger and P. Kubat, Photophysical properties of metal complexes of meso-tetrakis(4-sulfonatophenyl)porphyrin, J. Photoch. Photobiol. A., 1996, 96, 93–97.

    Article  Google Scholar 

  36. E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini and U. Mazzucato, Photophysical Properties and Antibacterial Activity of Meso-substituted Cationic Porphyrins, Photochem. Photobiol., 2002, 75 5, 462–470.

    Article  CAS  PubMed  Google Scholar 

  37. D. G. Nichols and S. J. Ferguson, in Bioenergetics 2, Academic Press, London, 1992, ch.1, pp 4–20.

    Google Scholar 

  38. S. Hirohara, M. Obata, S.-I. Ogura, I. Okura, S. Higashida, C. Ohtsuki, S.-I. Ogata, Y. Nishikawa, M. Takenaka, H. Ono, Y. Mikata and S. Yano, Hydrophobicity parameters (Log P) of glycoconjugated porphyrins for photodynamic therapy evaluated by reversed phase HPLC, J. Porphyr. Phtalocya., 2004, 1289–1292.

    Google Scholar 

  39. A. Lau, A. McLaughlin and S. Mclaughlin, The adsorption of divalent cations to phosphatidylglycerol bilayer membranes, Biochim. Biophys. Acta, 1981, 645, 279–292.

    Article  CAS  PubMed  Google Scholar 

  40. H. Binder, K. Arnold, A. S. Ulrich, O. Zschörnig, Interaction of Zn2+ with phopholipids membranes, Biophys. Chem., 2001, 90, 57–74.

    Article  CAS  PubMed  Google Scholar 

  41. E. Panzarini, B. Tenuzzo, F. Palazzo, A. Chionna and L. Dini, Apoptosis induction and mitochondria alteration in human HeLa tumor cells by photoproducts of Rose Bengal acetate, J. Photochem. Photobiol. B, 2006, 83, 39–47.

    Article  CAS  PubMed  Google Scholar 

  42. W. Caetano, P. S. Haddad, R. Itri, D. Severino, V. C. C. Vieira, M. S. Baptista, A. P. Schröder and C. M. Marques, Photo-Induced Destruction of Giant Vesicles in Methylene Blue Solutions, Langmuir, 2007, 23, 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  43. B. Meunier, C. J. Lacey, C. Loup, B. Saint-Jalmes and C. Casas, Synthesis of cationic metalloporphyrins precursors related to the design of DNA cleavers, J. Org. Chem., 1993, 2913–2917.

    Google Scholar 

  44. M. Calvin, W. E. Ford and Y. Okuno, An improved synthesis of surfactant porphyrins, Synthesis-Stuttgart, 1980, 7, 537.

    Google Scholar 

  45. D. W. Dixon, G. Pu and H. Wojtowicz, Capillary electrophoretic separation of cationic porphyrins, J. Chromatography A, 1998, 802, 367–380.

    Article  CAS  Google Scholar 

  46. K. Kano, M. Takei and S. Hashimoto, Cationic Porphyrins in Water. 1H NMR and Fluorescence Studies on Dimer and Molecular Complex Formation, J. Phys. Chem., 1990, 94, 2181–2187.

    Article  CAS  Google Scholar 

  47. C. Pavani, L. A. B. de Moraes, M. N. Eberlin and Y. Iamamoto, Proceedings of the 28th Annual Meeting of the Brazilian Chemical Society, Poços de Caldas, 2005.

    Google Scholar 

  48. D. F. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem., 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  49. K. Araki, F. M. Engelmann, I. Mayer, H. E. Toma, M. S. Baptista, M. Hiromitsu, A. Osuka and H. Furuta, Doubly N-Confused Porphyrins as Efficient Sensitizers for Singlet Oxygen Generation, Chem. Lett., 2003, 32, 244–245.

    Article  CAS  Google Scholar 

  50. F. M. Engelmann, S. V. O. Rocha, H. E. Toma, K. Araki and M. S. Baptista, Determination of n-octanol/water partition and membrane binding of cationic porphyrins, Int. J. Pharm., 2007, 329, 12–18.

    Article  CAS  PubMed  Google Scholar 

  51. L. E. S. Netto, A. J. Kowaltowski, R. F. Castilho and A. E. Vercesi, Thiol enzymes protecting mitochondria against oxidative damage, Method. Enzymol., 2002, 348, 260–270.

    Article  CAS  Google Scholar 

  52. T. Mosman, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol Methods, 1983, 65, 55–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassuko Iamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavani, C., Uchoa, A.F., Oliveira, C.S. et al. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobiol Sci 8, 233–240 (2009). https://doi.org/10.1039/b810313e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b810313e

Navigation