Skip to main content

Advertisement

Log in

Laser-assisted fluorescence microscopy for measuring cell membrane dynamics

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Membranes of living cells are characterized by laser-assisted fluorescence microscopy, in particular a combination of microspectrofluorometry, total internal reflection fluorescence microscopy (TIRFM), fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) spectroscopy. The generalized polarization (GP, characterizing a spectral shift which depends on the phase of membrane lipids) as well as the effective fluorescence lifetime (teff) of the membrane marker laurdan were revealed to be appropriate parameters for membrane stiffness and fluidity. GP decreased with temperature, but increased during cell growth and was always higher for the plasma membrane than for intracellular membranes. Microdomains of different fluorescence lifetimes teff were observed at temperatures above 30 °C and disappeared during cell aging. Non-radiative energy transfer was used to detect laurdan selectively in close proximity to a molecular acceptor (DiI) and may present a possibility for measuring membrane dynamics in specific microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York-London, 1999

    Book  Google Scholar 

  2. H. Schneckenburger, R. Steiner, W. S. L. Strauss, K. Stock and R. Sailer, Fluorescence technologies in biomedical diagnostics, in Handbook of Optical Biomedical Diagnostics, ed. V. V. Tuchin, SPIE, Bellingham, WA, 2002, pp. 825-874

    Google Scholar 

  3. T. Galeotti, G. D. V. van Rossum, D. H. Mayer and B., Chance, On the fluorescence of NAD(P)H in whole cell preparations of tumours and normal tissues Eur. J. Biochem. 1970 17 485–496

    Article  CAS  Google Scholar 

  4. J.-M. Salmon, E. Kohen, P. Viallet, J. G. Hirschberg, A. W. Wouters, C. Kohen and B., Thorell, Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types Photochem. Photobiol. 1982 36 585–593

    Article  CAS  Google Scholar 

  5. H. Schneckenburger, P. Gessler and I. Pavenstädt-Grupp Measurements of mitochondrial deficiencies in living cells by microspectrofluorometry J. Histochem. Cytochem. 1992 40 1573–1578

    Article  CAS  Google Scholar 

  6. I., Johnson, Fluorescent probes for living cells Histochem. J. 1988 30 123–140

    Article  Google Scholar 

  7. J. M., Mullins, Overview of fluorochromes Methods Mol. Biol. 1999 115 97–105

    CAS  Google Scholar 

  8. R. Rizzuto, M. Brini, P. Pizzo, M. Murgia and T., Pozzan, Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells Curr. Biol. 1995 5 635–642

    Article  CAS  Google Scholar 

  9. M. Ikawa, S. Yamada, T. Nakanishi and M., Okabe, Green fluorescent protein (GFP) as a vital marker in mammals Curr. Top. Dev. Biol. 1999 44 1–20

    CAS  Google Scholar 

  10. J. Pawley, Handbook of Biological Confocal Microscopy, Plenum Press, New York-London, 1990

    Book  Google Scholar 

  11. W. Denk, J. H. Strickler and W. W., Webb, Two-photon laser scanning microscope Science 1990 248 73–76

    Article  CAS  PubMed  Google Scholar 

  12. K. König Multiphoton microscopy in life sciences J. Microsc. 2000 200 83–86

    Article  Google Scholar 

  13. T. Parasassi, G. de Stasio, A. d’Ubaldo and E., Gratton, Phase fluctuation in phosopholipid membranes revealed by laurdan fluorescence Biophys. J. 1990 57 1179–1181

    Article  CAS  PubMed  Google Scholar 

  14. T. Parasassi, E. K. Krasnowska, L. Bagatolli and E., Gratton, Laurdan and prodan as polarity-sensitive fluorescent membrane probes J. Fluoresc. 1998 4 365–373

    Article  Google Scholar 

  15. L. A. Bagatolli, T. Parasassi, G. D. Fidelio and E., Gratton, A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino) naphthalene with lipid environments: implications for spectral properties Photochem. Photobiol. 1999 70 557–564

    Article  CAS  Google Scholar 

  16. S. E. Sund, J. A. Swanson and D., Axelrod, Cell membrane orientation visualized by polarized total internal reflection fluorescence Biophys. J. 1999 77 2266–2283

    Article  CAS  PubMed  Google Scholar 

  17. K. Stock, R. Sailer, W. S. L. Strauss, M. Lyttek, R. Steiner and H., Schneckenburger, Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device J. Microsc. 2003 211 19–29

    Article  CAS  Google Scholar 

  18. H. Schneckenburger, M. H. Gschwend, R. Sailer, H.-P. Mock and W. S. L., Strauss, Time-gated fluorescence microscopy in molecular and cellular biology Cell. Mol. Biol. 1998 44 795–805

    CAS  Google Scholar 

  19. D., Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence J. Cell Biol. 1981 89 141–145

    Article  CAS  Google Scholar 

  20. E. P. Buurman, R. Sanders, A. Draijer, H. C. Gerritsen, J. J. F. van Veen, P. M. Houpt and Y. K., Levine, Fluorescence lifetime imaging using a confocal laser scanning microscope Scanning 1992 14 155–159

    Article  Google Scholar 

  21. T. Förster Zwischenmolekularer übergang von Elektronenanregungsenergie Z. Elektrochem. 1960 64 157–164

    Google Scholar 

  22. H. Port, H. Schneckenburger and H. C., Wolf, Host-guest energy transfer via dipole-dipole interaction in doped fluorene crystals Z. Naturforsch. 1981 36a 697–704

    Article  CAS  Google Scholar 

  23. T. Parasassi, G. de Stasio, G. Ravagnan, R. M. Rusch and E., Gratton, Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of laurdan fluorescence Biophys. J. 1991 60 179–189

    Article  CAS  PubMed  Google Scholar 

  24. H. Schneckenburger, K. Stock, W. S. L. Strauss, J. Eickholz and R., Sailer, Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan J. Microsc. 2003 211 30–36

    Article  CAS  Google Scholar 

  25. T. Parasassi, M. diStefano, M. Loiero, G. Ravagnan and E., Gratton, Influence of cholesterol on phospholipid bilayers phase domains as detected by laurdan fluorescence Biophys. J. 1994 66 120–132

    Article  CAS  PubMed  Google Scholar 

  26. W. Yu, P. T. C. So, T. French and E., Gratton, Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach Biophys. J. 1996 70 626–636

    Article  CAS  PubMed  Google Scholar 

  27. S. Bicknese, N. Periasamy, S. B. Shohet and A. S., Verkman, Cytoplasmic viscosity near the cell plasma membrane: measurements by frequency domain microfluorimetry Biophys. J. 1993 65 1272–1283

    Article  CAS  PubMed  Google Scholar 

  28. H. Schneckenburger, K. Stock, M. Lyttek, W. S. L. Strauss and R., Sailer, Fluorescence lifetime imaging (FLIM) of rhodamine 123 in living cells Photochem. Photobiol. Sci. 2004 3 127–131

    Article  CAS  Google Scholar 

  29. T. P. Burghardt and D., Axelrod, Total internal reflection study of energy transfer in surface-absorbed and dissolved bovine serum albumin Biochemistry 1983 22 979–985

    Article  CAS  Google Scholar 

  30. A. S., Curtis, Cell reactions with biomaterials: the microscopies Eur. Cell Mater. 2001 1 59–65

    Article  CAS  Google Scholar 

  31. M. A. A. Neil, R. Juskaitis and T., Wilson, Method of obtaining optical sectioning by structured light in a conventional microscope Opt. Lett. 1997 22 1905–1907

    Article  CAS  Google Scholar 

  32. H. Schneckenburger, Optical Microscopy, in Lasers and Current Optical Techniques in Biology, ed. G. Palumbo and R. Pratesi, Comprehensive Series in Photosciences, Royal Society of Chemistry, Cambridge, 2004, vol. 5, pp. 331–355

    Google Scholar 

  33. R. Heintzmann, T. M. Jovin and C., Cremer, Saturated patterned excitation microscopy - a concept for optical resolution improvement J. Opt. Soc. Am. A 2002 19 1599–1609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneckenburger, H., Wagner, M., Kretzschmar, M. et al. Laser-assisted fluorescence microscopy for measuring cell membrane dynamics. Photochem Photobiol Sci 3, 817–822 (2004). https://doi.org/10.1039/b317047k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b317047k

Navigation