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α-MSH and melanocortin receptors 
at early ontogeny in European sea 
bass (Dicentrarchus labrax, L.)
A. Tsalafouta1,2, M. Gorissen3, T. N. M. Pelgrim3, N. Papandroulakis1, G. Flik3 & M. Pavlidis2

Temporal patterns of whole-body α-MSH concentrations and of transcripts of melanocortin receptors 
during early development as well as the endocrine response (α-MSH, cortisol, MCR mRNAs) to stress at 
the end of the larval period were characterized in Dicentrarchus labrax. Immunohistochemistry showed 
α-MSH positive cells in the pituitary pars intermedia in all stages examined. As development proceeds, 
α-MSH content gradually increases; mRNA levels of mc2r and mc4r remain low until first feeding where 
peak values are observed. Mc1r expression was constant during development, pomc mRNA levels 
remain low until the stage of flexion after which a significant increase is observed. At the stage of the 
formation of all fins, whole-body cortisol and α-MSH concentrations responded with peak values at 
2 h post stress. Additionally, the stress challenge resulted in elevated transcript levels of pomc, mc2r 
and mc4r but not in mc1r, with a pattern characterized by peak values at 1 h post stress and a strong 
correlation with whole body α-MSH concentrations was found. Our data provide for the first time a 
view on the importance of the α-MSH stress response in early development of European sea bass, an 
additional and relatively poorly understood signal involved in the stress response in teleosts.

In fish, stress leads to the activation of the hypothalamic-pituitary-interrenal (HPI) axis, and stimulates 
the pituitary corticotropes in the pars distalis and the melanotropes in the pars intermedia to synthesize and 
secrete pro-opiomelanocortin (POMC)-derived peptides involved in the mediation and regulation of the stress 
response1,2. The pituitary gland is the major site of pomc expression. The gene is translated into a precursor 
protein, from which, among others, in the pars distalis adrenocorticotropic hormone (ACTH) and in the pars 
intermedia alpha-melanocyte stimulating hormone (α​-MSH) are derived3. In European sea bass (Dicentrarchus 
labrax, L.) a single form of a functional pomc gene has been cloned and characterized4. Melanocortins exert their 
physiological role by binding to a family of specific G protein-coupled receptors (GPCRs) that positively couple 
to adenylyl cyclase. Tetrapod species have five melanocortin receptors (MC1R-MC5R), although in teleost fish 
the number of receptors differs5,6. The MC2R is specifically activated by ACTH, while the other MCRs can be 
activated by α​-MSH as well as ACTH7.

During HPI axis activation, ACTH secreted by the corticotropes is a key regulator of the acute stress response 
as it stimulates the interrenal cells via MC2R and results in the synthesis and secretion of cortisol which targets 
a plethora of tissues, if not all cells in an organism1,7,8. Relatively few studies have focused on the function and 
characterization of MC2R in fish9–13 and a recent study conducted in European sea bass demonstrated a negative 
feedback by cortisol on MC2R expression in a chronic stress paradigm14.

There are 4 MCRs which convey MSH signals: MC1R, MC3R, MC4R and MC5R. Interaction of α​-MSH 
and the MC1R plays a key role in the control of the pigmentation. For instance, mutations in the MC1R are 
responsible for reduced melanization. MC3R and MC4R are considered ‘brain receptors’; the expression of the 
MC4R is thought to play a role in the regulation of the energy balance in fish through the modulation of feeding 
behavior15–17. MC5Rs are found mainly in exocrine tissues; we do not further address this receptor in this study.

Alpha-MSH is (at least in the few species studied so far) also involved in the stress response of fish1. In gilt-
head sea bream (Sparus aurata) and in rainbow trout (Oncorhynchus mykiss) air exposure, a severe stress for 
fish, induces an increased α​-MSH levels18,19. Moreover, other studies on salmonids have shown that ACTH and 
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α​-MSH cells are differentially activated during stress: HPI axis activation by handling and confinement led to 
elevated plasma concentrations of ACTH only, but when these stressors were combined with a thermal shock 
α​-MSH was also increased20. Similarly, the latter is supported by studies on tilapia (Oreochromis mossambicus): 
prolonged netting stress had no effect on ACTH concentrations, but plasma cortisol levels did increase suggest-
ing activity of another corticotrope; when netting was combined with confinement both cortisol and ACTH 
increased21, and this suggests that the confinement was a second acute stressor activating the ACTH pathway. 
More studies have shown that MSH is a corticotrope in Mozabique tilapia22, in barfin flounder23 and in rainbow 
trout24, but not in carp (Cyprinus carpio)10. Taken together, these results do suggest a functional role for α​-MSH 
during stress, but whether α​-MSH is a corticotrope remains unclear. The search for MCRs other than the MC2R 
in interrenal tissue is indicated.

In teleosts, cortisol acts as glucocorticoid and mineralocorticoid (fish lack aldosterone synthase) and is the 
most commonly used hormonal indicator of stress1,25. The hormone binding domain in fish glucocorticoid and 
mineralocorticoid receptors is very similar and binds cortisol, whereas the DNA binding domains define the 
eventual functionality of the receptors.

Recently, the cortisol response and its molecular regulation during early ontogeny have been studied in 
European sea bass26,27. So far to the best of our knowledge no data in fish physiology exists about the ontogenetic 
pattern of α​-MSH levels, the effects of a stressor on its levels during early ontogeny or the molecular mechanisms 
involved. To this end, we examined α​-MSH temporal patterns and the expression profiles of pomc, mc1r, mc2r 
and mc4r genes in European sea bass during defined stages of early development; also we analyzed the response 
to an acute stressor prior to and after earlier exposure to stress at the end of the larval period.

Results
Temporal patterns of α-MSH content and gene expression at early ontogeny.  European sea 
bass embryos had low basal α​-MSH content (44.5 ±​ 13.5 pg g−1) that subsequently increased at first feeding 
(172 ±​ 93.5 pg g−1), but these differences were not statistically significant. A significant increase was observed at 
flexion (307 ±​ 101 pg g−1) and remained at statistically significant high values onwards to the formation of all fins 
(408.8 ±​ 41.1 pg g−1), [Fig. 1a; (F5,12 =​ 17.22; P <​ 0.001)]. All genes of interest are expressed in all developmental 
stages examined (Fig. 1). Transcripts of pomc (Fig. 1b) showed a decrease in mRNA abundance from embryos 
till first feeding and a statistically significant 2,6-fold increase at the stage of flexion and remained high during 
‘all fins’ (F5,30 =​ 41.13; P <​ 0.001). Expression levels of mc1r (Fig. 1c) showed no statistically significant differ-
ences between the developmental stages examined. Expression of mc2r (Fig. 1d) showed low levels from embryos 
till mouth opening and at the stage of first feeding there was a 4,1-fold upregulation that gradually dropped at 
flexion and ‘all fins’ (F5,30 =​ 47.88; P <​ 0.001). Expression levels of mc4r (Fig. 1e) remained low from the embryo 
stage until mouth opening; a statistically significant 1,8-fold increase was seen at the stage of first feeding and it 
remained at the same levels till the formation of all the fins (F5,30 =​ 18.28; P <​ 0.001).

α-MSH localization.  Alpha-MSH positive cells in the pituitary pars intermedia (indicated by arrows in 
Fig. 2) were observed in all stages examined (mouth open, first feeding, flexion and all fins: Fig. 2A–D respec-
tively). Omission of the primary antibody resulted in loss of all staining, which illustrates that our results show 
specific α​-MSH staining. Besides α​-MSH positive cells in the pituitary gland, a low intensity (background) stain-
ing was observed in chondrocytes. No other positive α​-MSH cells were observed (data not shown).

α-MSH and cortisol concentrations and mRNA expression levels of pomc, mc1r, mc2r and 
mc4r following the acute stress application.  Figures 3 shows the α​-MSH and cortisol response and 
the expression profile of the pomc, mc1r, mc2r and mc4r genes prior to (0 h) and after (0.5 h, 1 h, 2 h and 24 h) the 
application of a stressor at the stage of the formation of all fins. A statistically significant effect of the stressor on 
α​-MSH concentrations was observed (Fig. 3a) with a pattern characterized by a gradual increase to a maximum at 
2 h (855.7 ±​ 84.7 pg g−1) followed by a minimum (190.6 ±​ 31.9 pg g−1) at 24 h post stress (F4,10 =​ 19.07; P <​ 0.001). 
Whole-body cortisol content (Fig. 3b) was 4.58 ±​ 0.7 ng g−1 at 0 h, to increase to 20.75 ±​ 0.9 ng g−1 at 0.5 h, reach 
a maximum at 2 h (39.93 ±​ 1.6 ng g−1) after stress, and then returned to basal values at 24 h (10.11 ±​ 4.3 ng g−1) 
(F4,10 =​ 62.14; P <​ 0.001).

Transcripts levels of pomc (Fig. 3c) showed a statistically significant 1.9-fold upregulation at 1 h post stress 
compared to controls (F4,25 =​ 6.67; P <​ 0.05) that dropped to resting values at 24 h post stress. The acute stress 
application had no effect on mc1r (Fig. 3d). The pattern observed for mc2r (Fig. 3e) expression after the acute 
stress application consisted of low basal values at 0 h that increased at 0.5 h and at 1 h post stress (3.8-fold 
up-regulation) which returned to basal values at 2 h and 24 h post stress (F4,25 =​ 12.55; P <​ 0.001). This expression 
pattern of mc2r after the acute stress application parallels with the changes observed in whole body cortisol con-
centrations post stress. Transcript levels of mc4r (Fig. 3f) were affected by the applied stressors, showing a 2-fold 
up-regulation at 1 h post stress, to gradually reach basal values at 24 h post stress (F4, 25 =​ 6.78; P <​ 0.05).

Discussion
During ontogenesis of sea bass, temporal changes in whole-body α​-MSH levels showed a gradual increase from 
low levels during the first stages to maximum values at the stages of flexion and development of all fins. Our 
immunohistochemistry showed that no significant α​-MSH positive cells were observed outside of the pars inter-
media. There are very few data available on α​-MSH during early ontogeny apart from a study carried out during 
the early developmental stages in scyliorhinid dogfish (Scyliorhinus torazame) that showed a gradual increase 
of the α​-MSH-producing cells in the adenohypophysis28. The observed increase in whole-body α​-MSH con-
centrations at the advanced stages of early development reported here may reflect the involvement of α​-MSH 
in the formation of melanophores and the coloring of the body29–32, which takes place in the period around the 
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Figure 1.  Temporal patterns of α-MSH content and gene expression at early ontogeny of European sea 
bass. Changes in resting whole body (a) α​-MSH and mRNA transcript levels of (b) pomc, (c) mc1r,(d) mc2r 
and (e) mc4r at the different developmental points/stages (embryos-EM, hatch-HAT, mouth opening-MO, first 
feeding-FF, flexion-FLX, formation of all fins-FINS). Means with different letters differ significantly from one 
another (P <​ 0.05).
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formation of the fins. Expression of pomc increases at the stage of flexion and its peak is in line with the first sta-
tistically significant elevation of α​-MSH levels. Abundance of mc2r remains at low levels until the stage of first 
feeding where it reaches a maximum and then decreases gradually at the later stages of development. Previous 
studies of our group have shown that sea bass larvae begin to synthesize cortisol around the stage of first feed-
ing26,27, which coincides with the expression profile observed for mc2r. Similar results have been obtained in 
zebrafish, where the expression of mc2r is upregulated immediately before the rise in whole-body larvae cortisol 
concentrations33. Expression of mc1r was not altered depending on the developmental stage, whereas expression 
levels of mc4r was low in the embryo stage until mouth opening showing an increase at the stage of first feeding 
and remained at similar levels thereafter till the stage of the full formation of all fins. The acute stress challenge 
at the stage of the formation of all fins involved an elevation of α​-MSH and cortisol levels with a peak at 2 h after 
application of the stressor. These results are supported by studies in adult gilthead sea bream (Sparus aurata) 
and rainbow trout (Oncorhynchus mykiss), studies that showed that the application of severe acute stress leads 
to an increase of α​-MSH levels18,19. This pattern of the α​-MSH response to stress is rather similar to the pattern 
observed post-stress for whole body cortisol concentrations at the same developmental stage, where low basal 
values increase at 0.5 h and 1 h to reach a maximum at 2 h post-stress (Fig. 3a).

α​-MSH is a POMC-derived peptide, so to reveal the molecular mechanisms related to the onset of the α​-MSH 
stress response, qPCR experiments were carried out to analyze transcript levels of pomc. We would emphasize that 
we do not – as of yet – know how the measured transcripts are reflected in peptide levels of ACTH and α​-MSH. 
Expression levels of pomc after the acute stress application appear to be altered at the stage of the formation of all 
fins where the pattern of pomc stress response is characterized by maximum values at 1 h post stress that gradually 
drop to resting levels at 24 h (Fig. 3c) and this could concern both the ACTH and the MSH signal. However, the 
mRNA expression of pomc is upregulated along with α​-MSH levels, indicating a strong relation between pomc 
mRNA expression and α​-MSH production. These results are in accordance with the results obtained from a study 
in adult channel catfish (Ictalurus punctatus), where an up-regulation of pomc mRNA was observed in response 
to low-water stress, showing peak values at 1 h post stress which at 3 h declined to the level of the control group34.

The melanocortins exert their physiological role by binding to melanocortin receptors (MC1R-MC5R). MC2R 
plays a critical role in the HPI axis35 and is specifically activated by ACTH, while the other MCRs can be activated 
by the MSHs as well as ACTH7. The acute stress application at the stage of the formation of all fins resulted in 
altered transcript levels of mc2r which showed an up-regulation after application of the stressor, with peak values 
at 0.5 h and 1 h post stress to return to basal levels at 2 h and 24 h post stress (Fig. 3e) showing a similar pattern 
with the observed cortisol pattern obtained under the same conditions (Fig. 3b). The observed up-regulation of 
mc2r after stress at the stages of flexion and development of all fins is in accordance with the data obtained in 
a study conducted in rainbow trout where application of an acute stressor led to increased levels of mc2r tran-
scripts12. Up-regulation of mc2r after acute stress is further supported by a study by Tokarz and colleagues in 
zebrafish36, where the expression level of mc2r increased significantly until about 30 min after the stressor and 
subsequently decreased to the mRNA levels of unstressed fish. Both mc1r and mc4r are activated by α​-MSH and 

Figure 2.  α-MSH radioimmunoassay. Representative images of transverse sections of (A) mouth open, (B) 
first feeding, (C) flexion and (D) all fins stages. Arrows indicate α​-MSH positive cells in the pars intermedia. The 
scale bar represents 100 μ​m (A) or 200 μ​m (B–D).
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are involved in the control of the pigmentation and the modulation of food intake, respectively15–17. Expression 
of mc1r in this study was not altered following application of the stressor (Fig. 3d), whereas mc4r expression 
appeared to be affected by stress at the stage of the full formation of all the fins where transcript levels peaked at 

Figure 3.  The response to stress at the stage of the formation of all the fins in Dicentrarchus labrax. 
European sea bass larvae were exposed to acute stressors and the whole body α​-MSH content (a), whole body 
cortisol content (b) and differences in the expression levels of genes (c: pomc; d: mc1r; e: mc2r; f: mc4r) was 
analyzed prior to (0 h) and after (0.5 h, 1 h, 2 h and 24 h) the application of the stressor. Means with different 
letters differ significantly from one another (P <​ 0.05).
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1 h post stress and fell back to resting levels at 24 h post stress (Fig. 3f). It thus seems likely that MSH also through 
MC4R may play a role in the responses to stress.

In summary, we characterized for the first time in a Mediterranean marine teleost, the European sea bass, the 
temporal pattern of whole body α​-MSH and the expression profile of pomc, mc1r, mc2r and mc4r genes during 
early ontogeny. Additionally, sea bass larvae at the stage of the full formation of all fins were exposed to acute 
stressors and the temporal patterns of whole body α​-MSH and cortisol and the expression profiles of pomc, 
mc1r, mc2r and mc4r genes prior to and 0.5 h, 1 h, 2 h, and 24 h after application of the stressor, were determined. 
Overall, these data, combined with data on the cortisol response during early ontogeny26,27 give us for the first 
time a more thorough view on the two mechanisms involved in the stress response in sea bass with similar pat-
terns observed for α​-MSH and cortisol. Alpha-MSH is a truly pleiotropic hormone, with, among others, effects 
on skin coloration, feed intake and metabolism. To what extent α​-MSH contributes to each of these processes 
separately in early development remains to be determined, but our results indicate an involvement of α​-MSH in 
the stress response, a response requiring adjustment of energy flow and distribution. Whether MSH acts on the 
interrenal and/or on brain centers controlling feed intake remains to be determined.

Materials and Methods
Ethics statement.  The laboratories of the Hellenic Centre for Marine Research are certified and obtained 
the codes for breeding animals for scientific purposes (EL-91-BIO-04). All procedures involving the handling 
and treatment of fish used during this study were approved by the HCMR Institutional Animal care and use 
committee following the Three Rs (3Rs, Replacement, Reduction, Refinement) guiding principles for ethical use 
of animals in testing, in accordance to Greek (PD 56/2013) and EU (Directive 63/2010) legislation on the care and 
use of experimental animals.

Animals and husbandry conditions.  Batches of fertilized European sea bass eggs were obtained from a 
private fish farm (DIAS S.A.) and transferred to the installations of the Institute of Aquaculture, Hellenic Center 
for Marine Research (Heraklion, Crete). Larval rearing was performed applying the pseudogreen-water tech-
nique37, in 500 L cylindro-conical tanks, with an initial density of 100 eggs L−1 in which both hatching and rearing 
took place. A biological filter was coupled to the tanks which were initially filled with filtered seawater from a 
deep well. Water, during embryogenesis, egg hatching, and at the autotrophic larval stage, was re-circulated from 
the bottom of the tank through the biological filter at a rate of 10% of the tank volume per h and was progressively 
increased to 70% of the tank volume per h until the end of the trial. Aeration (compressed air) was provided by 
means of a wooden diffuser located in the tank center at a rate of 150–200 ml min−1. Larvae were held during the 
whole experimental period under a mean (±​SD) water temperature of 18 (±​1.6) °C, dissolved oxygen levels of 
7.2 ±​ 0.8 mg l−1, salinity of 36‰ and pH of 7.9–8.2. During hatching and until mouth opening, tanks were kept 
in complete darkness; a 12D:12 L photoperiod regime (lights on at 08:00 h) was applied during the rest of the 
experiment. Following mouth opening and eye development, sea bass larvae were exposed to low light intensity 
conditions (5–10 lux) in the absence of food for a period of 2 to 4 days to ensure normal swim bladder inflation, 
while the water surface was also kept free from any (food derived) oily film by the use of an air-blower skim-
mer. Food was delivered only when inflated swim bladder was observed in more than 80% of the population. 
Exogenous feeding was based on rotifers (Brachionus sp.) at 5 individuals ml−1 enriched with proteins and PUFA 
(INVE Aquaculture S.A., Belgium) until 10 days post hatching (dph); phytoplankton (Chlorella sp.) was supplied 
until 10 dph. Enriched Artemia nauplii (Instar Ι​Ι​, EG, Artemia Systems S.A., Belgium) were administered from 
10 dph until 50 dph at 0.5 to 1.0 individual ml−1. From 30 dph, larvae were offered dry feed (PROTON 2–3, INVE 
Aquaculture S.A., Belgium) through the use of automated feeders. The trial lasted until individuals completed the 
formation of their fins at 45 days post hatch (dph).

Experimental design.  Samples were collected at six different points/stages during early life development 
(embryos, hatching, mouth opening, first feeding, flexion and formation of all fins). Additionally, at the stage of 
the formation of all fins samples were taken prior to and after the application of an acute stressor: the larvae were 
exposed to high aeration (1,000–1,500 ml min−1 vs. 150–200 ml min−1) for 90 sec, chased with a net for 20 sec, 
confined (collection in beakers), and air exposed for 5 sec. Samples for molecular analysis (embryos, hatched 
eggs and larvae samples: n =​ 6 pools of ca. 30 mg), cortisol (n =​ 3 pools of ca. 250 mg) and α​-MSH (n =​ 3 pools 
of ca. 250 mg) were collected with a net, flash frozen in liquid N2 and stored at −​80 °C until further analyses. At 
the stage of the formation of all fins additional samples were also collected at 0.5 h, 1 h, 2 h and 24 h post-stress.

α-MSH radioimmunoassay.  Samples were homogenized in 0.01 M HCl (1:1 (v/w) HCl/body weight). 
Whole-body α​-MSH concentrations were then measured with a radioimmunoassay; α​-MSH was labeled with 
125I using the iodogen method38. Labeled α​-MSH was purified by solid phase extraction (C8 Bakerbond col-
umn, J.T. Baker, Center Valley, PA, USA). The antiserum shows 100% cross reactivity with des-, mono- and 
di-acetyl- α​-MSH39, and was used in a final concentration of 1:22,500. The second antibody to precipitate 
immune-complexes was a sheep-anti-rabbit anti-body (Fitzgerald, Acton, MA, USA) and was used at a final 
dilution of 1:15. Radioimmunoassay analyses using recombinant ACTH peptides demonstrated no binding of 
the antibody at all (0% cross-reactivity). Mammalian as well as fish ACTH peptides were used, which all share 
a sequence similarity between 80–95% with sea bass ACTH. Moreover, alpha-MSH is acetylated N-terminally, 
and the antibody shows 100% cross-reactivity between des-, mono- and di-acetyl alpha-MSH, indicating that 
the epitope of the antibody lies in the C-terminal region of the protein. This region is not available for antibody 
binding in ACTH and not present in CLIP, nor any other POMC-derived peptides. Therefore, we are confident 
that the antibody used in the present study is highly specific for alpha-MSH.
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α-MSH immunohistochemistry.  Samples of mouth opening, first feeding, flexion and all fins were fixed 
in Bouin’s fixative for 6 hours and wash thoroughly in 70% ethanol afterwards. For sectioning, samples were dehy-
drated trough gradually increasing ethanol series and embedded in paraffin. Sections (7 μ​m) were cut, mounted 
on glass slides coated with poly-l-lysine and dried overnight at 37 °C. Next day the sections were deparaffinized in 
xylene, rehydrated through gradually decreasing ethanol series and incubated with 1% H2O2 to block endogenous 
peroxidase activity. Non-specific antigenic sites were blocked with 2% Normal Donkey Serum (NDS, Jackson 
Immuno Reseach, West Grove, PA) followed by overnight incubation with 1:1000 α​-MSH antibody39. After 1 h 
incubation with 1:200 biotinylated Donkey Anti Rabbit IgG (Jackson Immuno Reseach, West Grove, PA) second-
ary antibody, 1:200 Avidin-Biotin-HRP Complex (ABC, Vector Laboratories, Burlingame, CA) was added and 
incubated for 1 h. Staining was performed using 0.025% 3,3′​diaminobenzidine (DAB) and 0.005% H2O2.

Cortisol determination.  Whole body cortisol extraction was performed according to Pavlidis et al.26. 
Briefly, body samples were partially thawed on ice and homogenized in 5 ×​ (w/v), ice-cold phosphate-buffered 
saline (pH 7.4). Cortisol was extracted from 2 ×​ 250 μ​L of homogenate with 3 mL of diethyl ether. The extract was 
allowed to freeze by placing tubes in a deep freezer (−​80 °C), the diethyl ether layer (above the frozen water layer) 
was transferred into a new tube and evaporated by placement of tubes in a 45 °C water bath for 1 h and in room 
temperature for an additional 3 h. Samples were then reconstituted in 250 μ​L of immunoassay buffer and cortisol 
was quantified by the use of a commercial enzyme immunoassay kit (Cayman Chemical, MI, USA). All samples 
were tested in duplicate.

RNA purification and cDNA synthesis.  Samples of embryos, pre-larvae and larvae were let to thaw on 
ice, disrupted and homogenized using the TissueRuptor (Qiagen, Hilden, Germany) for 20 s in 600 μ​l RLT plus 
buffer (RNeasy Plus Mini Kit Qiagen, Valencia, USA). Total RNA was isolated with the RNeasy Plus Mini Kit 
(Qiagen, Valencia, USA). RNA yield and purity was determined by measuring the absorbance at 260 and 280 nm 
using a Nanodrop®​ ND-1000 UV–Vis spectrophotometer (Peqlab, Erlangen, Germany), and its integrity was 
tested by electrophoresis in 1% agarose gels. Reverse transcription (RT) was carried out using QuantiTect Reverse 
transcription kit (Qiagen, Valencia, USA) using 1 μ​g of total RNA, according to the manufacturer’s instructions.

Primer design for mc1r, mc2r, mc4r and pomc genes.  Primers for mc4r were as described by Sanchez 
et al.40, whereas the reference genes eukaryotic elongation factor 1 (elf1a) and ribosomal 18S RNA (18S) were 
used as in previous work41. Primer design for melanocortin 1 receptor (mc1r), melanocortin 2 receptor (mc2r) 
and pro-opiomelanocortin (pomc) was based on the available sequences with accession numbers FN377856.142, 
FR870225.114, and AY691808.14. The forward primer for mc1r has the sequence 5′​ CTCCACCTCATCCTCATC 
3′​ while the reverse 5′​ GAAGCACCAAGAACACAG 3′​. In the case of mc2r the forward primer has the 
sequence 5′​ CATCTACGCCTTCCGCATTG 3′​ and the reverse 5′​ ATGAGCACCGCCTCCATT 3′​.  
The forward primer for pomc has the sequence 5′​ CCGGTCAAAGTCTTCACCTC 3′​ while the reverse 5′​ 
ACCTCCTGTGCCTTCTCCTC 3′​. The products of each primer pair were further checked with sequencing to 
confirm amplification of the desired genes.

Real-time quantitative PCR (qPCR).  Relative expression of mc1r, mc2r, mc4r and pomc was determined 
with quantitative polymerase chain reaction (qPCR) assays using the KAPA SYBR®​ FAST qPCR Kit (Kapa 
Biosystems), according to the manufacturer’s instructions. The resulting fluorescence was detected with CFX 
Connect Thermal Cycler (Bio-Rad) under the following cycling parameters: 95 °C for 3 min, 94 °C for 15 sec, 
60 °C for 30 sec (for mc2r and mc4r)/55 °C for 30 sec (for pomc and mc1r), 72 °C for 20 sec, 40 cycles. Levels of 
mc1r, mc2r, mc4r and pomc mRNA were normalized using reference genes 18S and elf1a. A standard curve was 
constructed for each gene, using 4 serial dilutions (1:5) of a pool of all cDNA samples by graphing the negative log 
of the dilution factor against the relative cycle threshold value. To be considered suitable for analysis, each primer 
pair was required to have a linear standard curve with an r2 value above 0.98 and primer amplification efficiency 
between 90% and 100%. We performed geNORM analysis43 to validate the reference genes that served as internal 
control, by defining a gene-stability measure M which corresponds to the standard deviation of the logarithmi-
cally transformed expression values of the compared genes. This stability index together with its decreasing value 
gives rise to the rank and stability of each gene. In our study 18S and elf1a genes proved have the most stable 
expression (target stability value M <​ 0.5) and the mean of their normalization factors was used for each sample.

Statistical analysis.  All statistical analyses were performed with SigmaPlot 11.0 (Jandel Scientific). Data 
are presented as means ±​ standard deviation (SD). Statistical comparisons of α​-MSH concentration and gene 
expression of unstressed specimens (0 h) between the different developmental points/stages and statistical com-
parisons of temporal patterns of α​-MSH and cortisol concentrations and gene expression between the different 
time points following exposure to a stressor at the stage of the formation of all fins were made using one-way 
ANOVA. Holm-Sidak’s honestly significant difference test for multiple comparisons was used to determine sig-
nificant differences among groups. The significance level was set at P <​ 0.05.
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