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Directional Phonon Suppression 
Function as a Tool for the 
Identification of Ultralow Thermal 
Conductivity Materials
Giuseppe Romano & Alexie M. Kolpak

Boundary-engineering in nanostructures has the potential to dramatically impact the development 
of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, 
nanostructuring of semiconductors can lead to strong suppression of heat transport with little 
degradation of electrical conductivity. Although this combination of material properties is promising 
for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, 
the directional phonon suppression function, to unravel boundary-dominated heat transport in 
unprecedented detail. Using a combination of density functional theory and the Boltzmann transport 
equation, we compute this quantity for nanoporous silicon materials. We first compute the thermal 
conductivity for the case with aligned circular pores, confirming a significant thermal transport 
degradation with respect to the bulk. Then, by analyzing the information on the directionality of 
phonon suppression in this system, we identify a new structure of rectangular pores with the same 
porosity that enables a four-fold decrease in thermal transport with respect to the circular pores. Our 
results illustrate the utility of the directional phonon suppression function, enabling new avenues for 
systematic thermal conductivity minimization and potentially accelerating the engineering of next-
generation thermoelectric devices.

Understanding heat transport in the presence of nanoscale boundaries is of paramount significance for many 
applications, including thermoelectrics1,2, thermal rectifiers3 and thermal dissipators4. When the dominant pho-
non mean free path (MFP) Λ​ approaches the characteristic length scale Lc of a material, classical phonon size 
effects lead to a decrease in thermal transport5. This regime is effectively described by the Knudsen number, 
defined as the ratio Kn =​ Λ​/Lc. For example, first-principles calculations of silicon show that half of the heat is 
carried by phonons with MFPs larger than one micron6,7, supporting the strong phonon suppression observed 
in porous materials with microscale pores8. In addition, very low thermal conductivities have been measured in 
many nanostructures, including nanoporous materials8–14, nanowires15,16 and thin films17, corroborating the use 
of such material systems for thermoelectric applications.

The thermoelectric figure-of-merit in semiconductors is defined as ZT =​ σS2T/κ, where σ is the electrical con-
ductivity, S is the Seebeck coefficient, κ is the lattice thermal conductivity and T the temperature. The numerator 
of ZT (the “power factor”) is generally maximized at relatively high carrier concentrations, so that the average 
electron MFP is on the order of a few nanometers18. Consequently, a properly engineered nanostructure can 
significantly decreases κ with little effect on σ, yielding an increase in ZT. Despite many attempts at minimizing 
thermal transport in nanostructures, however, thermal transport optimization is still largely unexplored, primar-
ily due to practical experimental limitations and a lack of systematic engineering approaches.

In this work, we address the latter by introducing a novel concept, the directional phonon suppression function 
S(Λ​, Ω), that describes the suppression of phonons with a given MFP Λ​ and direction within arbitrary geometries. 
By taking into account phonons travelling both along straight lines and through multiple phonon-boundary 
scattering events, S(Λ​, Ω) turns out to be a powerful tool for tuning thermal transport in complex nanostructures. 
We employ this approach to optimize thermal transport in Si-based nanoporous materials. We first compute the 
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thermal conductivity, κ, of a material system composed of a circular pores in a square lattice, finding significant 
heat transport degradation with respect to the bulk. Then, we use the information provided by S(Λ​, Ω) to identify 
a new structure, based on rectangular pores, that exhibits κ as small as 1 Wm−1k−1, well below the amorphous 
silicon limit (1.8 Wm−1K−1)19. As our engineering approach can be applied to any combination of material and 
geometry, it paves the way to high-throughput search of ultra-low thermal conductivity materials.

Bulk
While the methodology developed in this work is applicable to nanostructures with arbitrary materials and 
shapes, for the sake of clarity we describe our model specifically in relation to porous Si. The first step for com-
puting heat transport in the presence of nanoscale boundaries is calculation of the thermal conductivity of the 
corresponding bulk material, which we denote κbulk. With no loss of generality, throughout the text we consider 
an isotropic bulk MFP distribution of a thermally isotropic material, Kbulk(Λ​), which is related to κbulk via

∫κ = Λ Ω ⊗ Ω Λ
π

∞
ˆ ˆK ds s3 ( ) ( ) ( ) , (1)bulk bulk

0 4

where 〈​f(Ω)〉​4π is the angular average (4π)−1∫​4πf(Ω)dΩ and Ωŝ( ) is a versor described in terms of the polar angle 
φ and the azimuthal angle θ,

θ ϕ θ ϕ θΩ = + + .ˆ ˆ ˆ ˆs x y z( ) sin sin sin cos cos (2)

As δΩ ⊗ Ω =
π

ˆ ˆs s( ) ( ) (1/3) ii4
, Eq. 1 reduces to the well-known formula ∫κ = Λ Λ

∞ K d( )bulk bulk0
. The term 

Kbulk(Λ​) is calculated via density functional theory6,7; for Si at room temperature, we obtain κbulk ≈​ 155 Wm−1k−1, 
in agreement with previous work20.

Macroscopic Limit
In porous materials, the volume removal has a degrading effect on heat flow. Furthermore, if the characteristic 
length Lc of the structure is comparable with the MFPs of heat-carrying phonons, size effects take place and the 
thermal conductivity is further suppressed. In order to compute the “effective” thermal conductivity κ (which is 
now a scalar) of an array of aligned pores, we identify a square unit-cell with size L containing a single pore, which 
is chosen to be circular, and apply a difference of temperature Δ​T along x̂, as shown in Fig. 1(a). Periodic bound-
ary conditions are applied at the boundary of the unit cell. We consider the unit cell sizes L =​ 10 nm and 
L =​ 50 nm, keeping the diameter of the pore fixed so that the porosity of the material is φ =​ 0.25. Assuming the 
heat flux, J(r), is known, we use Fourier’s law, i.e.,

κ =
∆

⋅ ˆL
T

J r n( ) ,
(3)Ahot

where ∫= −f f dSr r( ) A ( )A hot
1

Ahot hot
 is an average along the surface of the hot contact and x̂ is normal to this 

surface. We note that the thermal conductivity is now a scalar. For structures in which phonon-size effects are 
negligible, heat transport can be modelled by the heat diffusion equation, described by the heat flux J(r) =​  
−​κbulk∇​TL(r), where TL(r) is the spatially dependent lattice temperature, computed by the continuity equation 
∇​ · J(r) =​ 0. Using Eq. 3, we obtain the general expression for the thermal conductivity reduction,

κ
κ

= −
∆

∇ ⋅ .ˆL
T

T r n( )
(4)bulk

L Ahot

For porous materials with low porosity, macroscopic heat reduction is predicted by the Maxwell-Garnett 
theory which provides the formula κ/κbulk =​ (1 −​ φ)/(1 +​ φ) ≈​ 93 Wm−1k−1 21, in excellent agreement with our 
finite-volume solver of diffusive heat conduction.

Directional Phonon Suppression Function
In aligned porous materials, the characteristic length Lc is roughly the pore-pore distance22, which in our cases 
is much shorter than the MFP of most of the dominant phonons in Si6, giving rise to significant phonon size 
effects. In order to take into account these effects, we employ the recently developed MFP-Boltzmann Transport 
Equation (MFP-BTE)23,

Λ Ω ⋅ ∇ Λ Ω + Λ Ω =ˆ T T Ts r r r( ) ( , , ) ( , , ) ( ), (5)L

where T(r, Λ​, Ω) is the effective temperature of phonons with MFP Λ​ and direction Ωŝ( ) and TL(r) is the effective 
lattice temperature, given by

∫ ∫
π

= Λ′ Λ′ Ω′ Ω′ Λ′.
π

∞
T A T d dr r( ) 1

4
( ) ( , , )

(6)L
0 4

The weights A(Λ​′​) ensure energy conservation and are expressed as

∫Λ′ =






Λ″
Λ″

Λ″






Λ′
Λ′

.
−

A K d K( ) ( ) ( )
(7)

bulk bulk
2

1

2



www.nature.com/scientificreports/

3Scientific RePorTS | 7:44379 | DOI: 10.1038/srep44379

Similarly to ref. 24, the walls of the pores are assumed to scatter phonons diffusively. Further details about the 
computational approach are reported in the Methods section.

Once Eq. 5 is solved, we include the dependence on Λ​ and Ω in Eq. 3 to compute the MFP distribution in the 
nanostructure, i.e.,

Λ Ω =
∆

Λ Ω ⋅ ˆK L
T

J r n( , ) ( , , ) , (8)nano Ahot

where

Λ Ω =
Λ

Λ
Λ Ω ΩˆK TJ r r s( , , ) 3 ( ) ( , , ) ( ) (9)

bulk

is the thermal flux in the porous material23. After substituting Eqs 5–9 into Eq. 8, we obtain the following 
relationship

Λ Ω
Λ

−
∆ Λ

Ω ⋅ = Λ Ωˆ ˆK
K

L
T

T Sr s n( , )
( )

3 ( ) ( ) ( , ),
(10)

nano

bulk
L Ahot

where S(Λ​, Ω) is the “directional phonon suppression function”, given by

Figure 1.  (a) Unit-cell comprising a single circular pore. The walls of the pores scatter phonons diffusively. 
Periodic boundary conditions are applied along both x- and y- directions. (b) Angular average of the directional 
phonon suppression for different MFPs, for both the gray model and the BTE described by Eq. 5. (c) Effective 
temperature distribution normalized to its maximum value. (d) Normalized magnitude of thermal flux 
superimposed to flux lines.
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Λ Ω = −
∆

Ω ⊗ Ω ∇ Λ Ω ⋅ .ˆ ˆ ˆS L
T

Ts s r n( , ) 3 ( ) ( ) ( , , ) (11)Ahot

The directional phonon suppression function S(Λ​, Ω) is central to our work and describes the MFP depend-
ence and directionality of phonon suppression caused by the boundaries. Once S(Λ​, Ω) is known, the thermal 
conductivity in the nanostructure is given by

∫κ = Λ Λ Ω Λ.
π

∞
K S d( ) ( , ) (12)bulk

0 4

The physical meaning of S(Λ​, Ω) can be better understood if we apply an angular average to both sides of 
Eq. 10, which gives

Λ Ω =
Λ Ω

Λπ
πS

K

K
( , )

( , )

( )
,

(13)
nano

bulk
4

4

where we used Ω ⋅ =
π

ˆ ˆs n( ) 04
. The term 〈​S(Λ​, Ω)〉​4π is also given by

Λ Ω = −
∆

∇ Λ Ω ⋅
π π

ˆS L
T

T r n( , ) ( , , ) ,
(14)4 4 Ahot

which is the conventional MFP-dependent suppression function. This quantity, also called “boundary scattering”, 
is proven to be effective in MFP-reconstruction experiments and for understanding heat transport regime25–27. 
We note that the variable Λ​ is the bulk MFP; any result of this work can be translated in terms of the MFP in the 
nanostructure, Λ​nano, by means of the transformation Λ​nano =​ Λ​ 〈​S(Λ​, Ω)〉​4π.

Diffusive Limit
In the following section, we derive the diffusive and ballistic limits of S(Λ​, Ω) and connect the findings with the 
heat transport regimes of 〈​S(Λ​, Ω)〉​4π. For short MFPs, T(r, Λ​, Ω) can be expanded up to first-order spherical 
harmonics as ref. 28

Λ Ω = Λ Ω − Λ Ω ⋅ ∇ Λ Ω .
π π

ˆT T Tr r s r( , , ) ( , , ) ( ) ( , , ) (15)4 4

Combining with Eq. 5, multiplying both sides by ŝ and applying an angular average, this gives23,28

Λ
∇ Λ Ω = Λ Ω −

π π
T T Tr r r

3
( , , ) ( , , ) ( ), (16)L

2
2

4 4

which is a modified heat diffusion equation that takes into account interactions among phonons with different 
MFPs. After combining Eqs 11–16, we obtain the diffusive limit of S(Λ​, Ω),

Λ → Ω = −
∆

Ω ⊗ Ω ∇ Λ Ω ⋅

+
∆ Λ

Λ Ω − Ω ⋅ .

π

π

ˆ ˆ ˆ

ˆ ˆ
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T

T

L
T
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( 0, ) 3 ( ) ( ) ( , , )

3 ( , , ) ( ) ( )
(17)L

4

4 Ahot

In Eq. 17, the second term represents the fact that the medium is non-gray. In fact, under the gray-medium 
approximation, where the lattice temperature is TL(r, Λ​) =​ 〈​T(r, Λ​, Ω)〉​4π, this term vanishes. In this case, phon-
ons are solved independently, leading to a MFP-dependent lattice temperature. For simplicity and with no loss in 
generality, we now derive the expression of S(Λ​ →​ 0, Ω) for our nanoporous system within the gray approxima-
tion. Under these assumptions, Eq. 16 becomes the Laplacian equation ∇​2TL(r) =​ 0, i.e., the standard Fourier’s 
law29. By assuming a constant heat flux along the hot contact, the gradient of the lattice temperature is simply 

φ∇ ≈ − ∆ ˆT f T Lr x( ) ( )( / )L  and Eq. 11 then becomes

φ θ ϕΛ → Ω =S f( 0, ) 3 ( )sin sin , (18)gray 2 2

where we used =ˆ ˆn x . The Cartesian representation of S(Λ​ →​ 0, Ω), represented by the surface 
Ω − Λ → Ω Ω =ˆSr s( ) ( 0, ) ( ) 0, is plotted in Fig. 2(a). We note two lobes, oriented along x̂ and −x̂, consistently 

with the fact that both the direction of the applied temperature gradient and the normal of the cold contact are 
aligned with x̂. This symmetry can be also seen by the polar representation

∫ϕ ϕ θ θΛ = Λ
π

S S d( , ) 1
2

( , )sin , (19)0

which, when applied to Eq. 17, becomes ϕ φ ϕΛ → =S f( 0, ) 2 ( )sin2 , as shown in Fig. 2(b). The diffusive limit of 
〈​S(Λ​, Ω)〉​4π within the gray approximation can be obtained by simply performing an angular average of the polar 
suppression function, i.e.

∫π
φ ϕ ϕ

φ
φ

Λ → Ω = =
−
+π

π
S f d( 0, ) 1 ( ) sin 1

1
,

(20)
gray

4 0
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which is the value obtained by Fourier’s law, as shown in Fig. 1(b). However, by using the general expression for 
non-gray media from Eq. 14, we obtain a lower value for very small MFPs with a peak around 30 nm. This result 
suggests that the trend obtained by the full MFP-BTE is due to the interaction among phonons with different 
MFPs. Specifically, the discrepancy in 〈​S(Λ​, Ω)〉​4π for low-MFP phonons between the gray and the non-gray 
models arises from the fact that diffusive phonons in Eq. 5 tend to thermalize to an effective temperature (plotted 
in Fig. 1(c)) that also depends on ballistic phonons.

Ballistic Limit
We now investigate the ballistic limit of S(Λ​, Ω). For large MFPs, boundary scattering becomes predominant and 
S(Λ​, Ω) starts to depend strongly on the geometry of the material. In this regime, Eq. 5 becomes5

Ω ⋅ ∇ Λ Ω = −
Λ Ω
Λ

.ˆ T Ts r r( ) ( , , ) ( , , )
(21)

After combining Eqs 11–21, we have

Λ Λ → ∞ Ω =
∆

Λ Ω Ω ⋅ˆ ˆS L
T

T r s n( , ) 3 ( , , ) ( ) ,
(22)Ahot

which recovers the well-known behaviour S(Λ​ →​ ∞​, Ω) ∝​ Λ​−1 for the ballistic regime5. We note that in this case, 
the directional suppression function is simply the ratio between the MFP distribution in the nanostructure and 
that in the bulk, i.e. Knano(Λ​ →​ ∞​, Ω) =​ S(Λ​ →​ ∞​, Ω)Kbulk(Λ​), and so applies to 〈​S(Λ​, Ω)〉​4π. As shown in Fig. 2(c), 
S(Λ​, Ω) is pronounced for φ =​ 0 and φ =​ π, whereas it rapidly vanishes for other polar angles. This trend can be 
explained in terms of the view factor, a geometric parameter that quantifies the possibility of having a direct path 
between the hot and cold contacts30. In porous materials with square pore lattices, most of the heat travels through 
the spaces between the pores, perpendicular to the applied temperature gradient. The relative contribution of 

Figure 2.  Spherical (a) and polar (b) representations of S(Λ​, Ω) for low Kns. The two lobes are identical because 
of the system symmetry. (c) Spherical and (d) polar representation of S(Λ​, Ω) for high Kns. The two lobes are 
peaked at φ =​ 0 and φ =​ π. The periodicity is L =​ 50 nm.
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such paths is the view factor. Figure 2(d) superimposes S(Λ​, Ω) and the material geometry to better elucidate the 
relationship between the boundary arrangements and phonon suppression. We also note four sub-lobes corre-
sponding to phonons travelling along directions at 45 degrees with respect to the applied temperature gradient, 
constituting another set of direct paths. For all the other directions, S(Λ​, Ω) describes Multiple Phonon-Boundary 
(MPB) scattering. In our case, heat transport arising from MPB is negligible, with most of the heat carried by 
phonons travelling through direct paths.

Material Optmization
Using the insights from above, we identify a new nanopore geometry with the same porosity as the circular 
nanopore case, that has improved properties. This new geometry consists of rectangular pores in a staggered 
configuration, as shown in Fig. 3(a). The periodicity is larger than the previous case because of the fixed-porosity 
requirement. From the flux lines plotted in Fig. 3(b), we note that direct paths are absent; thus, phonons scatter 
multiple times before reaching the cold contact. For low Kns, S(Λ​, Ω) is similar to that of the case with circular 
pores, with the size of the lobes determined by the porosity function f(φ) of the new configuration. Interestingly, 
for high Kns, S(Λ​, Ω) has six preferred directions, as shown in Fig. 3(d). The amplitudes of these peaks are signif-
icantly smaller than those in Fig. 2(d). Remarkably, the computed κ are 4 Wm−1k−1 and 1 Wm−1k−1 for L =​ 50 nm 
and L =​ 10 nm, respectively, almost five times smaller than their counterparts with circular pores. We note that, 
for the case with L =​ 10 nm, κ is smaller than that of amorphous silicon19. Finally, as this very low thermal con-
ductivity is obtained with no change in the porosity, the transport of electrons, which travel diffusively, will not be 
significantly suppressed. As a result, the configuration with staggered rectangular pores has promise as a high-ZT 
material.

Figure 3.  (a) Unit-cell of the configuration with staggered rectangular pores. (b) Normalized magnitude of 
thermal flux and flux lines. There are not direct paths from the cold to the hot side. (c) Spherical and (d) polar 
representation of S(Λ​, Ω). All thermal transport arises from multiple phonon boundary scattering.
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Conclusions
In summary, we have introduced the directional phonon suppression function, a novel concept that captures the 
essence of size effects in unprecedented detail. Guided by this new quantity, we have identified a porous struc-
ture, based on rectangular pores arranged in a staggered configuration, with ultra-low thermal conductivity and 
relatively low porosity. Our work furthers the general understanding of boundary-dominated heat transport. In 
addition, as our approach is suitable for any combinations of material and geometry, this work provides practical 
guidance for the development of novel, high-efficiency thermoelectric materials.

Method
The cumulative thermal conductivity requires the calculation of the three-phonon scattering time. These cal-
culations were performed with a 32 ×​ 32 ×​ 32 grid in reciprocal space and a 4 ×​ 4 ×​ 4 supercell. Force constants 
calculations were performed with a 5 ×​ 5 ×​ 5 supercell. The isotope disorder scattering is included in the calcu-
lation. Phonon-related calculations were carried out using ShengBTE20. Density functional theory calculations 
were performed with Quantum Espresso31. Using a projected augmented wave (PAW) pseudopotential32, with 
a plane-wave cut-off of 320 meV, and a 11 ×​ 11 ×​ 11 k-point mesh. Phonon size effects were calculated using an 
in-house code. The spatial domain was discretized using the finite-volume method solved over an unstructured 
grid with approximately 6000 elements. The solid angle was discretized into 48 polar and 12 azimuthal angles. 
The material was assumed to be infinite along the z-direction. The MFP distribution, assumed to be isotropic, was 
discretized into 30 MFPs.
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