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A Glycyrrhetinic Acid-Modified 
Curcumin Supramolecular Hydrogel 
for liver tumor targeting therapy
Guoqin Chen1,*, Jinliang Li2,*, Yanbin Cai3, Jie Zhan3, Jie Gao4, Mingcai Song1, Yang Shi3 & 
Zhimou Yang3

Curcumin (Cur), a phenolic anti-oxidant compound obtained from Curcuma longa plant, possesses 
a variety of therapeutic properties. However, it is suffered from its low water solubility and low 
bioavailability property, which seriously restricts its clinical application. In this study, we developed 
a glycyrrhetinic acid (GA) modified curcumin supramolecular pro-gelator (GA-Cur) and a control 
compound Nap-Cur by replacing GA with the naphthylacetic acid (Nap). Both compounds showed 
good water solubility and could form supramolecular gels by disulfide bond reduction triggered by 
glutathione (GSH) in vitro. Both formed gels could sustainedly release Cur in buffer solutions. We also 
investigated the cytotoxicity of pro-gelators to HepG2 cells by a MTT assay and determined the cellular 
uptake behaviours of them by fluorescence microscopy and LC-MS. Due to the over expression of GA 
receptor in liver cancer cells, our pro-gelator of GA-Cur showed an enhanced cellular uptake and better 
inhibition capacity to liver tumor cells than Nap-Cur. Therefore, the GA-Cur could significantly inhibit 
HepG2 cell growth. Our study provides a novel nanomaterial for liver tumor chemotherapy.

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world with a high mortality rate and 
few effective treatment options1,2. Surgery in combine with chemotherapy are usually the necessary and to date 
the main treatments for HCC. However, current chemotherapeutic agents have several shortcomings including 
low aqueous solubility, poor tumor selectivity and considerable side-effects to normal tissues3,4. Thus, it is very 
important to investigate and develop novel drug delivery systems to selectively deliver chemotherapeutic agents 
to liver cancer. Actually, over the past few decades, targeted drug delivery systems, especially active targeting, have 
shown enormous potential in cancer therapy because of their improved specificity and efficacy of anti-carcinogen 
and the minimized side effects5,6.

Glycyrrhetinic acid (GA), a pentacyclic triterpene acid, is the main bioactive compound extracted from the 
herb liquorice. As a targeting ligand, GA has been demonstrated to specifically bind to liver cell membrane, 
because of the abundant GA receptors on hepatocyte membranes7,8. Besides, the GA receptors, identified as pro-
tein kinase C, are significantly over-expressed in HCC cells than other normal cells9,10. Therefore, GA has been 
widely used as a targeting ligand to functionalize nanomaterials to treat HCC, including micelles7,11,12, lipos-
omes8,9,13, and nanospheres14–17. As results, these GA modified nanomaterials exhibited enhanced uptakes by 
hepatocyte and HCC cells and better inhibition effects to HCC than unmodified ones.

Curcumin (Cur), a hydrophobic polyphenol compound, is derived from the rhizomes of Curcuma longa. Cur 
has a wide range of therapeutic properties, such as anti-inflammation18, anti-oxidant19, anti-mutagenic20, and 
anticancer21 with low or no intrinsic toxicity to healthy cells. Moreover, emerging evidences show that Cur can 
prevent and suppress the generation, transformation, proliferation and metastasis of many types of cancer cells 
including breast cancer, colon carcinoma, cervical cancer, stomach cancer, pancreatic cancer, liver cancer cells22,23. 
Furthermore, Cur shows great promise as a chemo-preventive and therapeutic drug in HCC, possibly because of 
its potent anti-angiogenic activity and pro-apoptotic properties in human HepG2 cells24. However, the clinical 

1Cardiology Department of Panyu Central Hospital, Guangzhou, China; Cardiovascular Disease Institute of Panyu 
District, Guangzhou, Guangdong 511400, P. R. China. 2Guangzhou University of Chinese Medicine, Guangzhou, 
Guangdong 510006, Cardiology Department of Panyu Central Hospital, Guangzhou, Guangdong 511400, P. R. 
China. 3Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 
Tianjin 300071, P. R. China. 4State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, 
P. R. China. *These author contributed equally to this work. Correspondence and requests for materials should be 
addressed to M.S. (email: 1244919048@qq.com) Y.S. (email: snock0522@hotmail.com)

received: 16 November 2016

accepted: 06 February 2017

Published: 10 March 2017

OPEN

mailto:1244919048@qq.com
mailto:snock0522@hotmail.com


www.nature.com/scientificreports/

2SCIENtIfIC ReportS | 7:44210 | DOI: 10.1038/srep44210

application of Cur remains very limited due to its extremely poor aqueous solubility (≈​11 ng/ml)25 and low bio-
availability26. Various approaches have been attempted to address the aforementioned problems of Cur including 
using biomaterials such as the polymeric micelles27–30, liposomes31–33, polymeric nanoparticles (NPs)34–36, and 
hydrogels37–39 to deliver Cur.

As a promising biomaterial and drug carrier, supramolecular hydrogels based on short peptide and therapeu-
tic agents have attracted extensive research interests because of the high drug loadings, sustained and responsive 
drug release property, good biocompatibility, ease of design and synthesis, etc40–42. Several examples of supra-
molecular hydrogel of therapeutic agents including Olsalazine43, Taxol44–46, Naprofen47, Camptothecin48, and 
Curcumin39 have been rationally synthesized and reported. However, examples of in situ formed supramolecular 
hydrogels with targeting effects to cancer cells are rare. Here we designed and synthesized a glycyrrhetinic acid 
(GA) modified curcumin supramolecular pro-gelator (GA-Cur) with a targeting effect to liver cancer cells, and 
we also demonstrated its improved cellular uptake and better inhibition capacity to HepG2 cells than a control 
compound without the targeting effect.

Results
Molecular design and synthesis.  We recently observed that a pro-gelator of Cur-FFE-ss-ERGD could 
inhibit cancer cell growth more efficiently than the corresponding gelator of Cur-FFE-s because of the enhanced 
cellular uptake and evenly cellular distribution of the pro-gelator39. We also demonstrated that a pro-gelator of 
taxol (Taxol-FFpY) exhibited a better inhibition effect to cancer cells than the corresponding gelator of Taxol-FFY 
because of the similar mechanism45. Xu and Liang groups also demonstrated that the intracellular formation of 
nanofibers or nanoparticles could significantly inhibit taxol-resistant cancer cells growth46,49. These results sug-
gested that pro-gelators capable of forming nanomedicines within cells by intracellular catalysts might possess 
better inhibition capacities to cancer cells. Based on these pioneering works, we imaged that, by integrating a tar-
geting ligand to the pro-gelator, the inhibition capacity of pro-gelators to cancer cells might be further improved.

These pioneering results and our hypothesis stimulated us to design a pro-gelator GA–GFFYK(Cur)
E-ss-ERGD (GA-Cur in Fig. 1A) with a targeting ligand of GA to liver cancer cells. The pro-gelator might be 
converted to GA–GFFYK(Cur)E-s (GA-gelator) by disulfide bond reduction triggered by glutathione (GSH). 
We believed that, with the assistance of targeting ligand of GA, the pro-gelator could show a better selectivity to 

Figure 1.  (A) Chemical structures and synthetic route for the GA–GFFYK(Cur)E-ss-ERGD (i: glutaricacid 
anhydride, pyridine, ii: N-hydroxy succinimide (NHS), dicyclohexylcarbodiimide (DCC), DMF, iii: DMF, 
DIPEA), (B) diagram to illustrate the mechanism of our compounds for tumor targeting therapy.
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liver cancer cells than normal cells (Fig. 1B). As shown in Fig. 1A, we firstly synthesized the peptide derivate of 
GA-GFFYKE-ss-ERGD by standard Fmoc-solid phase peptide synthesis (SPPS), which was then used to couple 
with N-hydroxysuccinimide (NHS)-activated Curcumin Glutaric acid (Cur-Gla). The pure compound GA-Cur 
was obtained by reverse phase high performance liquid chromatography (HPLC) with a moderate yield (about 
20%). We also replaced the targeting ligand of GA with naphthalene acetic acid (Nap) to make a control com-
pound of Nap–GFFYK(Cur)E-ss-ERGD (Nap-Cur)using the similar synthetic route.

Gelation test and characterization of hydrogels.  We therefore tested the gelation ability of the 
obtained two compounds. The pro-gelator GA-Cur and Nap-Cur could be well solubilized in phosphate buffer 
saline (PBS, pH =​ 7.4) at a concentration of 10 mg/mL (1 wt%, Fig. 2A; Fig. S-6A). The critical micelle concentra-
tion (CMC) of them was about 1105 and 1349 μ​g/mL (Fig. S-7), respectively, which were much higher than the 
aqueous solubility of curcumin (11ng/mL). After adding 4 equiv. of GSH to the solution, yellowish supramolec-
ular hydrogels (GA-gel, Fig. 2B; Nap-gel, Fig. S-6B) could be obtained after about 1.5 h at 25 °C. The minimum 
gelation concentration of GA-Cur was about 0.75 wt%. The LC-MS traces clearly indicated that the pro-gelator 
GA-cur was converted by GSH to the gelator of GA–GFFYK(Cur)E-s (Fig. S-8). Similar gelation property was 
observed for Nap-cur (Fig. S-9). The hydrogels were stable and would not change the appearance for more than 
a month at room temperature. We then used a rheometer to characterize the resulting hydrogels obtained at 2 h 
time point. As shown in Fig. S-10, the value of elasticity (G′​) for the GA-gel was about 150 Pa, and that of viscosity 
(G″​) was about 12 Pa. The value of elasticity (G′​) and viscosity (G″​) for the Nap-gel was 1000 and 100 Pa, respec-
tively, suggesting a better mechanical property of Nap-gel than GA-gel. We then investigated the fluorescence 
spectra of the precursors (GA-cur and Nap-cur) and the hydrogels (GA-gel and Nap-gel). As shown in Fig. S-11, 
with the amount of GSH increased, the fluorescence of GA-cur and Nap-cur quenched gradually, which was due 
to well-known aggregation caused quenching phenomena.

Release profile and In vitro inhibition capacity.  Cur could be released from gels by ester bond hydroly-
sis. We then determined the release profile of Cur from both gels. As shown in Fig. 3A, both Nap-gel and GA-gel 
could sustainedly release Cur during the 12 h experimental period, and the release speed of Cur was about 1.5 and 
1.85 μ​g/mL at 37 °C from GA-gel and Nap-gel, respectively. We next evaluated the inhibition capacity of the Cur, 
GA-Cur, Nap-Cur to both HepG2 and 3T3 cells. After incubating the cells with different compounds at a series of 
concentrations for 48 h, an MTT assay was performed. As shown in Fig. 3B, the Cur, GA-Cur, Nap-Cur exhibited 
an IC50value of 26.5, 10.7, and 29.7 μ​M against HepG2, respectively. For mouse fibroblast 3T3 cells, compounds of 
Cur, GA-Cur, and Nap-Cur showed similar IC50 values, which was 28.0, 29.6 and 28.7 μ​M, respectively.

Confocal microscopy and cellular uptake.  In order to understand the best inhibition capacity of 
GA-Cur, we obtained confocal fluorescence microscopy images of HepG2 cells treated with Cur, GA-Cur, 
Nap-Cur and GA +​ GA-Cur for 4 h. As shown in Fig. 4, we observed green fluorescence from the cytoplasm 
of the cells treated with different compounds. However, cells treated with GA-Cur showed the strongest green 
fluorescence (Fig. 4C), compared with those treated with Cur (Fig. 4A) and Nap-Cur (Fig. 4B) at the same con-
centration. If we firstly treating HepG2 cells with 2 equiv. of GA for 2 hand then with GA-Cur for another 4 h, the 
cells exhibited similar intensity of green fluorescence (Fig. 4D) to those treated with Cur and Nap-Cur. When we 

Figure 2.  Optical images of (A) PBS solutions containing 1 wt% of the precursors (GA-Cur) and (B) the 
hydrogel (GA-gel) formed by treating solution in (A) with 4 equiv. of GSH, (C) transmission electron 
microscopy (TEM) image of the precursors (GA-cur) and (D) transmission electron microscopy (TEM) image 
of the hydrogel (GA-gel).



www.nature.com/scientificreports/

4SCIENtIfIC ReportS | 7:44210 | DOI: 10.1038/srep44210

Figure 3.  (A) Accumulative release profile at 37 °C in PBS buffers (pH =​ 7.4) of Cur from GA-gel and Nap-gel, 
respectively and (B) Cytotoxicity of Cur, GA-Cur, and Nap-Cur against HepG2 and mouse NIH 3T3 cells (the 
IC50 of GA +​ GA-Cur was evaluated against HepG2 cells by pre-treating cells with 2 equiv. of free GA to block 
the GA receptors for 2 hours and then replacing with GA-Cur for another 48 hours, #P >​ 0.5, **P <​ 0.01).

Figure 4.  Confocal fluorescence microscopy images of HepG2 cells treated with25 μ​M of (A) Cur, (B) Nap-Cur, 
(C) GA-Cur, and (D) GA +​ GA-Cur for 4 hours.
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treated the HepG2 cellswith GA-cur and inhibitors (GA) together, we found that the green fluorescence of cells 
were also stronger than that of GA +​ GA-cur (Fig. S-12). These results indicated that GA-cur showed good target-
ing effect on HepG2 cells. We also determined the intra-cellular concentration of compounds. HepG2 cells were 
incubated with Cur, GA-Cur, Nap-Cur, or GA +​ GA-Cur (2:1) for 4 h, and then they were collected to determine 
the intracellular concentration of Cur. The results in Fig. 5 indicated that the intra-cellular concentration of Cur 
was 715, 973, 670 and 689 ng/well for Cur, GA-Cur, Nap-Cur, or GA +​ GA-Cur, respectively. In order to inves-
tigate whether the hydrogels have the similar inhibition capacity as pro-gelators, we took confocal fluorescence 
microscopy images of HepG2 cells treated with GA-gel and Nap-gel at 4 h time point containing 25 μ​M curcumin. 
As shown in Fig. S-13, an extremely weak green fluorescence was observed in HepG2 cells. The results indicated 
that the cellular uptake of hydrogels were less than that of pro-gelators, which was consistent with our previous 
results that gels would show much lower cellular uptake than the pro-gelator50.

Discussion
According to the rheology results (Fig. S-10), both the G′​ and G″​ of the gel showed weak frequency dependences 
at the frequency range from 0.1 to 100 rad/s, and the G′​ value of the gel was more than 10 times bigger than 
its corresponding G″​ value, suggesting the formation of a true gel. We also obtained a transmission electron 
microscopy (TEM) image to characterize the self-assembled nanostructures in the gel. As shown in Fig. 2C, the 
pro-gelator of GA-cur showed irregular short fibers in solutions, while the GA-gel exhibited uniform nanofibers 
with diameters of about 10 nm (Fig. 2D). The flexible nanofibers entangled with each other to form three dimen-
sional (3D) networks for hydrogel formation. Similar to GA-Cur, the control compound Nap-Cur also formed a 
supramolecular hydrogel (Nap-gel) with nanofibers in the gel (Fig. S-6).

The smaller IC50 value (better inhibition capacity) of GA-Cur than that of Nap-Cur suggested the targeting 
effect of GA to HepG2 cells. If firstly treating the HepG2 cells with GA for 2 h and then with GA-Cur for another 
4 h, the GA +​ GA-Cur group exhibited an IC50value of 28 μ​M, which further demonstrated the targeting effect of 
GA to HepG2 cells. The results of IC50 value and cellular uptake hadclearly indicated that GA helped the accu-
mulation of GA-Cur in HepG2 cells possibly due to the specific ligand-receptor interaction between GA and GA 
receptor. In order to further prove this conclusion, we performed control experiments in 3T3 cells. As shown in 
Fig. S-14, the fluorescent intensity of cells treated with Cur, GA-Cur, Nap-Cur, or GA +​ GA-Cur was similar. The 
intra-cellular concentration of Cur for them was also similar, which was 667, 681, 641 and 626 ng/well, respec-
tively (Fig. S-15). These observations further demonstrated the targeting effect of GA to HepG2 cells.

Summary.  In summary, we have developed a glycyrrhetinic acid-modified curcumin supramolecular 
pro-gelator (GA-Cur), which could be converted to a supramolecular hydrogelator and form a hydrogel (GA-Gel) 
by disulfide bond reduction by GSH. Curcumin could be sustainedly released from the GA-gel through ester 
bond hydrolysis. Compared with curcumin and Nap-Cur, GA-Cur had more potent anti-cancer efficacy and 
higher cellular uptake for GA positive tumor cells in vitro. In conclusion, GA-Cur is a promising and potential 
therapeutic option for hepatocellular carcinoma therapy.

Methods
Solid phase peptide synthesis.  Peptide derivatives of GA-GFFYKE-ss-ERGD and Nap-GFFYKE-ss-ERGD  
were synthesized by solid phase peptide synthesis (SPPS) using 2-chlorotrityl chloride resin and corresponding 
N-Fmoc protected amino acids with side chains properly protected by a tert-butyl group. The first amino acid 
(Fmoc-Asp(OtBu)-OH) was loaded to the resin at the C-terminal with the loading efficiency about 1.0 mmol/g. 
20% piperidine in anhydrous N,N′​-dimethylformamide (DMF) was used to remove Fmoc group. To couple the 
next Fmoc-protected amino acid, O(Benzotriazol-1-yl)-N,N,N′​,N′​-tetramethyluronium hexafluorophosphate 
(HBTU) was used as the coupling reagent. The peptide chain was grew according to the standard Fmoc SPPS 
protocol. At the final step, glycyrrhetinic acid (GA) or naphthalene acetic acid (Nap) was used. After the last 
coupling step, excessive reagents were removed through five times of DMF wash for 1 min, followed by five times 

Figure 5.  The amount of Curcumin in HepG2 cells treated with different compounds (#P > 0.5, **P < 0.01). 
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of washing using dichloromethane (DCM) for 1 min. To cleave the peptide derivatives from the resin, ice-cold 
95% TFA (2.5% of H2O and 2.5% of TIS) was used. The reaction solution was poured into ice-cold diethylether. 
The resulting precipitate was centrifuged for 10 min at 4 °C at a speed of 10,000 rpm. Afterward decanting the 
supernatant and the solid was dried by vacuum pump.

Synthesis of Curcumin Glutaric acid (Cur-Gla).  Curcumin (1.107 g, 3 mmol) and Glutaric acid anhy-
dride (0.353 g, 3.1 mmol) were dissolved in pyridine (23 mL), and the resulting solution was stirred at room tem-
perature for 7 h. The solution was removed and the crude product was re-dissolved in ethylacetate (100 mL), 
which was washed with 1 M HCl (30 mL) to remove pyridine. This process was repeated for three times. The 
ethyl acetate was removed under vacuum to get the crude product. The product was purified via silica gel column 
chromatography, eluted with DCM: methanol (99:1, v/v) (yield: 49.2%).

Synthesis the pro-gelator of GA-Cur and Nap-Cur.  0.15 mmol of peptide derivative, 
GA-GFFYKE-ss-ERGD or Nap-GFFYKE-ss-ERGD was reacted with 48.3 mg of Curcumin Glutaric acid 
N-Hydroxysuccinimide (NHS) active ester (Cur-NHS) (0.1 mmol) inthe solvent of 3 mL of DMF containing 
41.25 μ​L of diisopropylethylamine (DIPEA, 0.25 mmol). The resulting reaction mixture was stirred at room tem-
perature overnight. The pro-gelators were obtained by high performance liquid chromatography (HPLC) with 
yields of 18–25%.

Hydrogel formation.  3 mg of GA-Cur or Nap-Cur was dissolved in 0.25 mL phosphate buffer saline (PBS) 
buffer solution (pH =​ 7.4, adjusted by 1.5 equiv. of Na2CO3). 4equiv. of glutathione (GSH) in 0.05 mL of PBS 
buffer (pH =​ 7.4, adjusted by 3.6equiv. of Na2CO3) was added to the above solution. Gels would form after being 
kept at room temperature (20–25 °C) for about 1.5 hours.

Rheology Test.  The rheology test was carried out on an AR 2000ex (TAInstrument) system. 25 mm parallel 
plates were used during the experiments at the gap of 500 μ​m. The solution of GA-Cur or Nap-Cur (1 wt%) with 
4 equiv. of GSH was directly transferred to the rheometer and waited for 2 hours for the formation of gels. The 
dynamic strain sweep was performed at the frequency of 1 rad/s−​1. A dynamic frequency sweep at the strain of 
1% was then performed.

Transmission electron microscopy (TEM).  15 μ​L of gel was placed on a carbon-coated copper grid and 
incubated for 60 seconds to allow the fibers to adhere to the copper grid. The sample was then rinsed thrice with 
ultrapure water. The sample was then stained with a saturated uranyl acetate solution and placed in a desiccator 
overnight prior to analysis.

Release profile.  A hydrogel in PBS (pH =​ 7.4) solution containing 1.0 wt% of pro-gelator was formed in an 
Eppendorf tube at 25 °C. After the gel was stable for 24 hours at 37 °C, 0.25 mL of PBS buffer solution was added 
on top of gels. 0.2 mL solution was taken out at the desired time point and 0.2 mL of fresh PBS was added back. We 
then monitored and calculated the release profile of Cur from the gel by a LCMS-20AD (Shimadzu) system. The 
experiment was performed at 37 °C and the results were calculated from three parallel experiments.

Cell inhibition assay.  The IC50 values of Cur, GA, GA-Cur, Nap-Cur, GA-gel, Nap-gel, GA +​ GA-Cur, 
GA +​ Nap-Cur were evaluated by the MTT assay. The HepG2 cells were seeded in 96-well plates at a density of 
7,000 cells per well with a total medium volume of100 μ​L and then incubated for 24 hours. After removing the 
media, 100 μ​L of the media solutions containing a serial of concentrations of compound were added to the cells. 
48 hours later, we replaced the medium with fresh medium supplemented with 5 μ​L MTT reagent (5 mg/mL).  
After another 4 hours, the medium containing MTT was removed and DMSO (100 μ​L/well) was added to dis-
solve the formazan crystals. A microplate reader (Bio-RAD iMarkTM, America) was used to measure the optical 
density of the solution at 490 nm. Cells without any treatments were used as the control. The inhibition capacity 
of GA +​ GA-Cur or GA +​ Nap-Cur was evaluated against HepG2 cells by pre-treating cells with 2 equiv. of free 
GA to block the GA receptors for 2 hours and then replacing with GA-Cur for another 48 hours. The same exper-
iments were performed with 3T3 cells.

Confocal microscopy.  After being incubated for 24 h in 24-well plates at a density of 30,000 cells per-well, 
HepG2 cells were treated with 1 mL of DMEM solution containing 30 μ​M of different compounds for 4 h. The 
medium was then removed and the cells were washed for three times with fresh PBS. The images were recorded 
under the same detected conditions (excitation wavelength =​ 488 nm). The samples were then dyed with DAPI for 
3 min. The experiments were carried out by using a laser scanning confocal microscope. The same experiments 
were performed with 3T3 cells.

Cellular uptake.  After being incubated for 24 h in 6-well plates at a density of 2.5 ×​ 105 cells per-well, HepG2 
cells were treated with 2 mL growth medium containing 25 μ​M of Cur, GA-Cur, Nap-Cur, or GA +​ GA-Cur, 
respectively. In GA +​ GA-Cur group, 50 μ​M of GA was used to pre-treat cells for 2 hours. HepG2 cells were then 
rinsed for three times with PBS following with a treatment with 25 μ​M of GA-Cur for another 4 hours. After 
4 hours’ incubation, cells were washed for three times with PBS to remove excess compounds and 500 μ​L of 
DMSO was added to each well to dissolve compounds in cells. The solution were collected after being treated with 
sonication for 15 min. The amount of compounds in the cells was determined by a microplate reader excitated at 
488 nm. The same experiments were performed with 3T3 cells.
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