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Robustness and Uncertainties of 
the “Temperature and Greenness” 
Model for Estimating Terrestrial 
Gross Primary Production
Jiaqi Dong1,2, Longhui Li1, Hao Shi3, Xi Chen1, Geping Luo1 & Qiang Yu3

Terrestrial gross primary production (GPP) plays a vital role in offsetting anthropogenic CO2 emission 
and regulating global carbon cycle. Various remote sensing approaches for estimating GPP have 
attracted considerable scientific attentions, yet their robustness and uncertainties remain unclear. Here 
we evaluate the performance of the “temperature and greenness” (TG) model, a representative remote 
sensing model in estimating GPP, using the global FLUXNET GPP based on parameter sensitive analysis 
and optimization strategies. The results show that the minimum (xn) and optimum (xo) temperatures 
for photosynthesis are sensitive parameters but maximum temperature (xm) not. Optimized xn and 
xo differ largely from their defaults for more than half of 12 plant functional types (PFTs). Parameter 
optimization significantly improves the TG’s performance in forest ecosystems where temperature 
or solar radiation has significant contribution to GPP. For water-limited ecosystems where GPP are 
strongly dependent of EVI and EVI are sensitive to precipitation, parameter optimization has limited 
effects. These results imply that the TG model, and most likely for other kind of GPP models using 
same methodology, can’t be significantly improved for all PFTs through parameter optimization only, 
and other key climatic variables should be incorporated into the model for better predicting terrestrial 
ecosystem GPP.

Terrestrial gross primary production (GPP) is the major driver of global carbon cycle and it plays an important 
role in regulating the concentration of CO2 of the atmosphere by partly offsetting anthropogenic CO2 emissions1. 
However, direct measurements of GPP are not available, because no observational techniques are ready to quan-
tify this process at the right spatial scale2.

Quantification of GPP at ecosystem level is mostly inferred from the measurements of net ecosystem pro-
duction (NEP) between terrestrial ecosystems and the atmosphere using the eddy covariance (EC) equipment3. 
More than 950 site-years EC data have been archived in the international network of FLUXNET4 during the past 
three decades, which make the estimation of GPP possible at site level. However, estimate of GPP at a larger (for 
example regional, national or global) scale was difficult5. To retrieve GPP estimates at larger scales, site level of 
EC-inferred GPP have to be scaled up to spatial domains based on empirically statistical methods5,6, such as 
artificial neural networks7 or ensemble model trees5, or semi-empirical models including light use efficiency8 
or water-use efficiency9 approaches. A common disadvantage of these approaches is the strong dependency on 
environmental (vegetation, soil or meteorological) variables6.

Another commonly used approach to quantify GPP based on land surface models (LSMs) or ecosystem 
models at different scales10. These models have explicit modules to simulate carbon cycle processes by describ-
ing plant physiological behaviour in relation to soil and atmospheric processes11. Models can be implemented 
alone (offline)12–14 or coupled with climate model (online, also termed Earth System Models)15–17. The significant 
advantage of these carbon models relies in the continuousness in both space and time, so that they have been 
often used to detect the trend and inter-annual variability of GPP in long term period and at larger scales18,19. 

1State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy 
of Sciences, Urumqi 830011, China. 2Graduate School, University of Chinese Academy of Sciences, Beijing 100100, 
China. 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, 
Yangling, China. Correspondence and requests for materials should be addressed to L.L. (email: lilhchn@gmail.com)

received: 26 September 2016

accepted: 02 February 2017

Published: 08 March 2017

OPEN

mailto:lilhchn@gmail.com


www.nature.com/scientificreports/

2SCIENtIFIC REPorTS | 7:44046 | DOI: 10.1038/srep44046

However, LSMs require multiple driving data including meteorological variables, vegetation and soil maps, which 
are highly spatial heterogeneities and uncertainties.

Alternatively, GPP at larger scale can be estimated by the approach using satellite measurements of vegetation 
parameters that are directly related to plant photosynthesis (i.e., GPP)20. These parameters mainly include pho-
tosynthetically active radiation (PAR), normalized difference vegetation index (NDVI) or enhanced vegetation 
index (EVI), and leaf area index (LAI). Integrating one or more of these photosynthesis-related remote sensing 
measurements into an empirical or semi-empirical model was used to predict GPP. Amongst existed models, 
a classical type is termed light use efficiency (LUE) model, which describes GPP as a multiple product of PAR, 
fraction of PAR absorbed by the vegetation (fPAR), potential LUE (LUEmax) and the environmental constraints on 
LUEmax

21–26. LUE-type models also require ancillary environmental variables such air temperature, vapor pressure 
deficit, soil moisture or canopy water content to constrain LUEmax

26. In LUE-type models, fPAR was generally 
calculated as a linear function of NDVI27. However, NDVI was found to be easily saturated at moderate to high 
vegetation coverage28–30. Development of EVI, in certain extent, reduced the severity of early saturation31. EVI 
was found to perform better than NDVI in predicting GPP in high dense vegetation, such as evergreen and 
deciduous forests32,33 and cropland as well34. Based on strong correspondence of GPP on EVI over one or two 
week intervals35,36, a cluster of EVI-based models was developed to predict GPP32,33,35–37. Amongst the EVI-based 
models, temperature and greenness (TG) model received much attention due to its simplicity which uses purely 
remote sensed land surface temperature (LST) and EVI, free of any ancillary meteorological data, as drivers37. 
In the TG model, LST was considered to be representative of climatic variables and EVI include information of 
photosynthetic potential37. In addition, the TG model only consists of three temperature-related parameters (see 
Methods), which represent the minimum (xn), optimum (xo) and maximum (xm) LST values on photosynthesis, 
respectively. The TG model has been widely evaluated against with site level of derived GPP from EC38,39 and 
inter-compared with other LUE models39, it showed significant advantages in limited ecosystem types. However, 
the robustness of such a simply model in estimating GPP across a wide spectrum of ecosystems and associated 
uncertainties from model parameters have not yet been investigated.

Therefore, the first objective of this research is to conduct a comprehensive evaluation of the TG model for 
predicting GPP using the EC-derived GPP. The second objective is to deploy the potential of parameter optimiza-
tion method in improving the performance of the TG model. Finally, this paper aims at investigating the robust-
ness and uncertainties of the TG model among different biomes through introducing other climatic factors (e.g., 
precipitation and solar radiation) into a linearly multiple regression model. Such evaluation and investigation 
provided a common methodology to any other LUE-type models for predicting GPP, although the TG model was 
adopted as a case in this research.

Results
Parameter sensitivities of the TG model.  The TG model consists of three parameters, xn, xo and xm, 
which represent minimum, optimum and maximum temperature for plant photosynthesis37. Their values were 
set as 0, 30, and 50 °C, respectively, in the TG model37. The three parameters are referred to LST, rather than air 
temperature, which is more commonly used to drive productivity models37. The values of the three tempera-
ture-related parameters may differ largely across PFTs, so we set wide ranges of the three parameters (Table 1) to 
investigate their sensitivities using Morris method40. From the Morris screening method, two indices μ​* and σ​ 
measure the influence of each parameter and its degree of involvement in non-linearities and interactions with 
other parameters, respectively. None of σ​ value was significantly larger than 2 μ​* for all parameters and all PFTs, 
indicating that limited interactions and/or non-linearities existed (Fig. 1). Then we ranked the relative degree of 
sensitivities of three parameters based on their μ​* values for each PFT and a larger μ​* was considered as a more 
influential parameter (Fig. 1a). It is clearly that mostly influential parameters differ across PFTs. Parameter xn and 
xo were identified as mostly influential parameters of the TG model for all forests (including DBF, DNF, EBF, ENF 
and MF) and GRA, while xo was selected as the relatively influential parameters for other remaining PFTs (includ-
ing CSH, CRO, WSA, WET, SAV and OSH). However, xm was not identified as the mostly influential parameter 
for any PFT (Fig. 1 and Fig. S1).

Optimization of parameters of the TG model.  Theoretically, only those parameters selected as mostly 
influential by the Morris screening analysis were applied to MCMC for parameter optimization. Because there 
were only three parameters in the TG model and applying all three parameters to MCMC will not exert great 
burdens on computation, we included all three parameters (xn, xo and xm) during MCMC optimization.

To guarantee the validity of the optimized parameters from MCMC, convergence of the posterior parameters 
must be assured. A mostly direct way to diagnose the convergence is visually plotting the density of the posterior 

Parameter Default Ranges

Optimized

CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WET WSA

xn 0 −​15–10 0 0 2.5 0 −​6 −​10 0 0 0 0 5 0

xo 30 10–40 30 29 27 30 15 27 27 24 30 28 22 31

xm 50 40–65 50 50 50 50 50 50 50 50 50 50 50 50

Table 1.   Default, ranges and optimized values for the three parameters of the TG model for 12 PFTs. xn, 
xo and xm represent the minimum, optimal and maximum land surface temperature for photosynthesis. All 
variables are united in °C. Legends for PFTs were defined in Methods.
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parameter. More like a Gaussian distribution of the posterior parameter, more possible the convergence can be 
assured. As shown in Fig. 2a, parameter xn was identified as convergent for ENF, EBF, DBF and WET. Parameter 
xo was considered as convergent for all PFTs except CRO, DNF and OSH (Fig. 2b). However, xm was identified as 
unconvergent during the range of 40–65 °C for all PFTs (Fig. 2c) due to their uniform or gamma distributions. 
The convergence of the posterior parameters optimized by MCMC agreed with the results diagnosed by running 
mean of the posterior parameters (Fig. S2). Overall, posterior distribution of parameter xo showed convergence 
in nine of twelve PFTs (excluding CRO, DNF and OSH), and that of parameter xn showed convergence in four of 
twelve PFTs (including ENF, EBF, DBF and WET) but posterior distribution of xm from MCMC did not show con-
vergence for any PFT. It is worth mentioning that the parameters identified as convergent from MCMC (Fig. 2) 
were consistent with those parameters identified as mostly influential by the Morris screening analysis (Fig. 1a), 
which also indicated the advantage of applying all three parameters to MCMC.

The optimized parameter value for those PFTs which were sensitive to xn were significantly different from the 
default value of xn (0 °C), and had wide ranges from −​10 °C in ENF to 5 °C in WET (Fig. 2a). For parameter xo, 
the optimized value by MCMC differed largely across PFTs (Fig. 2b). In EBF, the optimized value for xo was 15 °C, 
half of the default value (30 °C) of the TG model. In WET, the optimized xo was 22.5 °C. In DBF, ENF, GRA and 
MF, the optimized xo by MCMC were about 25 °C. While, in the remaining three PFTs (CSH, SAV and WSA) 
which were sensitive to xo, the optimized values of xo ranged from 27.5 to 32.5 °C, and were close to the default xo 
(30 °C) of the TG model. Wide ranges of the optimized xo for LST by MCMC provided good support for previous 
report that optimum air temperature for canopy carbon flux varied from 7.5 to 30 °C and were highly correlated 
with mean summer temperature41. For parameter xm, no optimized value can be derived by the MCMC method 
during the range of LST between 40 and 65 °C (Fig. 3c), which was in good agreement with the analysis from the 
Morris screening method (Fig. 1).

Effects of MCMC optimization on the TG model.  Figure 3 shows the performance of the TG model 
before and after MCMC optimization. The default TG model (before optimization) performed large difference 
in different PFT. Correlation coefficient (R) between the observed GPP and the simulated GPP by the default 
TG model ranged from 0.55 in EBF to 0.96 in DNF, but were larger than 0.7 in ten of twelve PFTs (except EBF 
and WET), which indicated that the default TG model was able to explain more than 60% of variance of the 
observed GPP at monthly scale. After applying MCMC to the TG model, correlation coefficient (R) between data 
and model did not significantly increase in all twelve PFTs, but both normalized standard deviation (STD) and 
root mean squared difference (RMSD) decreased in EBF and ENF. STD decreased from 1.32 to 0.90, and RMSD 
decreased from 1.12 to 0.94 for EBF. For ENF, STD decreased from 1.01 to 0.86, and RMSD decreased from 0.67 
to 0.62. Obviously, the effects of MCMC optimization on performance of the TG model were caused by the dif-
ference in the values of parameters xn and/or xo of the model (Fig. 2a and b). Optimized TG model by MCMC 
did not cause the increase in R between data and model, but caused the decrease in normalized STD and RMSD 
in EBF and ENF, which were also attributed by the nature that the maximum likelihood estimation was used as a 
cost function in MCMC.

Relative Contributions of EVI and Climatic Variables on GPP.  It is clear that EVI had dominated 
effects on GPP in all PFTs except EBF in which RAD was found to have comparable effects on GPP (Fig. 4). 
Individual effect of EVI was able to contribute 13% and 28% of GPP variation in EBF and WET, respectively. In 
the remaining ten PFTs, EVI could contribute 39% (ENF) to 77% (CSH) of GPP variations. When introducing 

Figure 1.  Mean elementary effects (μ​*) (a) and standard deviation of elementary effects (σ​) (b) derived from 
the Morris screening analysis for twelve PFTs. Each axis of the radar plot corresponds to the values of μ​* or σ​ 
and different colors of lines with symbols represent three parameters of the TG model. A larger μ​*, the more 
important the parameter in the TG model for a specific PFT. Legends for PFTs were defined in Methods.
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LST as a predictor to estimate GPP in MLR, LST showed its significant effects on GPP in forest PFTs (including 
DBF, DNF, EBF, ENF and MF) but insignificant in non-forest PFTs. Similarly, RAD was found to have significant 
effects to estimate GPP in forest PFTs (excluding DNF with limited measurements) which are mostly energy lim-
ited ecosystems and moderate effects on CRO and WSA as well. In contrast, PRC was found to have significant 
effects on GPP in WSA, SAV, OSH, CSH and CRO, in which GPP were mostly possible to be limited by water42.

Given considering the four key variables (EVI, LST, PRC and RAD) together as predictors for estimating GPP 
using MLR, we found that the MLR using the four variables had comparable capability to estimate GPP as the 
TG model in ten out of twelve PFTs except EBF and WET. In EBF, MLR using four variables had worse ability to 
estimate GPP but better in WET.

Discussions
Although the TG model was reported to have high accuracy of predicting GPP across a wide range of ecosystem 
types, previous evaluations were mostly focused on limited ecosystem types or few sites of data for an ecosystem 
type37,39. This study made utilize of a global FLUXNET GPP data to demonstrate that the TG model performed 
well (R2 >​ 0.7) for 7 of 12 PFTs (CSH, DFB, DNF, MF, OSH, SAV, and WSA), and moderately (0.5 <​ R2 <​ 0.7) for 3 
PFTs (CRO, GRA and ENF), but poorly (R2 <​ 0.5) for EBF and WET. So it is necessary to understand why the TG 
model performed differently across PFTs.

Figure 2.  Density of the posterior parameters for three parameters (a) for xn, (b) for xo and (c) for xm of the TG 
model. Lines with different colors represent different PFTs. Three vertically dashed lines represent the default 
values for parameter xn, xo and xm of the TG model, respectively. Legends for PFTs were defined in Methods.

Figure 3.  Effects of MCMC optimization on performance of the TG model in twelve PFTs. Twelve points 
with different shapes represent PFTs and green and blue color points represent the performance of the TG 
model before and after MCMC optimization. The black solid circle on the x-axis represents the reference 
(observation) with normalized standard deviation and correlation coefficient (Correlation) with 1.0 and 1.0, 
respectively. The solid gray arch lines labeled with digits represent the normalized room mean square difference. 
Legends for PFTs were defined in Methods.
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Overall, the TG model predicted GPP well compared with the flux tower GPP in WSA and SAV where vege-
tation are sparse, which obviously conflicted with previous understanding37. It was deemed that solar elevation 
angel strongly affected the EVI values when vegetation is sparse37 which are cases for WSA and SAV. Our analysis 
showed that EVI was still well correlated with GPP in SAV and WSA, indicating that vegetation fraction coverage 
may be not an important source of errors. More importantly, EVI was proven to be very sensitive to PRC in SAV 
and WSA43, so LST was found to be have less contribution than PRC on GPP (Fig. 4). This is also evidenced in 
CSH, GRA and OSH. However, in DBF, EBF and ENF, RAD was found to have considerable contributions on 
GPP, indicating that GPP of forest ecosystems may be limited by RAD44. In WET, GPP was principally influenced 
by RAD45 and non-climatic variables such as leaf area index and water table depth45. As the number of GPP data 
for DNF was relatively limited, RAD did not show significant contribution on GPP.

The performance of a model can be determined by the model structure (behaviour), model parameters and 
input10. In this study, we mainly focused on the effects of model parameters on the performance of the TG model 
by optimizing the parameter based on MCMC. In terms of parameter values in the TG model, optimized values 
for both xo and xn differed largely from their default ones for more than half of 12 PFTs. However, parameter 
optimization using MCMC significantly improved the model’s performance for EBF and ENF only, where tem-
perature and solar radiation are critically important for GPP. For other ecosystem types, such as DBF and WET, 
MCMC did not significantly improve the performance identified by a Taylor diagram, although the optimized 
parameters (xo and xn) values were largely different from their default. This suggests that the performance of the 
TG model can’t be improved by optimizing its parameters only, which also reflected that the TG model has large 
potential to improve in model structure and process. For example, solar radiation should be integrated into the 
model for forested ecosystems, and precipitation should be considered for water-limited ecosystems (WSA, SAV, 
and GRA). However, in some water-limited ecosystems, EVI was found to be very sensitive to precipitation43. 
Consequently, the TG model performed very well for these water-limited ecosystems (Fig. 2). However, we should 
note that in some PFTs, MCMC did not really improve the model performance but still induce a large discrep-
ancy in the values of parameters. This suggests that the optimized parameter values may not correspond to true 
underlying values. Another reason is that the TG model was jointly determined by all parameters, rather than any 
individual one. Therefore, the optimized value for a single parameter by MCMC should not be over-interpreted.

Similar to previously studies using vegetation index to predict GPP46,47, LUE-type models showed robustness 
for some ecosystems and weakness as well for other ecosystems or when drought events presented. The essential 
causes were that the algorithms describing the environmental regulations, particularly water stress on GPP built 
in those models are largely different. By comparing the TG model (with or without parameter optimization) with 
a linearly multiple regression model, other climatic variables, such as radiation or precipitation, have significant 
effects on GPP in some ecosystems. In the TG model, LST was considered to be representative of climatic con-
ditions (air temperature, vapor pressure deficit, or radiation). However, this prerequisite for the TG model does 
not hold for all ecosystems, evidenced by largely different “relative contribution” of each climatic variable to GPP 
(Fig. 4). This implies that the TG model, and most likely for other kind of GPP models using same methodology, 
should incorporate other key climatic variables for further improving the accuracy in simulating terrestrial eco-
system GPP.

Figure 4.  Relative contributions of EVI (green), land surface temperature (LST, red), precipitation (PRC, 
blue) and radiation (RAD, purple) on GPP in twelve plant functional types (PFTs). Gray triangle and 
black circle represent correlation coefficient (R) between the data and the model simulated by the default and 
optimized TG model with MCMC method, respectively. Legends for PFTs were defined in Methods.
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Methods
Global GPP dataset.  The analyses performed in this study are based on monthly GPP data from 155 flux 
towers, consisting of a total of 624 site-year datasets and representing a world wide spectrum of biomes and 
climate regions. These data covered 12 ecosystem types including cropland (CRO), closed shrubland (CSH), 
deciduous broadleaf forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), ever-
green needleleaf forest (ENF), grassland (GRA), mixed forest (MF), open shrubland (OSH), savanna (SAV), 
wetland (WET), and wood savanna (WSA). Geophysical location of the flux tower sites are shown in the Fig. S3, 
and the number of each ecosystem type is listed in the Table S1. The majority of data were obtained from global 
FLUXNET (La Thule level 2 or level 4 products)48, and the rest of data were obtained directly from the site 
researchers. GPP data were inferred from net ecosystem production (NEP) observed by eddy covariance. Only 
site-years with small gaps (i.e., individual gaps in NEP of less than 5% of the entire annual record) were selected 
except in certain ecosystems of the boreal region where only growing season data were available. Missing values 
of NEP (and GPP) were gap-filled and partitioned by a publicly available marginal distribution sample (MDS) 
online tool3.

Satellite data.  MODIS monthly enhanced vegetation index (EVI) (MOD13A3.005) and land surface tem-
perature (LST) (MOD11C3.005) products for February 2000 to 2013 were obtained from the USGS repository 
(http://e4ftl01.cr.usgs.gov/MOLT/). Both EVI and LST dataset were produced globally over land at 1-km resolu-
tion. Due to the difficulty of precisely co-locating the pixels that directly correspond to the footprint of an EC flux 
site, a central 3 ×​ 3 km window surrounding the flux tower was used to extract mean EVI and LST time series49. 
To reduce noise and uncertainties in the MODIS EVI and LST time series at each site, the singular spectrum 
analysis (SSA) was employed. In the monthly EVI and LST time series, a window length of 37 (i.e. 37 months) and 
6 leading components were found to best captured the periodicity and simultaneously reduced random noises 
during reconstruction. To further minimize the contamination, the snow/ice flag in MOD13A3 quality assurance 
field was first used to remove the snow-covered EVI values; and then EVI values were further screened for effects 
of cold temperature (LST <​ −​2.0 °C) using the MODIS LST50.

Temperature and greenness (TG) model.  The temperature and greenness (TG) model simulates GPP as 
a proportionally linear function of the product of scaled EVI (EVIscaled) and LST (LSTscaled)37, i.e.,

= × ×GPP m EVI LST (1)scaled scaled

where m is a scalar with unit of gC m−2 day−1.
The EVI scalar is simply defined as:

= − .EVI EVI 0 1 (2)scaled

where 0.1 was the EVI value when GPP drops to zero.
Another scalar LSTscaled was defined as:

=






−
−

−
−





LST min LST x

x x
, x LST

x x (3)
scaled

n

o n

m

m o

where min represent the minimum value of the two items in the square brackets, xn, xo and xm are three param-
eters, and represent minimum, optimum and maximum temperature for plant photosynthesis37. Their default 
values were set as 0, 30, and 50 °C, respectively37. In the TG model, LST represent climatic conditions in some 
extent, and EVI is used as a measure of vegetation greenness.

Ranking of parameter sensitivities.  Although there are only three parameters in the TG model, it is still 
necessary to understand the sensitivity of the model to each parameter. Here we use the Morris method40,51 to 
screen out the most important parameters. The Morris screening is based on a one-at-a-time (OAT) approach, 
in which only one parameter is varied between two runs, allowing for calculating a local partial derivative of 
the output variable with respect to the input parameter. This impact of input parameter on the output is called 
elementary effect. The Morris method calculates the elementary effects of each parameter in several locations 
of the parameter space several times, so it is generally considered to be a “global” screening method. The mean 
(μ​*) and standard deviation (σ​) of all elementary effects for each parameter can be used to be representative of 
the behavior of this parameter in its entire range of variation. The two indices μ​* and σ​ measure the influence of 
the parameter on output variable and its degree of involvement in non-linearities and/or interactions with other 
parameters, respectively.

In this study, the R package “sensitivity”52 was used to implement the Morris method for the TG model across 
12 ecosystem types.

Bayesian approach for parameter optimization.  Parameter optimization was performed within a 
Bayesian framework, which treats the unknown model parameters x as random variables with the posterior prob-
ability density function (pdf) p(x|y) given by

∝x y p y x p xp( ) ( ) ( ) (4)

where p(x) denotes the prior distribution of x and p(y|x) signifies the likelihood function of x. Bayesian inference 
was performed using Markov Chain Monte Carlo (MCMC)53. For the application of Bayes theorem, an efficient 

http://e4ftl01.cr.usgs.gov/MOLT/
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algorithm called the Metropolis-Hastings algorithm54,55 was used to the posterior distribution p(x|y). The prior 
probability density function was first specified by providing a set of limiting intervals for the parameters. The 
likelihood function was then constructed assuming that errors in the observed data followed Gaussian distribu-
tions. In total, 105 iterations of probability distribution for each PFT were carried out to best satisfy convergence.

Statistical analysis.  The Taylor diagram56 was used to describe the effects of parameter optimization on 
the performance of the TG model. The performance of the TG model was displayed in a single diagram, featured 
by correlation coefficient (R), standard error (STD), and root mean square difference (RMSD). The higher the R 
and the smaller the STD and RMSD, the better the agreement between model and data is. When comparing two 
simulations with different parameter values, i.e. the default TG model or the TG model after MCMC optimiza-
tion, the longer the distance between the two simulation points, the greater effect of optimization on the model’s 
performance. To make the performance of the TG model across ecosystems, the Taylor diagram was shown in a 
normalized way, so “observations” are displayed in the point (R =​ 1, STD =​ 1, RMSD =​ 0).

To investigate why the TG model performed differently amongst PFTs, relative weight analysis (RWA) was 
used to quantify the relative contributions of EVI and three key climatic variables, LST, precipitation (PRC) and 
radiation (RAD) on GPP, supplementary to multiple linear regression (MLR) analysis. The function “rlw” in the R 
package “yhat” was used to implement RWA, and the R package “plotrix” was used to plot Taylor diagram.
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