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PDLIM5 links kidney anion 
exchanger 1 (kAE1) to ILK and is 
required for membrane targeting of 
kAE1
Ya Su1, Thomas F. Hiemstra2, Yahui Yan3, Juan Li3, Hannah I. Karet1, Lawrence Rosen1, 
Pablo Moreno1 & Fiona E. Karet Frankl1

Anion exchanger 1 (AE1) mediates Cl−/HCO3
− exchange in erythrocytes and kidney intercalated cells 

where it functions to maintain normal bodily acid-base homeostasis. AE1’s C-terminal tail (AE1C) 
contains multiple potential membrane targeting/retention determinants, including a predicted PDZ 
binding motif, which are critical for its normal membrane residency. Here we identify PDLIM5 as a direct 
binding partner for AE1 in human kidney, via PDLIM5’s PDZ domain and the PDZ binding motif in AE1C. 
Kidney AE1 (kAE1), PDLIM5 and integrin-linked kinase (ILK) form a multiprotein complex in which 
PDLIM5 provides a bridge between ILK and AE1C. Depletion of PDLIM5 resulted in significant reduction 
in kAE1 at the cell membrane, whereas over-expression of kAE1 was accompanied by increased PDLIM5 
levels, underscoring the functional importance of PDLIM5 for proper kAE1 membrane residency, as a 
crucial linker between kAE1 and actin cytoskeleton-associated proteins in polarized cells.

Anion exchanger 1 (AE1) is a sodium-independent member of a family of 1:1 chloride-bicarbonate exchangers. 
In mammals, AE1 is expressed at high levels in erythrocytes (eAE1) and kidney (kAE1). Under the control of 
separate promoters, both AE1 isoforms are encoded by SLC4A1. Human kAE1 thereby lacks the first 65 resi-
dues present in eAE11. In kidney, kAE1 is mainly found at the basolateral membrane of type A acid secreting 
intercalated cells (α​-IC) of the collecting duct in the distal nephron, where it is functionally coupled to the cells’ 
apical proton pumps to maintain normal bodily acid-base homeostasis. Mutations in SLC4A1 are associated with 
distal renal tubular acidosis (dRTA)2,3, a condition characterized by impaired urinary acid secretion, hyperchlo-
remic metabolic acidosis, hypokalemia, growth retardation, nephrocalcinosis and nephrolithiasis4. Mutant kAE1 
proteins usually exhibit normal or only modestly reduced Cl−/HCO3

− transport activity, but severe trafficking 
defects. To date, at least two mistargeting phenotypes, intracellular retention and aberrant membrane accumula-
tion, have been observed and are the major pathogenic mechanism5–8.

AE1 is composed of a large cytosolic N-terminal domain, a central transmembrane anion exchange region 
predicted to span the lipid bilayer 12–14 times, and a short cytosolic C-terminal tail (AE1C). Although multiple 
binding sites for proteins such as glycolytic enzymes and cytoskeletal linker proteins have been identified in the 
N-terminal domain of eAE19–12, none of these appear to interact with the N-terminus of kAE113,14, probably 
because of structural change caused by truncation of the first 65 residues in kAE115. Notably, dominant dRTA 
mutations are spread over both transmembrane and C-terminal domains, but no such mutations have been iden-
tified within the N-terminus.

AE1’s C-terminus contains 36 residues in which three autosomal dominant dRTA-causing muta-
tions (A888L+​889X16, M909T8 and R901X17) have been reported. R901X truncates AE1 by 11 amino acids 
(R901DEYDEVAMPV911) (kAE1-Δ​11) and has been intensively investigated. In Xenopus oocytes, kAE1-Δ​11 
exhibits normal anion transport function, but is mis-targeted in both Madin-Darby Canine Kidney (MDCK) and 
HEK293 cells5,6,18, supporting an initial idea that defective urinary acidification arises from trafficking defects 
of mutant proteins in kidney α​-ICs19,20. The C-terminal region is actually rich in potential targeting motifs/
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determinants21 including a PDZ (Post-synaptic density protein, PSD-95; Drosophila disc large tumour suppres-
sor, Dlg; Zonula occludens-1, ZO-1) binding motif formed by the last 4 residues (A908MPV911) that has not been 
previously characterized. The M909T mutation or deletion of the motif results in trafficking defects of the mutant 
proteins in polarized kidney epithelial cells, implicating this motif in proper membrane residency of kAE18.

Several proteins have so far been reported to associate with AE1C, and disruption of these interactions results 
in abnormal cellular location of kAE121–23. We report here a novel C-terminal binding partner, PDLIM5, also 
called Enigma homolog protein (ENH) and belonging to the Enigma subfamily of PDZ-LIM proteins. PDLIM5 
contains one N-terminal PDZ and three C-terminal LIM domains. PDZ domains are a type of common structural 
domain of 80–90 amino acids and are known as organizers of protein complex assembly. Studies of PDZ proteins 
in various organisms have provided evidence of their involvement in cellular sorting and targeting (including 
basolateral membrane targeting) of their binding partners24.

Results
PDLIM5 is a potential binding partner for kAE1.  Co-immunoprecipitation (IP) assays were performed 
using lysates from MDCK-Δ​pMEP-GFP-kAE1 cells with anti-AE1 (Bric-170) as immunoprecipitating antibody 
and anti-CD63, which does not recognize dog CD63, as a negative control antibody. Mass Spectrometry identi-
fied 480 proteins which were classified into 26 functional enrichment categories (Fig. 1a, Supplementary Table 1). 
Among these potential binding candidates, PDZ domain-containing PDLIM5 was chosen for further 
investigation.

PDLIM5 expression in kidney.  Lee et al. have recently reported gene expression patterns in each of 14 
renal tubule segments in rat kidney using RNA-sequencing coupled with classic tubule microdissection25. There, 
PDLIM5 transcripts were found in almost every segment with enhancements in the medullary long descend-
ing limb of Henle’s loop, connecting tubule, cortical collecting duct (CD) and inner medullary collecting duct. 
Dual-immunostaining for kAE1 and PDLIM5 in available sections of human kidney cortex demonstrated known 
kAE1 localization to the basolateral surface of α​-IC in CD (Fig. 1b, panels b and e) while PDLIM5 was more 
extensively distributed, including proximal tubules and CD (panels a and d). Merged confocal optical sections 
suggested some co-localization of the two proteins in α​-IC in the cortical collecting duct (panels c and f).

PCR products amplified from human kidney cDNA using specific primers displayed two clear bands of 1800 
and 1400 bp (Fig. 2a) whose sequences correspond to isoforms a (ID: NP_006448.4) and b (ID: NP_001011513.3) 
in the NCBI database, respectively. PDLIM5a and PDLIM5b are splicing isoforms; both contain one N-terminal 
PDZ domain and three C-terminal LIM domains, but differ in the centre where PDLIM5b has 109 residues 
missing (panel b). In addition, both isoforms were identified in all kidney tissue/cell lysates examined (panel c) 
by Western blotting.

The PDZ binding motif in AE1C is important for direct PDLIM5 binding.  To investigate 
direct protein interactions, we made GST-tagged AE1C-WT, AE1C-Δ​11 and AE1C-M909T proteins 
(Supplementary Figure 1a) as previously described23. Expression of tag-free full-length PDLIM5 caused degrada-
tion apart from a stable fragment of approximately 13 kD (Supplementary Figure 1b), which N-terminal sequenc-
ing showed to be the first 127 residues of PDLIM5 (designated PDLIM5-PDZ), which contains the entire PDZ 
domain of this protein. We were therefore able to use this domain for ELISA analysis. In addition, we attempted 
to express and purify a fragment containing the LIM domains of PDLIM5 but this also degraded rapidly during 
tag cleavage and purification steps.

Parallel ELISA analyses were then performed using AE1C-WT, AE1C-Δ​11 or AE1C-M909T GST fusion pro-
teins incubated with GST-PDLIM5a or PDLIM5-PDZ recombinant proteins. AE1C-WT and AE1C-M909T, but 
not AE1C-Δ​11, were able to bind to both tagged PDLIM5a (Fig. 2, panel d) and untagged PDLIM5-PDZ (panel e).  
This indicates firstly that A908MPV and A908TPV at the far C-terminus of AE1 (wild-type and mutant respectively) 
are both PDZ-binding motifs and secondly that the PDZ domain of PDLIM5 is important for binding.

PDLIM5 is required for membrane residency of kAE1 in kidney cells.  Since loss of the last 11 res-
idues of AE1 causes not just dRTA/kAE1 mistargeting but also abolishes PDLIM5 binding, we next assessed a 
possible role for PDLIM5 in kAE1 membrane targeting/retention in kidney cells. We first used siRNA oligonu-
cleotides directed against the 3rd exon of PDLIM5 (which encodes part of the PDZ domain in both long and short 
forms) to target endogenous PDLIM5 mRNA in HEK-Δ​pMEP-GFP-kAE1 cells. This achieved approximately 
70% reduction of endogenous PDLIM5a expression (Fig. 3a), while levels of PDLIM5b were better maintained 
at about 80%. PDLIM5 depletion resulted in a marked decrease (at least 70%) of kAE1 levels at the cell surface 
as assessed by biotinylation with accompanying but less marked reduction (~20%) in kAE1 levels in total cell 
lysates. In concert, confocal microscopy (Fig. 3b) demonstrated a similar reduction of membrane presence in 
knock down cells, with most kAE1 protein retained intracellularly, suggesting impaired membrane trafficking. As 
a non-radioactive alternative to pulse-chase analysis, we performed a time-course series at 2, 4, 6 and 8 hours after 
induction of kAE1 expression in HEK-Δ​pMEP-eGFP-kAE1 cells depleted of PDLIM5 (Fig. 3c,d). Surface kAE1 
was low in knockdown cells at all time-points, suggesting a defect of membrane targeting rather than achievement 
of membrane residency followed by internalisation.

A slightly lower level (~50%) of PDLIM5a depletion was achievable in MDCK kAE1-expressing cells, with no 
reduction in the level of PDLIM5b (Supplementary Figure 2). Interestingly, kAE1 levels were unaffected in the 
MDCK knock down samples, implying possible compensation by the PDLIM5b isoform for the loss of PDLIM5a 
in this system.

Second, we examined induction of kAE1 membrane expression in HEK-Δ​pMEP-eGFP-kAE1 cells. Steady 
state was reached at 16 hours (Supplementary Figure 3) and was accompanied by significantly increased total 
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levels of PDLIM5 protein (Fig. 3e), of which the majority was the a-isoform. To differentiate between new 
PDLIM5 protein synthesis or its stabilization, we examined additional earlier timepoints by real-time quantitative 
PCR (RTqPCR) and Western blot (Fig. 3f). We found no significant change in mRNA levels for PDLIM5a (right 
panel), whereas PDLIM5 protein levels rose sequentially, suggesting that PDLIM5 is required to stabilise kAE1’s 
membrane residency.

Figure 1.  Identification of the PDLIM5 as a potential binding partner for kAE1. (a) 480 proteins including 
PDLIM5, classified into 26 functional enrichment categories, were identified following co-IP-coupled mass 
spectroscopy from kAE1-expressing cells. (b) Immunostaining of normal human kidney cortex (lower panels at 
high power) showed kAE1 (red, panels b and e) basolaterally in intercalated cells. PDLIM5 (green, panels a and d)  
distribution was more widespread throughout nephron segments with some enrichment basolaterally co-
localizing with kAE1 (yellow, panels c and f). Bars indicate 20 μ​m.
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PDLIM5, kAE1 and ILK are found in the same complex in human kidney.  Pull downs using immo-
bilized GST_AE1C-WT fusion protein and incubation with human kidney tissue lysates yielded both a and b 
isoforms of PDLIM5 (Fig. 4a, representative of three replicate experiments), confirming association of PDLIM5 
with the AE1C domain. As integrin linked kinase (ILK) is reported to associate with kAE1 in HEK293 cells 
and also glomeruli (where a low level of kAE1 has been reported)26,27, we re-probed the same blot for ILK, with 
positive results (Fig. 4a). This suggests a possible multiprotein complex formed of kAE1, through its C-terminal 
domain, with PDLIM5 and ILK.

Similar results were obtained using HEK-Δ​pMEP-GFP-kAE1 cell lysates (panel b). Finally, a blot overlay assay 
showed a direct interaction between PDLIM5 and ILK (panel c), but neither ELISA (panel d) nor blot overlay 
assays (panels e/f) yielded detectable ILK binding to AE1C or the isolated PDZ domain of PDLIM5. Together 
these data indicate that PDLIM5 forms a bridge between kAE1 and ILK. These results are further supported by 
bioinformatic analyses (as described in Methods) that suggest that the LIM domains in PDLIM5 are capable of 
interaction with the ankyrin repeats in ILK.

Figure 2.  Identification of two major PDLIM5 isoforms in mammalian kidney and in vitro confirmation of 
direct interaction between PDZ domain of PDLIM5 and PDZ binding motif of AE1. (a) PCR amplification 
of human kidney cDNA performed using primers for PDLIM5 coding region. Two fragments, approximately 
1.8 and 1.4 kb indicated two PDLIM5 transcripts that correspond to PDLIM5a and PDLIM5b respectively.  
(b) Domain organization of PDLIM5a and PDLIM5b proteins. Both isoforms contain one PDZ domain (black) 
and three LIM domains (grey) at N and C-terminus, respectively, but with a deletion of 109 residues in the 
middle of PDLIM5b. (c) Western blot analysis using anti-PDLIM5-ct detected both PDLIM5a and PDLIM5b 
isoforms in human kidney cytosol (HKC), HEK-Δ​pMEP-eGFP-kAE1 (HEK) and MDCK-Δ​pMEP-eGFP-kAE1 
(MDCK) cell lysates. (d,e) ELISA plate coated with GST wild-type (GST_AE1C-WT) or mutant (GST_AE1C-
M909T and GST_AE1C-Δ​11) fusion protein or GST alone incubated with either GST_PDLIM5 (d) or tag-free 
PDZ domain of PDLIM5 (e) followed by detection with anti-PDLIM5-nt antibody. Signals were expressed 
relative to WT (100%) ±​ SEM. Specific binding of AE1C-WT or AE1C-M909T to PDLIM5 or PDLIM5-PDZ 
is shown, demonstrating the importance of the PDZ binding motif in AE1 binding to PDLIM5’s PDZ domain. 
Signals from GST alone were significantly low (P <​ 0.0001 analyzed using ANOVA) confirming specificity.
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Figure 3.  PDLIM5 is required for membrane residency of kAE1. (a) Stable HEK-Δ​pMEP-eGFP-kAE1 cells 
were transfected with siRNA against PDLIM5 (KD) or Control siRNA (Con) over 48 h. Bands generated by 
Western blot analysis (left panel) were densitometrically quantified and expressed relative to WT (100%) ±​ SEM 
(right panels). Blots are representative of three separate assays. Over 70% knockdown of PDLIM5a protein was 
achieved. Levels of kAE1 were also severely depleted, especially on the plasma membrane (surface), in knockdown 
cells. (b) Confocal microscopy of stable HEK-Δ​pMEP-eGFP-kAE1 cells showed that kAE1 in knockdown cells 
was significantly intracellular compared to PDLIM5-replete cells. Bars indicate 10 μ​m. (c) Following biotinylation 
at 2, 4, 6 or 8 hours post-kAE1 induction, membrane levels of kAE1 were severely reduced in knockdown cells 
at all time-points compared to control cells, where (d) kAE1 levels progressively increased. (e) kAE1 expression 
induced in stable HEK-Δ​pMEP-eGFP-kAE1 cells (+lane) was accompanied by significant increases in levels 
of PDLIM5 in kAE1-expressing cells compared to kAE1-negative cells (- lane). (f) Protein and mRNA levels 
of PDLIM5a/PDLIM5 were analysed by Western blot (left panel) and RTqPCR (right panel), respectively, after 
induction of kAE1 at 2, 8 or 16 hours. Tubulin served as a loading control in panels a, c, e and f.
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Figure 4.  PDLIM5, AE1 and ILK are found in the same complex in human kidney. GST-tagged AE1C-WT 
or GST alone were employed in bead-bound pull-down assays against human kidney cytosol (a) or HEK-Δ​
pMEP-eGFP-kAE1 cell lysates (b). Bound proteins were analyzed by Western blotting using anti-PDLIM5-ct 
or anti-ILK antibodies, with GST blotting providing loading controls. PDLIM5a, PDLIM5b and ILK were all 
detected in the precipitates from tissue and cell lysate samples. (c) Blot overlay analysis detected ILK binding 
to PDLIM5 but not to GST using anti-ILK antibody. ILK, 5 pmoles of GST-ILK spotted; 5, 7 and 13 pmoles 
of GST-PDLIM5 (upper) or GST (lower) were spotted in lanes 1, 2 and 3 respectively. (d) ELISA showing 
absence of ILK binding to either GST_AE1C-WT or GST alone; ILK alone provided a positive control for the 
anti-ILK antibody (right bar). (e,f) Direct blot overlay analysis confirmed absence of ILK binding to either AE1 
or the PDZ domain of PDLIM5 (PDLIM5-PDZ) using anti-ILK antibody. ILK, 2 pmoles of ILK spotted; GST-
PDLIM5, 120 pmoles of GST-PDLIM5 spotted (panel f); 30, 60, and 120 pmoles of GST-AE1C-WT (panel e, 
upper) or GST (panel e, lower) or PDLIM5-PDZ (panel f) were spotted in lanes 1, 2 and 3 respectively.
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Discussion
We have here identified PDLIM5 as a binding partner of the terminal 11 residues of kAE1 and demonstrated a 
direct interaction through PDLIM5’s PDZ domain. Our results suggest that the PDLIM5/kAE1 interaction plays a 
role in kAE1’s basolateral membrane targeting/retention. The role of the last 11 residues of AE1 for PDLIM5 bind-
ing is of particular interest, the presence of basolateral targeting motifs/determinants within this region of AE1 
having previously been identified through expression studies of the truncating mutant5,6,18,28. In those studies, the 
mutation led to intracellular retention in HEK293 cells and mis-targeting apically in fully polarized MDCK cells.

We have previously also demonstrated the importance of the far C-terminus for AE1’s membrane residency, 
firstly by removing just the last 4 residues resulting in intracellular retention, and secondly showing non-polarized 
targeting with some intracellular retention of kAE1-M909T, a mutation causing dRTA8. In that study, we intro-
duced the idea that M909T creates a Type I PDZ binding motif (X(S/T)XΦ​, where X and Φ​ are ‘any’ and ‘hydro-
phobic’ amino acids, respectively) into the C-terminus. The last four residues (A908MPV) in wild-type AE1 are 
likely a Class II (XΦ​XΦ​) motif24. Thus, the preservation of PDLIM5 binding by AE1-M909T or AE1-WT suggests 
that the PDZ domain in PDLIM5 can function as either Class I or II.

SiRNA-induced depletion of endogenous PDLIM5 led to overall reduction of kAE1 with a major fall in kAE1 
levels on the plasma membrane and increased intracellular retention. Furthermore, in the PDLIM5-depleted 
time-course assay, surface kAE1 was low in knockdown cells at all time-points. The overall reduction is likely 
the result of degradation of non-delivered kAE1 by a lysosomal pathway as described by Almomani et al.29. 
Conversely, when membrane overexpression of kAE1 was induced in these cells, significantly increased levels 
of endogenous PDLIM5 protein, but not mRNA, were observed, suggesting increased protein stability due to 
PDLIM5’s association with kAE1. Since plasma membrane expression of eGFP-kAE1 reaches steady state at 
around 14–16 hours after induction of its expression and PDLIM5 levels rise in parallel, we believe that PDLIM5 
is involved in both kAE1 translocation to the membrane and in its retention. These results together indicate a 
requirement of PDLIM5 for the proper membrane residency of kAE1.

The nature of kAE1’s linkage to the underlying actin cytoskeleton has been uncertain. In 2007, Keskanokwong et al.  
reported an association between the kAE1’s N-terminus and ILK via a yeast two-hybrid screen26. Further char-
acterization employed co-IPs using various fragments of the two proteins in HEK293 cells. Overexpression of 
ILK increased kAE1’s presence at the membrane, with a parallel increase in ion transport; pulse-chase assay 
showed that the two proteins associated early in biosynthesis and travelled together from endoplasmic reticulum 
to plasma membrane. It was therefore proposed that ILK acts as a bridging molecule between the N-terminus 
of kAE1 and actin, via paxillin and actopaxin. However, a year later Williamson et al. showed that deletion of 
the majority of kAE1’s proposed ILK binding region failed to alter membrane residency of kAE130, weakening 
the hypothesis and calling the proposed direct interaction into question. Our GST pulldown results using both 
human kidney and HEK-Δ​pMEP-GFP-kAE1 lysates support Keskanowong’s findings but importantly, implicate 
the C-terminus of AE1 and not the N-terminus. Our ELISA and/or blot overlay assays, which showed no detect-
able direct interaction between AE1C and ILK, but a clear interaction between PDLIM5 and ILK that link AE1’s 
C-terminus to ILK, would account for Williamson’s results.

In thinking about kAE1’s tethering to the actin cytoskeleton, our bioinformatic analysis supports earlier stud-
ies reporting that ILK interacts with actopaxin and paxillin26,31,32. Therefore, our working model (Fig. 5a) is one in 
which PDLIM5 physically tethers kAE1 to ILK, which would be required for correct movement of kAE1 towards 
its final basolateral membrane destination. Our previous studies of wild-type kAE1 in kidney epithelial cells also 
demonstrated that it is stabilized on the membrane by Na+, K+-ATPase through interaction of kAE1 with the 
pump’s β​1 subunit21. Our current GST pulldown data (Fig. 5b) indicate that levels of β​1 in the AE1C-M909T 
mutant sample were significantly lower (P <​ 0.0001 by ANOVA) than for wild-type, indicating loss of sodium 
pump binding by AE1-M909T. This difference may explain why, despite preservation of the PDLIM5 interaction 
in this mutant and therefore basolaterally directed travel, less appears basolaterally and more is intracellularly 
retained8.

Finally, a number of other basolateral membrane determinants involving residues D902EYDEV907 are reported 
within the last 11 residues of AE123,29,30, most recently including adaptor protein subunit 1B33, but how all these 
determinants collaborate to regulate kAE1 membrane residency is not yet clear. In summary, we have identified a 
direct interaction between kAE1 and PDLIM5, and our data indicate that PDLIM5 is not only a novel chaperone 
for kAE1, but also provides a bridge between kAE1 and the underlying actin cytoskeleton. In addition, combining 
our data with previous reports, a molecular model is emerging of kAE1’s polarized cellular behaviour.

Methods
Antisera.  The following antibodies were used in this study: Bric-170 (mouse monoclonal, IBGRL 9540, recog-
nizing AE1); anti-PDLIM5-nt (rabbit polyclonal, Abcam ab83060), anti-PDLIM5-mid (rabbit polyclonal, Sigma 
HPA016740) and anti-PDLIM5-ct (rabbit monoclonal, Bethyl Laboratories A301-704A) – all PDLIM5 specific; 
anti-integrin linked kinase (ILK) (rabbit monoclonal, Abcam ab76468); anti-CD63 (mouse monoclonal, Abcam 
ab8219); anti-β​1 (mouse monoclonal, recognizing β​1 subunit of Na+, K+-ATPase, Sigma-Aldrich A278) and anti-
GST (goat polyclonal, GE healthcare 27-4577-01).

Species-specific horseradish peroxidase (HRP)-conjugated (Dako) and Alexa Fluor®​ 488 or 568 (Molecular 
Probes) secondary antibodies were used in Western blot and immunochemistry, respectively.

Expression constructs.  To express AE1 C-terminal domain in E. coli, cDNA encoding the last 36 residues 
of AE1 (AE1C or AE1C-WT) (-L876IFRNVELQCLDADDAKATFDEEEGRDEYDEVAMPV911), or truncating the 
last 11 residues of AE1C (AE1C-Δ​11), or AE1C with a missense mutation M909T (AE1C-M909T) were each 
cloned into pGEX-4T-1 vector to create N-terminal GST-tagged AE1C-WT, AE1C-Δ​11 or AE1C-M909T con-
structs as previously described8,23.



www.nature.com/scientificreports/

8Scientific Reports | 7:39701 | DOI: 10.1038/srep39701

cDNA encoding PDLIM5 was amplified from human kidney cDNA pool by high fidelity PCR 
using pr imers  PDLIM5_F CCGGAGCTCATGAGCAACTACAGTGTGTCA and PDLIM5_R 
CCGGCTCGA-GTCAAAAATTCACAGAATGAGCATG to introduce SacI and XhoI restriction sites, respec-
tively. These sites were used to clone the PCR product into pSUMO3 vector (LifeSensors, Inc.) which con-
tains His6-SUMO3 double tags upstream of a SacI site. All constructs were sequence-verified prior to use. To 
express intact kAE1 in mammalian cells, full-length cDNA was cloned into inducible vector Δ​pMEP4 to create 
N-terminal eGFP-tagged kAE1 (Δ​pMEP-eGFP-kAE1) as previously described8,21.

Protein expression and purification in E. coli cells.  GST-tagged AE1C-WT (GST_AE1C-WT), 
AE1C-Δ​11 (GST_AE1C-Δ​11) or AE1C-M909T (GST_AE1C-M909T) fusion proteins were expressed in E. coli 
BL21 cells and purified using glutathione sepharose beads34.

cDNA encoding PDLIM5 within pSUMO3 vector was expressed in E. coli BL21 cells to produce an N-terminal 
His6-SUMO3 tagged PDLIM5 fusion protein, which was purified using Ni-NTA agarose resin (QIAGEN). 
Eluate containing 200 mM imidazole (pH 7.4) from the Ni-NTA resin was digested with SUMO proteinase 2 
(LifeSensors, Inc.) to remove the His6-SUMO3 tag. Digests were further purified by size-exclusion chroma-
tography using HiLoad 26/60 Superdex 75 (GE life science) column equilibrated with PBS. Fractions collected 
were initially analyzed by SDS-PAGE coomassie staining, then Western blotting and N-terminal sequencing 
(Department of Biochemistry, University of Cambridge).

Cell culture, cell lysis and cell surface biotinylation.  Cells were grown and maintained in DMEM 
(Sigma-Aldrich) supplemented with FBS (10%), penicillin (100 U/ml)/streptomycin (100 μ​g/ml) and L-glutamine 
(2 mM) at 37 °C with 95% air and 5% CO2.

Cell lysates were collected in various buffers depending on experiments. For co-IP and GST pull-down assays 
(MDCK-Δ​pMEP-GFP-kAE1 and HEK-Δ​pMEP-GFP-kAE1 cells respectively), buffer contained 150 mM NaCl, 
20 mM Tris-HCl (pH 7.4), 10% glycerol, 1% Nonidet P40 (NP-40), 2 mM PMSF and EDTA-free Protease Inhibitor 
Cocktail (Roche) and for Western blot and cell surface biotinylation analyses, 50 mM Tris-HCl (pH 7.4), 150 mM 
NaCl, 5 mM EDTA, 1% NP-40 and 0.5% sodium deoxycholate with Protease Inhibitor Cocktail.

Figure 5.  Suggested model for membrane targeting of kAE1, association of the Na+, K+-ATPase and kAE1 
was abolished by AE1-M909T mutation. (a) A suggested model for membrane residency of kAE1 based 
on data from this study (green →​ red →​ blue) and reported in26,31,32 (blue →​ grey). Arrows represent direct 
interaction beteen the neighboring proteins as reported here. (b) GST-tagged AE1C-WT, AE1C-M909T or GST 
alone were employed in bead-bound pull-down assays against human kidney membrane fractions followed 
by Western blot analysis to detect the β​1 subunit of Na+, K+-ATPase (left panel). Bands were densitometrically 
quantified and expressed relative to WT (100%) ±​ SEM, demonstrating disruption of β​1 binding by the M909T 
mutation (right panel). Blots are representative of three separate assays.
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To examine levels of kAE1 at the plasma membrane, cell surface biotinylation was performed using the Cell 
Surface Protein Isolation Kit (Pierce) according to manufacturer’s instructions.

Plasmid or siRNA transfection.  MDCKII and HEK293 express endogenous PDLIM5, but not AE1. To 
overexpress kAE1, both lines were transfected with Δ​pMEP-GFP-kAE1 followed by stable clone selection, and 
maintenance as described21.

Endogenous PDLIM5 expression in stable HEK-Δ​pMEP-eGFP-kAE1 cells was depleted with a specific siRNA 
oligonucleotide (ID: 17950, Ambion). This, or a Silencer®​ Negative Control #1 siRNA (Ambion) was transfected 
at a final concentration of 50 nM using Lipofectamine™​ RNAiMAX reagents (Invitrogen) according to manufac-
turer’s instructions. Analysis was conducted 48 h later.

Protein expression in mammalian cells.  Stable MDCK-Δ​pMEP-GFP-kAE1 cells were seeded on 
Corning® Transwell® polycarbonate membrane cell culture inserts (Transwell filters, Corning Life Sciences) and 
grown for 4 days to form polarized monolayers. HEK-Δ​pMEP-GFP-kAE1 cells were grown either on glass cov-
erslips or in normal tissue culture plates/flasks. GFP-tagged kAE1 protein expression was induced for 8–12 h as 
previously described8,21.

Immunofluorescence microscopy.  Ethically-approved and formally patient-consented samples of nor-
mal human kidney were obtained from the Addenbrooke’s Hospital Tissue Bank (Cambridge Research Ethics 
Committee approval 03/279). All studies were carried out in accordance with relevant guidelines and regulations. 
4% formaldehyde-fixed paraffin wax-embedded 5 μ​m-thick kidney sections were dual-immunostained for kAE1 
and PDLIM5 based on previously described methods35. Following citrate buffer antigen retrieval, sections were 
blocked with 10% FBS in PBS containing 0.01% Tween 20 (blocking buffer-1), then incubated with primary 
antibodies (Bric-170 and anti-PDLIM5-mid), at 1:100 dilution at 4 °C overnight. Fluorochrome-conjugated sec-
ondary antibodies were used at 1:500 dilution for 1 h at room temperature. Sections were mounted in Vectashield 
Mounting Medium (Vector Laboratories) and examined with a Confocal Laser Scanning Microscope (LSM880). 
As controls, primary antibodies were replaced by either non-immune serum or isotype-specific antisera; all steps 
were followed unchanged.

Co-IP-coupled Mass Spectrometry and GST pull-down assays.  For co-IP assays using MDCK cells 
stably expressing full-length kAE18,21,23, cell lysates were pre-cleared and transferred to protein G-agarose beads 
preloaded with mouse monoclonal antibodies Bric-170 or anti-CD63 (which does not cross-react with dog 
CD63) for overnight incubation at 4 °C. Beads were then thoroughly washed with co-IP lysis buffer containing 
reduced NP-40 (0.1%). Proteins co-immunoprecipitated were separated by SDS-PAGE. Proteomic analyses 
were carried out at the Cambridge Centre for Proteomics. All gel fragments generated were excised and sub-
jected to to Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS) after in-gel trypsin digestion. 
LC-MS/MS was performed using an Eksigent NanoLC-1D Plus (Eksigent Technologies) HPLC system and an 
LTQ Orbitrap Mass Spectrometer (Thermo Fisher Scientific), as described in detail elsewhere36. Digests from 
gel segments were run with dynamic exclusion. MS data were processed using the SEQUEST Bioworks Browser 
(version 3.3.1 SP1; Thermo Fisher Scientific) to generate MS/MS peak lists. Combined peak list files were sub-
mitted to the MASCOT search algorithm (version 2.2.1; Matrix Science) and searched against the IPI-Human 
Database, version 4.3. All ambiguous peptides were excluded unless matched only to products of a single gene. 
Protein identification required at least two unique peptides, with a false discovery rate of <​0.1. In addition, the 
DAVID bioinformatics tool was used to generate functional enrichment categories with a false discovery rate 
of <​0.01.

GST-pull down assays using cytosol or membrane fractions of human kidney cortex lysates prepared as 
described37, or lysates from HEK-Δ​pMEP-GFP-kAE1 cells were carried out as described38. Bound proteins were 
probed on blots with anti-PDLIM5-ct and anti-ILK antibodies, and band intensity measured using ImageJ soft-
ware (National Institutes of Health). The same blot was re-probed with anti-β​1, instead of anti-GST antibody, as 
loading control (Supplementary Figure 4).

ELISA and blot overlay analysis.  ELISA was performed23 by immobilizing 100 μ​l of 30 μ​M of GST_
AE1C-WT, GST_AE1C-Δ​11, GST_AE1C-M909T or GST alone onto a 96-well plate and incubating with 100 μ​l  
of 2 μ​g/ml of GST_PDLIM5 (AbNova, H00010611-P01) or tag-free PDLIM5-PDZ or GST_ILK (AbNova, 
H00003611-P01) recombinant protein. Detection was with anti-PDLIM5-nt or anti-ILK and HRP conjugated 
antibodies, and signals were visualized with ABTS.

Blot overlay assay was carried out39 using equal moles (at pmole level, see Fig. 4 legend for details) of one of 
GST-AE1C, GST-PDLIM5, PDLIM5-PDZ or GST alone spotted onto gridded 0.45 μ​m Nitrocellulose Transfer 
Membrane (Whatman International Ltd) and air dried for 3 h. Following blocking in PBS containing 2% skimmed 
milk and 0.1% Tween 20 (blocking buffer-2), the membrane was first overlaid with GST-ILK recombinant protein 
(50–65 pmoles), then washed and detected with anti-ILK and HRP conjugated antibodies. Blocking buffer-2 was 
used for all washes and for dilutions of the ligand and antibodies.

Real-time quantitative PCR.  HEK-Δ​pMEP-GFP-kAE1 cells were collected at 0, 2, 8 and 16 hours 
after GFP-tagged kAE1 protein expression was induced. Total RNA was extracted using Tri Reagent 
(Sigma-Aldrich) and treated with DNase I (Invitrogen), and first strand cDNA was synthesised using super-
script III (Invitrogen) according to the manufacturer’s instructions. RTqPCR was performed for PDLIM5 
expression using qPCR SYBR Green (Agilent Technologies UK Ltd.) and Mx3000PTM Real-Time PCR system 
(Stratagene). Forward and reverse primers for human PDLIM5 were 5′​-CCGGTTCCTGTTCAAAAGGG-3′​ 
and 5′​-GCCGTGGTGCCTTATTGTAG-3′​, respectively. PDLIM5 expression levels were calculated using the 
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delta-delta-Ct method relative to β​-Actin (ACTB) expression. Forward and reverse primers for human ACTB 
were 5′​-CCCTGGAGAAGAGCTACGAG-3′​ and 5′​- AGGTAGTTTCGTGGATGCCA-3′​, respectively.

Statistical analyses.  Statistical analyses were performed using either unpaired Student’s T tests or ANOVA.

Bioinformatic analysis.  String-DB [http://www.ncbi.nlm.nih.gov/pubmed/25352553] was searched using 
Homo sapiens gene names for PDLIM5, ILK, paxillin and actopaxin. DOMINE40 and InterPro databases were 
used to seek evidence of interaction between the domains of every possible pair of proteins among them, domains 
of each protein having been collected from the Interpro41 database.
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