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Association between preterm 
brain injury and exposure to 
chorioamnionitis during fetal life
Devasuda Anblagan1,2,*, Rozalia Pataky1,*, Margaret J. Evans3, Emma J. Telford1, 
Ahmed Serag1, Sarah Sparrow1, Chinthika Piyasena4, Scott I. Semple4,5, 
Alastair Graham Wilkinson6, Mark E. Bastin2 & James P. Boardman1,2

Preterm infants are susceptible to inflammation-induced white matter injury but the exposures that 
lead to this are uncertain. Histologic chorioamnionitis (HCA) reflects intrauterine inflammation, can 
trigger a fetal inflammatory response, and is closely associated with premature birth. In a cohort of 
90 preterm infants with detailed placental histology and neonatal brain magnetic resonance imaging 
(MRI) data at term equivalent age, we used Tract-based Spatial Statistics (TBSS) to perform voxel-wise 
statistical comparison of fractional anisotropy (FA) data and computational morphometry analysis 
to compute the volumes of whole brain, tissue compartments and cerebrospinal fluid, to test the 
hypothesis that HCA is an independent antenatal risk factor for preterm brain injury. Twenty-six (29%) 
infants had HCA and this was associated with decreased FA in the genu, cingulum cingulate gyri, 
centrum semiovale, inferior longitudinal fasciculi, limbs of the internal capsule, external capsule and 
cerebellum (p < 0.05, corrected), independent of degree of prematurity, bronchopulmonary dysplasia 
and postnatal sepsis. This suggests that diffuse white matter injury begins in utero for a significant 
proportion of preterm infants, which focuses attention on the development of methods for detecting 
fetuses and placentas at risk as a means of reducing preterm brain injury.

Globally, preterm birth affects around 10% of deliveries and is a leading cause of neurodevelopmental impair-
ment1. Adverse outcome is strongly associated with a phenotype that combines diffuse white matter injury and 
reduced connectivity of developing neural systems apparent on neonatal brain magnetic resonance imaging 
(MRI), with cognitive impairment and educational under-attainment in childhood2–5. This phenotype is partly 
explained by co-morbidities such as bronchopulmonary dysplasia (BPD)6 and postnatal sepsis7, and is influenced 
by nutritional8 and genetic factors9. Pre-clinical and epidemiological studies demonstrate a clear association 
between abnormal systemic inflammation at a critical point in development and preterm brain injury (for review 
see10).

Chorioamnionitis (infection/inflammation of the amniotic fluid, membranes, placenta and/or decidua) affects 
around 40–80% of very preterm deliveries and it can initiate a fetal inflammatory response that is injurious to 
the developing brain and other organs11,12. In meta-analyses, chorioamnionitis is associated with cystic periven-
tricular leukomalacia and cerebral palsy in preterm infants13, but there is uncertainty about its contribution to the 
more common preterm phenotype (diffuse white matter injury), and its importance in relation to co-morbidities. 
Some of these uncertainties may be attributable to study designs that have used variable case definitions (clinical 
or histopathological diagnostic criteria), and many studies were conducted before the era of quantitative neonatal 
brain MRI for defining cerebral outcome.

Diffusion MRI (dMRI) provides objective measures of white matter microstructure in the newborn that are 
altered in association with preterm birth: a consistent finding is that fractional anisotropy (FA), a biomarker 
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linked to white matter microstructure, is reduced in white matter tracts of preterm infants at term equivalent 
age compared with term-born matched controls14,15. Tract-based Spatial Statistics (TBSS) is a powerful unbiased 
method for group-wise analysis of FA images derived from dMRI data16. It has been applied to neonatal dMRI to 
map microstructural change in white matter tracts of preterm infants at term equivalent age17, to identify clinical 
risk factors for altered brain development6, to detect tissue effects of neuroprotective treatment strategies18, and 
it may have a role in early risk stratification because it predicts neurodevelopmental outcome2,5. Computational 
analysis of structural MRI data enables the calculation of brain volume (whole brain or tissue compartments) 
and is useful for identifying factors associated with growth deficits8,19, and for longitudinal modeling of growth 
in early life20,21.

We combined histologic classification of chorioamnionitis with neonatal brain MRI, and used TBSS and com-
putational morphometry to test the hypothesis that HCA is associated with altered white matter microstructure 
and brain volume in preterm infants at term equivalent age.

Results
Patients.  Placental histopathology and brain dMRI were acquired from 90 infants born preterm: 26 (29%) 
had histologic chorioamnionitis and 64 (71%) had no evidence of chorioamnionitis. Table 1 summarizes the 
demographic and clinical details of the two groups.

Preterm infants with HCA had a lower GA at birth (p =​ 0.001), and the prevalence of prolonged rupture of 
membranes (>​24 hours before delivery) was higher in this group (69% versus 8%). The proportion of infants 
exposed to antenatal MgSO4 for the purpose of fetal neuroprotection was greater in the HCA group: 69% ver-
sus 44% (p =​ 0.037). There was no significant difference in antenatal steroid exposure between the groups. Five 
out of 90 participants were treated for necrotizing enterocolitis, and three required treatment for retinopathy of 
prematurity. Postnatal somatic growth, measured as the difference between birth weight z-score and weight at 
scan z-scores, did not differ significantly between the two groups: the mean difference (SD) in weight z-score 
for the HCA group was −​0.98 (1.07) versus −​0.67 (1.06) for preterm infants without HCA exposure (t =​ 1.247, 
p =​ 0.216).

Placental histopathology.  26 of 90 (29%) placental plates showed patterns of inflammatory reaction on 
the maternal side, and 20 of these showed an inflammatory response of the cord and/or the umbilical vessels. The 
patterns of maternal/fetal inflammation are shown in the Table 2.

Magnetic resonance imaging.  49 infants (54%) had abnormal white matter using the classification system 
described by Woodward et al.22, and 8 infants (9%) had punctate white matter lesions. One infant had a solitary 
cyst in left peritrigonal white matter (diameter 5 mm).

White matter correlates of histologic chorioamnionitis.  The findings are provided corrected for GA 
at birth, GA at image acquisition, BPD and postnatal sepsis. Preterm infants exposed to HCA had decreased FA 
in the genu of corpus callosum, cingulum cingulate gyri, centrum semiovale, corticospinal tracts (CST), inferior 
longitudinal fasciculi (ILF), left arcuate, anterior and posterior limbs of internal capsule, external capsule and 
cerebellum (Fig. 1); p <​ 0.05 corrected. Skeleton-wide FA was 5.3% lower in preterm infants with HCA com-
pared to infants born without this exposure; p =​ 0.006 (FA in the range of 0.182–0.255 for infants with HCA and 
0.172–0.279 for infants without HCA exposure, respectively), (Fig. 2).

Histologic chorioamnionitis and brain tissue volume.  Structural MRI data were available for 81 of the 
90 participants; nine structural MRI data were not useable due to movement artefact. Whole brain tissue volume 
increased over the range of gestational age at image acquisition (Fig. 3), but there was no difference in brain tissue 

Histologic 
Chorioamnionitis (n = 26)

No Histologic 
Chorioamnionitis (n = 64) p value

Mean GA age at birth/weeks (range) 27+6 (23+2–30+4) 29+4 (25+0–32+6) 0.001

Mean birth weight/g (SD) 1088 (550–1525) 1180 (670–1635) 0.106

Mean birth weight z-score (SD) 0.17 (0.49) −​0.39 (0.94) 0.007

Mean GA at scan/weeks (range) 39+4 (38+0–42+2) 40+2 (38+0–42+5) 0.012

Mean weight z-score at scan (SD) −​0.71 (1.16) −​1.07 (1.08) 0.177

Postnatal sepsis, n (%)

Any 16 (62) 22 (36) 0.033

Early onset* 8 (31) 7 (11) 0.031

Late onset** 10 (38) 20 (31) 0.623

Necrotizing enterocolitis, n (%) 2 (8) 3 (5) 0.624

Gender (M:F) 12:14 34:30 0.569

BPD, n (%) 8 (31) 17 (27) 0.436

Antenatal MgSO4, n (%) 18 (69) 28 (44) 0.037

Antenatal corticosteroid, n (%) 23 (88) 45 (70) 0.104

Table 1.  Demographic and clinical features of preterm infants with and without chorioamnionitis. 
*Postnatal sepsis <​72 hours after birth; **postnatal sepsis >​72 hours after birth.
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volume attributable to HCA: mean 388.9 ml (SD 44.0) for 23 infants with HCA versus mean 391.4 ml (SD 37.4) 
for 58 infants without the exposure. There were no significant differences in the volume of any tissue compart-
ment or cerebrospinal fluid between the groups (Table 3).

Fetal inflammatory responses Maternal inflammatory responses

Vasculitis 
(Stage 1)

Vasculitis 1 or 
more vessels 

(Stage 2)

Funisitis 
(Stage 3)

Chorionitis 
(Stage1)

Chorioamnionitis 
(Stage2)

Necrotising 
chorioamnionitis 

(Stage 3)

Breeches 
the chorion 

-Intervillositis

1 = Yes, 
0 = No Grade

1 = Yes, 
0 = No Grade

1 = Yes, 
0 = No Grade

1 = Yes, 
0 = No Grade 1 = Yes, 0 = No 1 = Yes, 0 = No

1 1 0 0 0 1 1 0 1

0 1 2 1 0 1 2 0 1

0 1 2 1 1 1 1 2 1 1

0 0 0 1 1 0 0 0

0 1 2 1 0 1 2 1 1

1 1 0 0 1 1 0 0 1

1 2 0 1 1 2 0 0 1

0 0 0 1 1 0 0 0

0 1 1 1 0 1 2 1 1

0 1 1 1 1 1 0 0 1

0 1 2 1 0 1 2 1 0

0 1 1 1 1 2 0 0 1

0 1 2 1 1 1 0 0 1

0 1 2 1 0 1 2 1 0

0 0 0 1 1 0 0 0

0 1 1 1 0 1 1 1 1

0 1 2 1 0 1 1 0 1

0 1 1 1 0 1 2 0 1

0 1 2 1 1 2 0 1 1

0 1 1 1 0 1 2 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 1

0 0 0 1 1 0 0 0

0 1 1 1 0 1 2 0 1

0 1 1 1 0 1 1 0 1

1 1 0 0 1 0 0 0 0

Table 2.   Patterns of inflammatory response in 26 cases with histologic chorioamnionitis.

Figure 1.  Mean FA skeleton (yellow) overlaid on the mean FA map in axial, coronal and sagittal planes. 
Voxels demonstrating significantly lower FA in preterm infants at term equivalent who had been exposed to 
HCA are overlaid in blue.
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Discussion
By combining histological diagnosis of chorioamnionitis with quantitative brain MRI, we have shown that 
inflammation in utero contributes to altered microstructure in major white matter tracts of preterm infants at 
term equivalent age. The effect was independent of age at image acquisition and known predictors of preterm 
brain injury and poor neurodevelopmental outcome including degree of prematurity, BPD and postnatal sepsis.

Meta-analysis has shown that HCA is a significant predictor of cerebral palsy (CP)13, and HCA has been asso-
ciated with intraventricular haemorrhage23, brain imaging abnormalities24, and cystic periventricular leukomala-
cia25. However, the role of confounding by gestational age at birth and co-morbid conditions on these associations 

Figure 2.  Mean FA across the white matter skeleton of preterm infants grouped by presence of histologic 
chorioamnionitis. 

Figure 3.  Brain tissue volume at term equivalent age for each participant colour coded by presence of HCA 
(blue) or absence of HCA (green). 

Mean volume (SD) / ml 
(histologic chorioamnionitis)

Mean volume (SD) / ml (no 
histologic chorioamnionitis) p-value

White matter 138.8 (14.2) 138.4 (14.6) 0.70

Deep grey matter 5.2 (0.86) 5.3 (0.80) 0.19

Cortical grey matter 169.2 (24.6) 173.4 (19.7) 0.42

Cerebellum 22.7 (3.8) 24.5 (3.3) 0.06

Brainstem 5.2 (0.9) 5.2 (0.8) 0.70

Cerebrospinal fluid 79.8 (17.1) 75.6 (18.0) 0.32

Table 3.   Mean (SD) brain tissue and cerebrospinal fluid volumes at term equivalent age.
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is unclear; and in some studies chorioamnionitis has no adverse effect on neurodevelopmental outcome26,27. Such 
differences may be explained by the heterogeneity of HCA, which encompasses a range of grades and stages of 
maternal and fetal inflammation that have variable effects on the fetal inflammatory response. A strength of this 
study is that 77% of infants classified as HCA-exposed had fetal vasculitis affecting the cord (funisitis) or cho-
rionic plate, which is the histological indicator of fetal inflammatory response syndrome (FIRS) since it reflects 
transmigration of fetally derived neutrophils to bacteria in the amniotic fluid28.

The fetal inflammatory response is characterized by increased concentration of pro-inflammatory cytokines in 
plasma29. During postnatal life these mediate brain injury by several mechanisms including: increased permeabil-
ity of the blood brain barrier to cytotoxic proteins30; activation of microglia31; dysmaturation of the oligodendro-
cyte lineage and ultimately hypomyelination32; neuronal injury and cell death33; modification of the endogenous 
stem cell populations10; generation of reactive oxygen and nitrogen species32; sensitization of the brain to subse-
quent hypoxic-ischaemic insults34; and activation of the coagulation cascade35. After delivery, systemic inflamma-
tion due to postnatal bloodstream infection or necrotizing enterocolitis is a powerful predictor of neurodisability 
among preterm infants7, and MRI studies suggest that the neural substrate includes injury to the white matter36,37. 
Our data suggest that antenatal exposure to systemic inflammation contributes to the prevailing form of preterm 
brain injury. This is consistent with a previous observation that elevated cytokines and CD45RO+ T lymphocytes 
in umbilical cord blood are associated with overt cerebral lesions on MRI very soon after birth38. MRI acquisition 
in the early post-partum period after very preterm birth (around 30 weeks gestational age) is feasible and recent 
advances in post-processing techniques enable the evaluation of diffuse white matter injury, connectivity meas-
ures, cortical maturation and growth trajectories at this early stage39–44. These approaches could be combined with 
collateral biological information about fetal/maternal inflammation to investigate specific antenatal determinants 
of abnormal brain development.

We used TBSS to survey the white matter skeleton for group-wise differences that might be associated with 
HCA because of its sensitivity for detecting alterations in FA in the newborn period, and because of its predictive 
value for later outcome2,5. FA is considered a robust marker of tract microstructure that reflects fibre density, 
axonal diameter, wrapping by pre-myelinating oligodendrocytes and myelination. These data suggest that infants 
exposed to HCA have less coherently organised and more immature fibre tracts at term equivalent age com-
pared with preterm infants without HCA-exposure. We found no difference in whole brain tissue volume, or the 
volumes of tissue class compartments between the groups, which is consistent with previous observations that 
preterm brain injury is characterized by reduced connectivity of neural systems rather than a global failure of 
brain growth for the majority of preterm infants19,45. BPD and intrauterine growth restriction are associated with 
reduced brain volumes, but the prevalence of these was similar between groups8,19. In previous work we showed 
that preterm infants with elevated ADC values in white matter had focal tissue volume reduction in deep grey 
matter nuclei compared with healthy term controls born at term46,47, but there was no difference in deep grey 
matter structure when the preterm group was compared with preterm infants without white matter injury. This is 
consistent with the findings of the current study, and may be explained by smaller differences in water diffusion 
parameters between preterm subgroups, compared with the differences reported between preterm infants and 
healthy controls17.

Our study has some limitations. Firstly, although 77% of the HCA group had fetal vasculitis, which is indica-
tive of FIRS, we did not analyze cord blood so further study is required to uncover the specific immune mediators 
that might link HCA with white matter injury, and also to investigate susceptibility in infants without FIRS. 
Secondly, the study was not powered to investigate the role of multiple placental lesions, which could act syner-
gistically to increase fetal risk. Thirdly, the diagnosis of neonatal sepsis is imprecise; we overcame this by using a 
rigorous clinical protocol that meets international bench-marking standards (Vermont Oxford Network) but it 
is possible that some cases were misclassified. In future, integrating quantitative imaging data with information 
about the host response to infection/inflammation provided by pathway analysis may offer new insights into the 
timing and drivers of inflammation-induced perinatal brain injury.

In conclusion, these results suggest that the pathway to white matter injury originates in utero for a significant 
proportion of preterm infants exposed to HCA during fetal life. Future research could focus on the development 
of antenatal tests to identify HCA and fetuses at risk of neuroinflammation; and placental histopathology may 
have a role in risk stratification for trials of immune-modulatory therapies designed to improve outcome.

Methods
Participants.  The study was conducted according to the principles of the Declaration of Helsinki, and 
ethical approval was obtained from the UK National Research Ethics Service (South East Scotland Research 
Ethics Committee). Written parental informed consent was obtained for all subjects. The cohort consisted of 
preterm infants born at <​33 completed weeks’ gestational age (GA) who received care at the Royal Infirmary 
of Edinburgh between July 2012 and May 2015, who underwent brain MRI at term equivalent age and whose 
placentas were available for histologic examination. Exclusion criteria were infants with congenital infection, 
chromosomal abnormalities, post-haemorrhagic ventricular dilatation, porencephalic cysts and cystic periven-
tricular leucomalacia.

Postnatal sepsis was defined by: 1) positive blood culture growing pathogenic bacteria; or 2) blood cultures 
negative or positive for coagulase negative staphylococcus (CoNS) plus generalized signs of infection plus physi-
cian decision to treat with antibiotics for 5 days or more. BPD was defined by the requirement for supplemental 
oxygen at 36 weeks’ GA.

Postnatal somatic growth was described in terms of change in weight z-score between birth and scan, calcu-
lated using Intergrowth-21st reference standards for preterm infants48.
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Placental histopathology.  After delivery, placentae were formalin fixed and stored at 4 °C before sam-
pling. The placentae were sampled according to a standardized protocol; distal and proximal sections of cord (the 
proximal section being taken at 1.5 cm from above the fetal surface), a roll of extraplacental membranes starting 
at the point of rupture and 4 full thickness sections from each quadrant. All were stained with Haematoxylin 
and Eosin. Slides were examined by a single experienced placenta pathologist (ME) with no knowledge of the 
MRI findings. Placental reaction patterns were reported according to site and degree of inflammation, using the 
structure proposed by Redline and colleagues49. The chorioamnionitis group included cases which demonstrated 
an inflammatory response in the placental membranes of any grade or stage, whilst the non-chorioamnionitis 
group demonstrated no inflammatory response. Features of normal and inflamed placental tissue are illustrated 
in Fig. 4.

MRI acquisition.  MRI was performed on a Siemens Magnetom Verio 3 T system (Siemens, Healthcare 
Gmbh, Erlangen, Germany) using a 12-channel matrix phased array head coil. All infants were scanned axially 
to acquire: 3D T1-weighted MPRAGE volume (~1 mm3 resolution), T2-weighted STIR (~0.9 mm3 resolution), 
T2-weighted FLAIR (~1 mm3 resolution), and dMRI (11 T2- and 64 diffusion encoding direction (b =​ 750 s/mm2)  
single-shot spin-echo echo planar imaging (EPI) volumes with 2 mm isotropic voxels data, TE =​ 106 ms and 
TR =​ 7300 ms) data. Images were reported by a radiologist with experience in neonatal MRI (AGW).

Figure 4.  Histologic features of normal membranes and reaction patterns related to maternal 
inflammatory response to amniotic fluid infection. (A,B) Normal appearances of the placental membranes 
with no signs of inflammation. (C) Acute chorionitis (Stage 1) patchy-diffuse accumulations to neutrophils in 
the subchorionic plate fibrin. (D) Acute chorioamnionitis (Stage 2). Histologic features of non-inflamed cord 
and reaction patterns of fetal inflammatory response to amnionitic fluid infection: (E) Normal appearances of 
umbilical vein and artery and Wharton tissue. (F) Diffuse funisitis along with umbilical vasculitis.
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Infants were scanned in natural sleep with monitoring of pulse oximetry, electrocardiography and tempera-
ture. A neonatal doctor and a research nurse were present during image acquisition. For ear protection, flexible 
earplugs and neonatal earmuffs (MiniMuffs, Natus Medical Inc., CA) were used.

Structural MRI scans were scored using the system described by Woodward et al.22. In summary, a white 
matter injury (WMI) score was calculated by adding sub-scores across 5 domains, each evaluated by a 3 point 
grading scale: white matter signal abnormality, periventricular white matter volume loss, presence of cystic 
abnormalities, ventricular dilatation, and thinning of corpus callosum. A grey matter injury (GMI) score was 
calculated by adding sub-scores from 3 domains: cortical abnormalities, quality of gyral maturation, and size of 
subarachnoid space. Therefore WMI scores ranged between 5 and 15, and GMI scores between 3 and 9. WMI 
scores were classified as per the original system from Woodward et al.22, i.e. ≤​6 is normal and >​6 is abnormal. 
GMI scores were classified as abnormal if ≤​4, and normal as >​4, using the modification described by Leuchter  
et al.50. The presence of punctate white matter lesions (high signal intensity on T1-weighted imaging and low 
signal on T2-weighted) was also recorded.

Image data analysis.  Tract-based Spatial Statistics.  dMRI data were preprocessed using FSL tools 
(FMRIB, Oxford, UK; http://www.ndcn.ox.ac.uk/divisions/fmrib). This included brain extraction, and removal 
of bulk infant motion and eddy current induced artifacts by registering the diffusion-weighted volumes to the first 
T2-weighted EPI volume for each subject. Using DTIFIT, FA maps were generated for every subject.

TBSS analysis was performed using a pipeline that was optimized for neonatal dMRI data6. An average FA 
map and mean FA skeleton (thresholded at FA >​ 0.15) were created from the aligned data, representing the center 
of all white matter tracts common to both groups. Statistical comparison between groups born with and without 
exposure to chorioamnionitis was performed with FSL’s Randomise using a general linear univariate model, with 
GA at birth, GA at image acquisition, BPD and postnatal sepsis listed as covariates. All FA data were subject to 
family-wise error correction for multiple comparisons following threshold-free cluster enhancement (TFCE) and 
are shown at p <​ 0.0551.

Volumetric analysis.  The brain tissue was separated from non-brain tissue using an atlas-based approach21. 
Images were corrected for field inhomogeneity using the N4 method (http://stnava.github.io/ANTs/). All images 
from the dataset were non-linearly aligned to the 40 weeks’ GA template from a neonatal brain 4D atlas52, 
which is the closest age-matched template to the mean age of the subjects in this study. Then, an Expectation–
Maximization framework was used to segment the brain into: brainstem, cerebellum, cortex, cerebrospinal fluid, 
deep gray matter and white matter; where probabilistic spatial priors of each tissue were provided by the 4D atlas. 
Volumes were calculated for each individual tissue, and total brain tissue volume was calculated by subtracting 
cerebrospinal fluid from the whole brain segmentation.

Statistics.  Student’s t-test or the Mann-Whitney test was used to investigate differences in clinical and demo-
graphic variables between infants with (n =​ 26) and without chorioamnionitis (n =​ 64), and chi-square test or 
Fisher’s exact test was used to compare proportions. Statistical analysis was performed using SPSS v21.0 (SPSS 
Inc, Chicago, IL).
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