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A unified theory of calcium 
alternans in ventricular myocytes
Zhilin Qu1,2, Michael B. Liu1 & Michael Nivala1

Intracellular calcium (Ca2+) alternans is a dynamical phenomenon in ventricular myocytes, which is 
linked to the genesis of lethal arrhythmias. Iterated map models of intracellular Ca2+ cycling dynamics 
in ventricular myocytes under periodic pacing have been developed to study the mechanisms of Ca2+ 
alternans. Two mechanisms of Ca2+ alternans have been demonstrated in these models: one relies 
mainly on fractional sarcoplasmic reticulum Ca2+ release and uptake, and the other on refractoriness 
and other properties of Ca2+ sparks. Each of the two mechanisms can partially explain the experimental 
observations, but both have their inconsistencies with the experimental results. Here we developed an 
iterated map model that is composed of two coupled iterated maps, which unifies the two mechanisms 
into a single cohesive mathematical framework. The unified theory can consistently explain the 
seemingly contradictory experimental observations and shows that the two mechanisms work 
synergistically to promote Ca2+ alternans. Predictions of the theory were examined in a physiologically-
detailed spatial Ca2+ cycling model of ventricular myocytes.

Under normal conditions, the human heart contracts once every second or so to pump blood throughout the 
body. The contraction of the heart is caused by intracellular calcium (Ca2+) release from the internal Ca2+ 
store, sarcoplasmic reticulum (SR), which is triggered by the electrical excitation of ventricular myocytes. 
Action potential excitation and intracellular Ca2+ release are two tightly regulated processes1. More specifically 
(Fig. 1A), activation of the sodium (Na+) current (INa) gives rise to the fast upstroke of the action potential, 
elevating the voltage to the plateau voltage. Then the L-type Ca2+ current (ICa,L) is activated, which maintains 
the long plateau. In the meantime, potassium (K+) currents (IK) are slowly activated, which repolarize the cell 
back to its resting potential. The Ca2+ brought in by L-type Ca2+ channels (LCCs) triggers a large amount of 
Ca2+ release from the SR and this release activity is enhanced by Ca2+ released from the SR, a process called 
Ca2+-induced Ca2+ release. Ca2+ released from the SR binds with myofilament (MyoF) to cause contraction. 
The SR is then replenished through Ca2+ reuptake via the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 
pump. The Ca2+ that enters the cell via LCCs is extruded from the cell via Na+-Ca2+ exchange (NCX). These 
pumps maintain the Ca2+ gradient between the intracellular and extracellular space, and the intracellu-
lar Ca2+ homeostasis. With the presence of the Na+-K+ (NaK) pump, the gradients and homeostasis of Na+ 
and K+ are also maintained. Besides the normal heart rhythm, the complex regulation of membrane excita-
tion and Ca2+ cycling can lead to various nonlinear dynamics in the heart that promote cardiac arrhythmias2–5,  
among which alternans is the most widely studied phenomenon. Alternans is a temporally period-2 pattern 
(Fig. 1B), which manifests as T-wave alternans in the ECG or as pulsus alternans. T-wave alternans and pulsus 
alternans have been known as precursors of lethal arrhythmias for more than a century6,7.

Several mechanisms of alternans have been shown8, including dynamical instabilities from the electrical system9,  
the intracellular Ca2+ cycling system10–14, or via the coupling of the two together15–17. Since voltage and Ca2+ are 
coupled via Ca2+-dependent ionic currents, alternans due to the electrical system will also result in alternans in 
the Ca2+ cycling system and vice versa. For Ca2+ cycling instability-induced alternans, two theories have been 
developed18, each of which is supported by certain experimental evidence, but none of them can completely 
explain the experimental observations without inconsistencies.

The first theory, proposed by Eisner et al.13, was that the slope of the fractional Ca2+ release (FCR) curve is 
responsible for alternans, which was supported by a series of experiments from Eisner’s group11–14 and others19. A 
FCR curve is defined as a functional relation between the amount of Ca2+ released from the SR and the SR Ca2+ 
content right before the release occurs. This SR Ca2+ content is called the diastolic Ca2+ load (DCL) (Fig. 1B). This 
theory was more rigorously established in later theoretical studies20–22 in which iterated maps were used to reveal 
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that the bifurcation to alternans is determined by the interaction of the slopes of the FCR curve and the SR Ca2+ 
uptake function. The SR Ca2+ uptake function is defined as the amount of Ca2+ uptaken by the SERCA pump as 
a function of the amount of Ca2+ released in the same beat. An instability leading to alternans occurs when the 
slope of the FCR function is large in combination with a reduced slope of the uptake function. Since the amount 
of Ca2+ release is solely determined by the level of DCL, this theory implies that DCL will also alternate from 
beat to beat during Ca2+ alternans. However, experiments from other groups have shown that Ca2+ alternans 
can occur without DCL alternans23–25, inconsistent with the above theory that alternans is caused by a steep FCR 
curve.

The second theory of Ca2+ alternans26,27 takes into account the effects of refractoriness of SR Ca2+ release 
and the properties of individual Ca2+ sparks. In a ventricular myocyte, the RyRs are clustered in the cell forming 
Ca2+ release units (CRUs) in conjunction with their proximate sarcolemmal ion channel clusters (Fig. 2A). It was 
estimated that a ventricular myocyte might contain 20,000 to 50,000 CRUs, forming a three-dimensional CRU 
network inside the cell28–30. A Ca2+ spark is a collective random release event of a CRU31, which can be triggered 
by Ca2+ from the LCCs, Ca2+ from a nearby spark, or occur spontaneously. In this theory, alternans arises via 
an instability caused by the interactions of three critical properties of the individual CRUs: Randomness of Ca2+ 
sparks; Recruitment of a Ca2+ spark by its neighboring CRUs; and Refractoriness of the CRUs. We call it the “3R 
theory”. An iterated map was derived using a mean-field approach, which links the Ca2+ spark properties to the 
whole-cell Ca2+ dynamics. This theory can explain the experimental observations23–25 that Ca2+ alternans can 
occur without DCL alternans since DCL is not a parameter or a variable in the iterated map model. The theory 
was verified in simulation studies using detailed Ca2+ cycling models18,32. Moreover, refractoriness is required 
for alternans to occur, which agrees with the experimental observations23,25,33 that refractoriness is a key param-
eter for Ca2+ alternans. However, the 3R theory cannot explain why alternans can still occur at very slow heart 
rates11–14 at which the RyRs should have mostly or completely recovered by the beginning of each beat.

In a recent simulation study using a detailed Ca2+ cycling model of ventricular myocytes34, we showed evi-
dence that the two mechanisms can occur in the same ventricular myocyte under different conditions. Namely, 
the 3R theory is dominantly responsible for the Ca2+ alternans at fast pacing rates while the steep FCR mech-
anism is the main mechanism responsible for alternans under reduced SERCA pump activity and at normal or 
slow pacing rates. However, the two mechanisms are not truly independent of each other, and how they are cou-
pled to regulate Ca2+ alternans remains unknown. In this study, we developed a new iterated map model for Ca2+ 
cycling dynamics under periodic pacing, which unifies the two mechanisms into a single cohesive theoretical 

Figure 1. Schematic plots of excitation-coupling and alternans in ventricular myocytes. (A) Schematic 
diagram of excitation-contraction coupling in a ventricular myocyte. See text for details. (B) Voltage (V), 
whole-cell cytosolic Ca2+ concentration ([Ca2+]i), and whole-cell SR Ca2+ concentration ([Ca2+]SR) illustrating 
alternans under periodic pacing. Lk, rk+1, and uk+1 were defined graphically.
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framework. This unified theory can consistently explain the seemly contradictory experimental observations and 
provide novel predictions and insights into the mechanisms of Ca2+ alternans in ventricular myocytes.

Results
Development of the iterated map model. In this section, we develop a new iterated map model describ-
ing Ca2+ cycling dynamics under periodic pacing based on our 3R theory and the Ca2+ cycling properties in 
ventricular myocytes. The model integrates the 3R’s of the individual sparks with the whole-cell FCR of the SR, 
unifying the two mechanisms of Ca2+ alternans into a single cohesive theoretical framework of Ca2+ cycling 
dynamics under periodic pacing in ventricular myocytes.

The iterated maps. In our previous studies26,27, we developed an iterated map model of Ca2+ cycling dynamics 
under periodic pacing, which links the properties of the individual CRUs (or Ca2+ sparks) to the whole-cell Ca2+ 
cycling dynamics. The model was derived based on the following properties of Ca2+ release. At any time, a CRU is 
in one of the three states (Fig. 2B): recovered, firing (spark), and refractory. A recovered CRU may fire spontane-
ously due to high SR Ca2+ load or be activated directly by opening of LCCs. We call these types of sparks primary 
firings (or primary sparks). Ca2+ released from a primary spark may diffuse to the neighboring CRUs and recruit 
the recovered ones to fire35. We call these types of sparks secondary firings. After firing, a CRU remains refractory 
for a certain period of time. Due to the random opening properties of LCCs and RyRs, the primary sparks are 
probabilistic events. We assume that the probability of a CRU to fire as a primary spark during a pacing beat is α. 
Similarly, the secondary sparks are also probabilistic events, and we assume that the probability of a firing CRU to 
recruit a neighbor to fire during a pacing beat is γ. The recovery of the RyRs and SR refilling in a CRU gives rise 
to spark amplitude restitution36,37 and random refractory periods38. Here we assume that before the next pacing 
beat, the probability of a CRU recovering from its firing in the previous beat is β. If there are a total of NT CRUs in 
the system, and at the kth beat, there are Nk sparks, then at the following [(k+ 1)th] beat, there are βNk unrecovered 
CRUs and (NT − βNk) recovered CRUs. The number of primary sparks in this beat is then α (NT − βNk), and thus 
(1 − α)(NT − βNk) recovered CRUs are available for recruitment. If a fraction f of these CRUs are recruited to fire, 
then the total number of sparks at (k+ 1)th beat is:

Figure 2. Schematic diagrams for spatiotemporal Ca2+ cycling in ventricular myocytes. (A) Schematic 
diagrams of CRU network representing a ventricular myocyte, excitation-contraction coupling in a CRU, 
and CRU coupling via Ca2+ diffusion. JSR—junctional SR and NSR—network SR. (B) Schematic CRU firing 
patterns.
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β α α= − + −+N N N f( )[ (1 ) ] (1)k T k1

The recruitment function f depends on the number of sparks and the spatial pattern of the CRU states  
(as illustrated in Fig. 2B). As recently shown by Alvarez-Lacalle et al.39, the onset of Ca2+ alternans is governed by 
a critical phenomenon, such as in the Ising model, and it is not obvious how one can exactly calculate f when the 
system is in criticality. An approximation widely used to deal with such systems is known as mean-field  
approximation40, in which the individual random events (CRU firings in the current context) are statistically 
independent, i.e., the system is well mixed with no spatial patterning. We previously derived an explicit function 
for f based on such an approximation26,27, which is detailed as follows. Assume that during the (k+ 1)th beat, a 
CRU has recovered from its previous firing and is available for recruitment. The probability that one of its neigh-
bors has recovered and fires as a primary spark is α − β( )1 N
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T
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Since the recruitment of Ca2+ sparks is via Ca2+ diffusion in the cytosolic space, it depends on how fast Ca2+ 
diffuses and the distance between CRUs. CRUs farther away can be recruited to fire if the Ca2+ diffusion is fast or 
the distance between CRUs is short. Therefore, M can be greater than 6 in a three-dimensional cell. In this study, 
we used M =  6.

With the explicit function f and constants α, β, and γ, Eq. 1 is a closed iterated map equation, which is the gov-
erning equation of the 3R theory26,27. Eq. 1 links the properties of individual sparks to the whole-cell Ca2+ dynam-
ics. The theory was verified in computer simulations using physiologically detailed Ca2+ cycling models27,32,34 and 
used to explain experimental observations18.

In the original 3R theory, α, β, and γ were assumed to be constants. In a later study32, we showed that α and 
γ depended on DCL. However, DCL may not be a constant and can change from beat to beat during alternans. 
Therefore, if a varying DCL is added into the model, Eq. 1 is no longer a closed system and an additional equation 
is needed to describe DCL. Simply following the conservation law (as illustrated in Fig. 1B), the equation for DCL 
is:

= − ++ + +L L r u (3)k k k k1 1 1

where Lk+1 is the DCL of the present beat and Lk is that of the previous beat. rk+1 is the amount of Ca2+ released 
from the SR via Ca2+ sparks at the present beat and uk+1 is the amount of Ca2+ re-uptake into the SR via SERCA 
pump at the present beat.

Since a Ca2+ spark is a unitary release event, the amount of Ca2+ released from the SR is proportional to the 
total number of sparks during a pacing beat, and thus we can denote rk+1 as:

ε=+ +r N (4)k k1 1

where ε describes the amplitude of the Ca2+ sparks. Note that due to randomness and heterogeneities, the ampli-
tudes of different individual sparks in a myocyte are not necessarily the same, and ideally one would use 

ε= ∑+ =
+rk n

N
n1 1

k 1  if the full spark amplitude distribution were available. For simplicity, we assume an average spark 
amplitude determined by DCL and RyR recovery, whose explicit mathematical form will be detailed below.

Since the amount of Ca2+ re-uptake into the SR depends not only on the machinery of SERCA but also on the 
peak and diastolic cytosolic Ca2+ concentration, we denote the amount of Ca2+ uptaken by the SR as a function 
of spark number as

σ ε=+ +u h N N( , ) (5)k T k1 1

where σ is a parameter describing the background net Ca2+ uptake (or leak). An explicit form of function h will 
be derived later.

Inserting Eqs 4 and 5 into Eq. 3 leads to a more explicit form:

ε σ ε= − ++ + +L L N h N N( , ) (6)k k k T k1 1 1

which links the number of sparks to DCL. Note that in previous studies20–22, Eq. 3 was also used in the theory 
of steep FCR induced Ca2+ alternans, in which FCR and SR Ca2+ uptake were described by phenomenological 
functions of DCL. Here we express FCR and SR Ca2+ uptake as functions of spark number, which then links Ca2+ 
sparks to DCL. In the old models20–22, a constant total Ca2+ had to be used to keep Eq. 3 in a closed form, but this 
condition is no longer required in the new theory. The total Ca2+ of the cell is determined by the equation itself, 
i.e., the total Ca2+ is a solution of the model instead of a parameter, which changes in time.

Eqs 1 and 6 are therefore the two governing equations of the iterated map model describing intracellular Ca2+ 
cycling dynamics under periodic pacing. Since α and γ are functions of DCL (Lk), i.e., α =  α(Lk) and γ =  γ(Lk), 
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Eqs 1 and 6 are two-way coupled, forming a closed set of equations describing the dynamics of both the cytosolic 
and SR Ca2+. By denoting nk =  Nk/NT and lk =  Lk/NT, Eqs 1 and 6 take on the following dimensionless forms:

β α α= − + −+n n f(1 )[ (1 ) ] (7)k k1

ε σ ε= − ++ + +l l n h n( , ) (8)k k k k1 1 1

f becomes a function of nk and lk, i.e.,

αγ β= − − −f n l n( , ) 1 [1 (1 )] (9)k k k
M

since α and γ are functions of lk, i.e., α =  α(lk) and γ =  γ(lk). Besides α and γ, β and ε are also functions of lk and/or  
pacing period T. These functions, as well as function h, will be defined in detail in the sections below.

For the purpose of our theoretical analysis, we rewrite Eqs 7 and 8 in a more general form as

=+n F n l( , ) (10)k k k1

σ= − ++l l g n l h g n l( , ) [ , ( , )] (11)k k k k k k1

where

β α α= − + −F n l n f( , ) (1 )[ (1 ) ] (12)k k k

and

ε ε= =+g n l n F n l( , ) ( , ) (13)k k k k k1

Primary spark rate (α)—It is well known that the spark probability (or frequency as traditionally used in the 
literature) increases with SR Ca2+ content41,42, however, a quantitative relation is not available experimentally. 
Based on the numerical simulations in our previous study32, α is a sigmoidal function of DCL (lk), i.e.,

α
α

=
+ − − α α

l
e

( )
1 (14)k l l s

0
( )/k

where lα is a parameter determining the half value of function α(lk) and sα is a parameter determining the slope 
of function α(lk). α0 describes the coupling fidelity between the proximate LCC cluster and the RyR cluster when 
the DCL is high, whose value lies between 0 and 1. α0 =  1 represents a perfect coupling between the LCC cluster 
and the RyR cluster, indicating that opening of the LCCs always causes the RyR cluster to fire. α0 =  0 means no 
coupling, indicating that opening of the LCCs always fails to cause the RyR cluster to fire. Physiologically, α0 is 
determined by the LCC open probability and conductance, the volume of the dyadic space, and the RyR sensitiv-
ity to Ca2+, etc.

CRU refractoriness (β)—The CRU refractoriness is determined by the recovery time of the RyRs. Here we 
simply assume that β only depends on the pacing period T in a sigmoidal function as:

β =
+ τ− β β

T
e

( ) 1
1 (15)T T( )/

where Tβ determines the half value of β and τβ determines the slope of the sigmoidal function.
Spark recruitment rate (γ)—No experimental data is available for γ. Again based on numerical simulations32, 

γ is also a sigmoidal function of DCL (lk), i.e.,

γ
γ

=
+ − − γ γ

l
e

( )
1 (16)k l l s

0
( )/k

where lγ is a parameter determining the half value of function γ(lk) and sγ is a parameter determining the slope of 
function γ (lk). γ0 describes the coupling between CRUs when the DCL is high, whose value lies between 0 and 
1. γ0 =  0 indicates that a Ca2+ spark of a CRU will never cause its neighboring CRUs to fire, while γ0 =  1 indicates 
that a fired Ca2+ spark will always cause its neighboring CRUs to fire. Physiologically, γ0 is determined by the 
distance between CRUs, the cytosolic Ca2+ diffusion rate, and the RyR sensitivity to Ca2+, etc.

Spark amplitude and restitution (ε)—SR Ca2+ release and spark amplitude restitution have been measured and 
characterized experimentally36–38,43,44, and is jointly determined by the recovery of the RyRs and the SR refilling. 
Therefore, ε is a function of lk and pacing period T, i.e., ε =  ε(lk, T). We assume the following function for ε:

ε = −l T l l r T( , ) ( ) ( ) (17)k k nadir

where lnadir is the SR Ca2+ content at the peak of the spark and r(T) is the spark amplitude restitution function. 
We set r(T) as36

= − τ−r T e( ) 1 (18)T/ r

where τr is the time constant.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:35625 | DOI: 10.1038/srep35625

Fractional SR Ca2+ release function (g). During a heartbeat, only a fraction of the SR free Ca2+ is released, 
which is determined by the DCL and the recovering status of the RyRs. Such a release-load relationship was first 
experimentally measured by Bassani et al.45 and then in more detail by Shannon et al.46. The FCR function is a 
nonlinearly increasing function of DCL (Fig. 3A,B). In the previous theoretical studies19,21,22, phenomenological 
functions were used for FCR. Here we provide a more mechanistic interpretation of this function in terms of 
spark properties. Based on Eq. 13, the FCR function g is a function of nk and lk as

ε ε β α α= = = − + −+ +r g n l n n f( , ) (1 )[ (1 ) ] (19)k k k k k1 1

When T→ ∞ , according to Eqs 15 and 18, β =  0 and r =  1, all CRUs are recovered, thus the function g depends 
solely on lk since α, γ, and ε are functions of lk, i.e.,

ε α α αγ= = + − − −g g l( ) { (1 )[1 (1 ) ]} (20)k
M

If there is no recruitment, i.e., γ0 =  0, then Eq. 20 becomes

εα= =g g l( ) (21)k

In Fig. 3A we plot the g functions Eq. 20 (red) and Eq. 21 (green) against the experimental data by Bassani 
et al.45 and in Fig. 3B the fraction (g/lk) against the experimental data by Shannon et al.46 for comparison. The 
presence of the recruitment steepens the FCR curve, which has been also demonstrated in our simulations using 
detailed Ca2+ cycling models34,47. Note that phenomenological functions were used for FCR based on the exper-
imental measurements in previous studies20–22 without a mechanistic interpretation. Eqs 19–21 link the spark 
properties to FCR, providing a mechanistic interpretation of FCR.

SR Ca2+ uptake function (h). It’s generally assumed that the SERCA pump flux obeys a Hill-type kinetics as:

Figure 3. Fractional SR Ca2+ release and uptake functions and slopes. (A) The amount of Ca2+ released (g) 
versus SR Ca2+ content (lk) using Eq. 20 (red, γ0 =  1) and Eq. 21 (green, γ0 =  0). lα =  3, sα =  0.3, lγ =  3.5, sγ =  0.15, 
and α0 =  1 were used. Squares are data from Bassani et al.45 scaled by dividing both the SR Ca2+ content and the 
amount of Ca2+ released by 30. (B) Percentage of SR Ca2+ content released (g/lk) versus SR Ca2+ content using 
Eq. 20 (red, γ0 =  1) and Eq. 21 (green, γ0 =  0). lα =  3.5, sα =  0.6, lγ =  3.5, sγ =  0.3, and α0 =  1 were used. Symbols 
are the original plot of Shannon et al.46. The SR Ca2+ content in Eqs 20 and 21 were scaled (multiplied by 30) to 
match the experimental plot. (C) The slope of g ( ′gl ) versus DCL for the two curves shown in (A). (D) The 
amount of Ca2+ uptaken by the SR (h) versus g (Eq. 25). Black line: υ =  0.75 and κ =  0.4. Blue line: υ =  0.38 and 
κ =  0.1. Dashed line: line of identity. The intersection of h with the line of identity is the steady state (circle).
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where vup is the maximum amplitude of the SERCA pump activity, Kup is the Ca2+ concentration at half SERCA 
activity, ci is the cytosolic Ca2+ concentration, and H is the Hill coefficient. Therefore, the amount of Ca2+ taken 
up by the SERCA pump depends not only on the amplitude of the cytosolic Ca2+ concentration but also on its 
time course of decay. Here we assume that ci decays exponentially: ci =  cb +  cpe−λt, where cb is the baseline Ca2+ 
and cb+ cp is the peak Ca2+. cp is then proportional to the amount of Ca2+ released from the SR, i.e., cp =  εnk+1. 
During a single beat, the amount of Ca2+ pumped back into the SR can be calculated as
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which for H =  1 leads to:
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Assume that at the end of the cycle, the Ca2+ decays to the baseline, ci ~ cb, i.e., cpe−λt ≈  0. Since cb ≪  cp∝ εnk+1, 
we can then simplify Eq. 24 to

σ ε σ συ υ
ε
κ

συ υ
κ

= = = +


 +



 = +



 +



+ +

+u h n h g T
n

T g( , ) ( , ) ln 1 ln 1
(25)k k

k
1 1

1

where υ describes the maximum SERCA pump activity and κ corresponds to the Kup of SERCA. The slope of this 
function is

υ κ′ = +h g/( ) (26)g

which is a decreasing function of g.
It was estimated H~1.7 for physiological cells48. For H >  1, an explicit form for the function h may not be pos-

sible from Eq. 23, and even when it is possible that Eq. 23 can be integrated analytically (e.g., H =  2), the function 
is too complex to be useful. However, it is generally true that h is an increasing function of g and its slope is a 
decreasing function of g, and therefore we use Eq. 25 as the uptake function for this study.

Predictions from the iterated map model. We first performed a general linear stability analysis of the 
model to obtain the stability criterion. We then used numerical simulations of the iterated map model to investi-
gate the nonlinear dynamics and make more specific theoretical predictions.

General linear stability analysis. The steady state of the iterated map model can be solved from the following 
equations, derived from Eqs 10 and 11 by setting nk+1 =  nk =  nss and lk+1 =  lk =  lss:

=n F n l( , ) (27)ss ss ss

σ=g n l h g n l( , ) [ , ( , )] (28)ss ss ss ss

where nss and lss are the steady-state values of the number of sparks and DCL, respectively. The steady state can 
be graphically determined using Eq. 28, as shown in Fig. 3D. The stability of the steady state is determined by the 
following eigenvalues:

λ =
′ + + ′ ′ − ± ′ + + ′ ′ − − ′ + ′ − ′ ′ − ′ ′F g h F g h F h F g F g1 ( 1) [ 1 ( 1)] 4[ ( 1)( )]

2 (29)
n l g n l g n g n l l n

1,2

2
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k
, ′ = ∂
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g n l
l

( , )k k

k
, and ′ = σ∂

∂
hg

h g
g

( , ) , which are all partial deriva-
tives evaluated at the steady state. These functions have the properties: ′ <F 0n , ′ >F 0l  and < ′ ≤h0 1g , and satisfy the 
relationships:

ε′ = ′g F (30)n n

and

ε ε′ = ′ + ′g F F (31)l l l

The steady state is stable when both |λ1| <  1 and |λ2| <  1, and becomes unstable when |λ1| >  1 or |λ2| >  1. 
Alternans occurs when λ1 <  − 1 or λ2 <  − 1. Applying this condition to Eq. 29 and using Eqs 30 and 31, one 
obtains the stability criterion for the steady state as
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n

g l

g l

i.e., the steady state is unstable as long as Eq. 32 holds.
We first analyze two special cases:

(1) β =  0 and r =  1. β =  0 means no refractoriness of SR Ca2+ release and r =  1 means no spark restitution. Under 
this condition, ′ = ′ =F g 0n n , and the two maps are no longer coupled since g =  g(lk) is solely a function of 
DCL (see Eq. 20). The model is then reduced to a single map (the other one becomes trivial) as

σ= − ++ +l l g l h g l( ) [ , ( )] (33)k k k k1 1

and the eigenvalues in Eq. 29 become

λ λ= = + ′ − ′h g0 and 1 ( 1) (34)g l1 2

Since there is no refractoriness, the instability is solely determined by the steepness of the FCR curve and that 
of the SR Ca2+ uptake curve, independent of the 3R’s. Under this condition, alternans occurs when λ2 <  − 1, 
which leads to:

′ > − ′g h2/(1 ) (35)l g

which can be also obtained from Eq. 32 by setting ′ =F 0n . Eq. 35 indicates that the steady state tends to 
become unstable via increasing the slope of the FCR curve ′gl  and/or reducing the slope of SR Ca2+ uptake 
function ′hg . Note that this stability criterion is slightly different from the one derived in previous stud-
ies19–22,49, in which it was ′ > − ′ − ′g h h(2 )/(1 )l g g . This is because previous studies assumed the total Ca2+ 
to be constant in the cell, which is not true since the cell is not a closed system for Ca2+. In the current 
model, the total amount of Ca2+ of the cell is not set as a parameter but a variable, and thus Eq. 35 is a more 
accurate stability criterion.

(2) ′ =h 1g . ′ =h 1g  is always satisfied when g =  h, i.e., the SR always reuptakes exactly the same amount of Ca2+ 
that it releases within a beat. When ′ =h 1g , the SR refills to the same level before each beat, i.e., lk+1 =  lk. This 
corresponds to the experiments23–25 in which the SR was refilled to the same level in each beat during alter-
nans. Under this condition, the two map equations are also decoupled, and the stability criterion is

λ λ= = ′F1 and (36)n1 2

The condition for alternans is then ′ < −F 1n , and thus the stability of the system is solely determined by the 
3R’s. Figure 4A shows some examples of ′Fn. Since F is a decreasing function of nk, ′Fn is always negative and the 
instability is promoted by decreasing ′Fn (note: decreasing ′Fn means that the slope of F becomes steeper). As 
shown in Eq. 1, the nonlinearity comes from the recruitment, which depends on the probability of primary 
sparks and refractoriness. The condition for ′ < −F 1n  requires an intermediate α (not all recovered CRUs are 
firing so that there are still CRUs available for recruitment), a large γ, and a very large β (> 0.9), as shown in 
Fig. 4B.

In general, the two maps are coupled, and the stability criterion of the coupled system is governed by Eq. 32. 
The steady state is unstable when Eq. 32 holds, which is synergistically promoted by decreasing ′Fn, increasing ′gl , 
and decreasing ′hg , indicating that the two mechanisms help each other in promoting alternans. The synergistic 
effects of the two mechanisms in promoting alternans are shown in Fig. 4C,D. Specifically, when ′Fn is more nega-
tive, alternans occur at a smaller ′gl  for the same ′hg  (Fig. 4C), and when ′hg  is smaller for a given ′gl , a smaller slope of F 
is needed for alternans (Fig. 4D). In the 3R theory, a very large β is needed to produce a steep enough F function for 
alternans (Fig. 4A,B). In the unified model, alternans can occur at a much smaller β value due to the synergistic effects.

Numerical simulations. Besides the general theoretical predictions, more specific predictions can be obtained 
by directly simulating the iterated map model. Depending on the choice of parameters, the model can exhibit 
alternans, different periodicities, as well as chaos. Alternans occurs at either fast or very slow heart rates. Here we 
choose the FCR function (and thus α and γ) based on the experimental FCR data by Shannon et al. (the red curve 
in Fig. 3B)46 and the uptake function in Fig. 3D (the black curve) as a control set of parameters. A bifurcation 
diagram for these control parameters is shown in Fig. 5A in which alternans occurs at fast pacing (T <  450 ms). 
Refractoriness is a key parameter that promotes this behavior.

We first studied the effects of the SERCA pump which is described by the parameters υ (maximum amplitude 
of SERCA activity, vup) and κ (Kup of SERCA). Reducing υ tends to suppress alternans at fast pacing rates but 
promote alternans at slower pacing rates (Fig. 5B). Reducing κ has a small effect on the onset of alternans and 
increases the alternans amplitude (Fig. 5C). Reducing both, however, promotes alternans at both fast and slow 
pacing rates (Fig. 5D). As shown in Fig. 3D, by reducing υ and κ properly, one can maintain the same steady state 
while decrease the slope of h at the steady state (see Fig. 3D). Based on the predictions of the general theory 
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(Fig. 4), reducing ′hg  promotes both mechanisms of alternans. Reducing υ alone reduces ′hg , but also changes the 
steady state.

Increasing the slope of the FCR curve promotes the instability, causing alternans to occur at slower pacing 
rates and a route to chaos via a period doubling bifurcation (Fig. 5E). This instability is further enhanced by 
reducing ′hg  via reducing υ and κ (Fig. 5F).

To investigate the effects of spark properties on the mechanisms of alternans, we chose another set of control 
parameters in which strong alternans exists for both mechanisms (Fig. 6A). Reducing the primary spark proba-
bility α (Fig. 6B) or the recruitment strength γ (Fig. 6C) suppresses alternans promoted by both mechanisms. 
Increasing the refractory period potentiates alternans caused by fast pacing (Fig. 6D,E). In the simulations above, 
we chose to omit the spark amplitude restitution. Experiments from Sobie et al.36 showed time constants to be 
around 100 ms (i.e., τ r ~ 100 ms), while others43 showed a much longer time constant (τr ~ 450 ms). In Fig. 6F, we 
show bifurcation diagrams for different τr ( =  0 ms, 100 ms, 200 ms, and 300 ms). Adding the spark amplitude 
restitution into the model changed the onset of alternans, causing the FCR mediated alternans to occur at a longer 
T and the refractoriness mediated alternans to occur at a shorter T. For τr =  300 ms, the refractoriness mediated 
alternans is completely suppressed. Note that the magnitude of spark number alternans at fast pacing is increased 
for τr =  100 and 200 ms. Based on Eqs 17, 18, and 31, the direct consequence of reducing the spark amplitude is 
the reduction of ′gl , which suppresses the instability based on linear stability analysis. However, the reduction of 
spark amplitude also increases SR load, causing more CRUs to fire (see Fig. 6F, in which nk increases in the 
non-alternans regime as τr increases), and thus amplifies the amplitude of spark number alternans.

Validation of theoretical predictions using a ventricular cell model with detailed spatiotemporal  
Ca2+ cycling. To demonstrate some of the theoretical predictions from the iterated map model, we carried 
out computer simulations using a ventricular cell model with detailed spatiotemporal Ca2+ cycling. The model 
is a three-dimensional network of CRUs (as illustrated in Fig. 2A), consisting of 200 ×  20 ×  10 CRUs. The LCCs 
and RyRs were modeled by stochastic Markov transitions. The details of the model and numerical methods for 
computer simulations can be found in our previous publications34,50.

Figure 4. Predictions of general linear stability analysis. (A) The slope of function F ( ′Fn) versus spark 
number nk for different combinations of α, β, and γ. (B) Unstable region in α-β-γ space (underneath the hill). 
For visual purpose, 1-β instead of β was used for the vertical axis. In A and B, α, β, and γ were simply treated as 
constants as in the original 3R theory instead of functions of lk or pacing period T as in the rest of the present 
study. (C) Stability boundaries determined using Eq. 32 for different ′Fn values. Black: ′ =F 0n ; Blue: ′ = − .F 0 5n ; 
Red: ′ = − .F 0 75n . F =  0.5 and ε ′ = 1l  were used. The steady state is unstable above the lines. (D) Stability 
boundaries determined using Eq. 32 for different ′hg  values. Black: ′ =h 1g ; Blue: ′ = .h 0 75g ; Red: ′ = .h 0 5g . 
F =  0.5 and ε ′ = 1l  were used. The steady state is unstable above or left to the lines.
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To induce Ca2+ alternans in the model, we used an action potential clamp protocol with an action potential 
waveform from the normal conditions with [Na]i clamped to 12 mM (see Nivala et al.34). Figure 7A show peak 
[Ca2+]i versus pacing period (T), showing Ca2+ alternans occurs at fast pacing (T <  450 ms). Reducing the SERCA 
pump amplitude vup by 50% attenuates the alternans amplitude, and causes alternans to occur at slower pacing 
(T <  750 ms), but also tends to suppress alternans at fast pacing. In general, this agrees with the iterated map 
results shown in Fig. 5B. Reducing the Kup of the SERCA pump by 50% has a small effect on the onset of alternans 
while increasing the amplitude of alternans. Reducing both the amplitude and the Kup by 50% greatly changes 
the dynamics (Fig. 7D,E). First, it causes alternans to occur at much slower heart rates (T <  3250 ms). Second, 
high periodicity and irregular dynamics occur via a period-doubling bifurcation as T decreases. As T decreases 
even further, a stable period-1 state occurs, followed by a sudden transition to a period-3 state, and finally to 
irregular dynamics. This is very similar to the bifurcation sequence of the iterated map model shown in Fig. 5F. 
Although stochasticity exists in the detailed Ca2+ cycling model, the irregular dynamics is likely chaos since it 
only occurs for certain pacing periods and arises via period-doubling bifurcations. Moreover, the bifurcation dia-
gram is very similar to the one obtained using the iterated map model in which the irregular dynamics is indeed 
chaos (Fig. 5F).

Discussion
In this study, we developed an iterated map model describing the intracellular Ca2+ cycling dynamics in ven-
tricular myocytes under periodic pacing. The model links the Ca2+ spark properties to FCR, providing a mech-
anistic interpretation of FCR. It unifies the two known mechanisms of Ca2+ alternans into a single theoretical 
framework, which shows that the two mechanisms work synergistically to promote alternans. Based on this new 
model, at slow heart rates where the RyRs may have already recovered at the beginning of each beat, alternans 
is promoted by steepening the FCR function and/or reducing the slope of the SR Ca2+ uptake function. CRU 
coupling (the γ factor) plays an important role in promoting this mechanism of alternans by steepening the FCR 
function. At fast heart rates, however, the 3R’s, the increased FCR function slope, and the reduced SR Ca2+ uptake 
function slope work synergistically to promote alternans. The new model can consistently explain the seemingly 
contradictory experimental observations, as detailed below.

Figure 5. Effects of SERCA pump and fractional SR Ca2+ release on dynamics. Shown in each panel is the 
number of sparks (nk) versus pacing period (T) from the iterated map model (Eqs 7 and 8). (A) A control set of 
parameters. The parameters for the α and γ functions are the same as for the red curve in Fig. 3B, i.e., lα =  3.5, 
sα =  0.6, lγ =  3.5, sγ =  0.3, α0 =  1, and γ0 =  1. The parameters for the β function are: Tβ =  500 ms and τβ =  75 ms. The 
parameters for the h function are: υ =  0.75, κ =  0.4, and σ =  0.0008. No spark amplitude restitution was presence, 
i.e., r(T) =  1, which corresponds to τr =  0. (B) Reduced υ (υ =  0.6). (C) Reduced κ (κ =  0.3). (D) Reduced υ and 
κ (υ =  0.38 and κ =  0.1). (E) Steepened FCR curve (sα =  0.3 and sγ =  0.15). (F) Reduced υ, κ, and steepened FCR 
curve (υ =  0.3, κ =  0.05, sα =  0.3, and sγ =  0.15).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:35625 | DOI: 10.1038/srep35625

For the experiments from Eisner’s group11–14, they showed that dyssynchronous Ca2+ release and miniwaves 
played important roles in the genesis of alternans, which indicates that spark recruitment (the γ factor) is impor-
tant for alternans. Although a steep FCR curve was indicated to be responsible for alternans, it is unclear why 
dyssynchronous Ca2+ release and spark recruitment are also needed. On the other hand, in the 3R theory the 
roles of dyssynchronous Ca2+ release (corresponding to the α factor) and miniwaves (corresponding to the γ 
factor) are clear. However, since alternans in these experiments occurred at slow pacing rates (0.5 Hz), thus, it 
was likely that the RyRs had already or mostly recovered by the beginning of each beat. Alternans via the 3R 
theory requires a high probability of CRU refractoriness (see Fig. 4B) and thus it cannot satisfactorily explain this 
set of experiments. The new theory shows that spark recruitment contributes to the steepness of the FCR func-
tion. Moreover, it also shows that CRU refractoriness, if there is any, will also synergistically promote alternans 
(Fig. 6D,E). Therefore, these experiments can now be well explained by the unified theory.

In regards to the experiments showing that DCL alternans is not required for Ca2+ alternans23–25, the theory 
shows that this situation can indeed occur when ′ =h 1g , a case in which the amount of Ca2+ released by the SR is 
taken back into the SR. Under these conditions, the two mechanisms are uncoupled and the 3R theory is solely 
responsible for the mechanism of alternans. However, ′ =h 1g  is a very stringent condition, and how this condition 
can be satisfied in a real cell remains unclear. Specifically, during alternans, the amount of Ca2+ released from the 
SR is also alternating. Since both NCX and SERCA depend nonlinearly on the cytosolic Ca2+ concentration, it will 
be nontrivial for the two pumps to balance in a way such that the SERCA pump uptakes the exact amount of Ca2+ 
released from the SR in the same beat. Therefore, although the 3R theory alone can explain the mechanism of 
alternans, a robust physiological mechanism still needs to be elucidated to understand how a constant DCL can 
be maintained during alternans.

However, no experiments have been carried out in a single cell or even in a single species to distinctly demon-
strate the two mechanisms. The experiments from Eisner’s group supporting the steep FCR mediated mechanism 
were done in rat myocytes11–14, the experiments supporting the refractoriness mediated mechanism (namely the 
3R theory) were done either in cat24 or rabbit23,25 myocytes. One potential concern would be: are the mechanisms 
of Ca2+ alternans species dependent? First, our simulations using a detailed Ca2+ cycling model in our previous 
study34 and the present study show that both mechanisms can occur in the same cell under different Ca2+ uptake 
conditions. Second, there is some experimental evidence for the universality of the two mechanisms. For example, 
in the study by Xie et al.19, increased slope of the FCR function and reduced slope of the Ca2+ uptake function 
were demonstrated to promote Ca2+ alternans in rabbit ventricular myocytes. Increased refractoriness promoting 

Figure 6. Effects of spark properties on dynamics. Shown in each panel is the number of sparks (nk) versus 
pacing period (T) from the iterated map model (Eqs 7 and 8). (A) Control, which was modified from Fig. 5A 
by changing υ and κ (υ =  0.4 and κ =  0.1). (B) Reduced primary spark probability (α0 =  0.25). (C). Reduced 
recruitment (γ0 =  0.5). (D) Tβ =  600 ms. (E) Tβ =  700 ms. (F) In the presence of spark amplitude restitution for 
τr =  0 ms (black, the same as A), 100 ms (red), 200 ms (blue), and 300 ms (cyan).
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Ca2+ alternans or decreased refractoriness suppressing Ca2+ alternans was demonstrated in genetically modified 
mouse ventricular myocytes33,51 whose electrophysiological properties share many similarities with those of rat 
ventricular myocytes. Therefore, we believe that the two mechanisms of Ca2+ alternans can be demonstrated in 
a single cell or a single species by carefully designed experiments to support the unification of the two theories.

However, an iterated map is a low-dimensional mathematical representation of a real system, and when the 
dynamics of the real system is intrinsically high-dimensional, the iterated map approach may not accurately 
or even correctly describe the dynamics. For example, Ca2+ alternans can be spatially discordant52–54, and 
under these conditions, the low-dimensional description may be problematic. Other spark properties, such as 
spark duration42,55–57, may also play important roles, which will need to be taken into account by the theory. 
Nevertheless, the unified theory can provide a consistent interpretation to the seemly contradict experimental 
observations and novel mechanistic insights into the mechanisms of Ca2+ alternans in ventricular myocytes.

In conclusion, the iterated map model developed in this study provides a cohesive theory for Ca2+ alternans in 
ventricular myocytes, which unifies the two mechanisms of Ca2+ alternans into a single theoretical framework. 
Alternans can be caused by a steep FCR curve combined with a reduced slope of the SR Ca2+ uptake function in 
the absence of refractoriness, or caused by the 3R’s (randomness, recruitment, and refractoriness) when DCL 
remains constant from beat to beat. In general, the slopes of the FCR and the SR Ca2+ uptake functions work in 
synergy with the 3R’s to promote Ca2+ alternans and other complex dynamics in ventricular myocytes. The unifi-
cation of the two mechanisms of Ca2+ alternans can provide novel insight into the identification of therapeutic 
targets for suppressing Ca2+ alternans. For example, reducing the slope of the uptake function ( ′hg) or the coupling 
of CRUs (γ) can suppress both mechanisms of alternans, while reducing the refractory period can only suppress 
alternans caused by one of the two mechanisms. Suppressing Ca2+ alternans by reducing the slope of the uptake 
function has been demonstrated by experiments of SERCA2a overexpression19,58, supporting our theoretical 
predictions.
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