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Destabilization of the IFT-B cilia 
core complex due to mutations in 
IFT81 causes a Spectrum of Short-
Rib Polydactyly Syndrome
Ivan Duran1,2, S. Paige Taylor3, Wenjuan Zhang4, Jorge Martin1, Kimberly N. Forlenza1, 
Rhonda P. Spiro5, Deborah A. Nickerson6, Michael Bamshad6, Daniel H. Cohn1,4 &  
Deborah Krakow1,3,7

Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome 
are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are 
frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by 
mutations in genes that participate in the formation and function of primary cilia and usually result from 
disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum 
of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for 
anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant 
cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation 
modification of tubulin, and showed evidence of destabilization of additional anterograde transport 
complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in 
the anterograde transport complex, and expand the number of loci associated with SRPS.

Asphyxiating thoracic dystrophy (ATD) and the short rib polydactyly syndromes (SRPS) are autosomal reces-
sively inherited skeletal disorders and are categorized as ciliopathies with major skeletal involvement1,2. Both are 
characterized by a long narrow chest that causes varying degree of respiratory distress, from minor insufficiency 
to respiratory failure and death. Skeletal features include short ribs, micromelia (shortened tubular bones), abnor-
mal shaped roof of the acetabulum (trident-shaped) and frequently polydactyly. Non-skeletal features include 
retinal degeneration, and renal, pancreatic and liver abnormalities3,4. ATD can be milder and many individu-
als survive into young adulthood. Mutations in several genes have been associated with this phenotypic spec-
trum and include DYNC2H1 [OMIM 603297], DYNC2LI1, NEK1 [OMIM 604588], IFT140 [OMIM 614620], 
EVC1 [OMIM 604831], EVC2 [OMIM 607261], KIAA0586 [OMIM 610178], CEP120 [OMIM 613446], WDR19 
[OMIM 608151], WDR34 [OMIM 613363], WDR35 [OMIM 613602], WDR60 [OMIM 615462], TTC21B 
[OMIM 612014], IFT172 [OMIM 607386] and IFT80 [OMIM 611177]5–20. Many of the proteins encoded by the 
aforementioned genes participate in intraflagellar transport (IFT) in primary cilia, a sensory organelle present 
in most tissues and essential for specific signaling pathways. Ciliary structure and function depends on bidi-
rectional transport (anterograde and retrograde) that mobilizes molecules from the base of the cilia to the tip 
and back. Each direction uses a different motor system for transport, kinesins for anterograde and dyneins for 
retrograde21–23. These motor systems bind IFT-B and IFT-A complexes, respectively, which mediate the intake 
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and release of molecules into the cilia. Anterograde components of the IFT-B complex, IFT74 and IFT81 het-
erodimers are responsible for the binding of α​β​-tubulin monomers during their transport to the tips of the cilia 
where they are released to polymerize and are key to microtubule-dependent ciliary function24–27. The IFT-B 
complex also carries retrograde components for later transport back to the base, and its disruption has been 
shown to cause abnormal ciliary distribution of tubulin and disrupted retrograde transport28. Intact cilia are 
necessary for Hedgehog (Hh) signaling29 and Hh ligands Sonic (SHH), Indian (IHH) and Desert (DHH) are 
highly involved in tissue specific cellular differentiation. Hedgehog ligands signal through their receptor Patched 
(PTCH) and Smoothened (SMO), which are localized to the cilia membrane. Upon binding of ligand to PTCH, 
repression of a second receptor, SMO, is released and SMO is activated and enters the cilium. Within the cilium, 
SMO regulates the activation of glioma-associated oncogene (GLI) transcription factors that control expression 
of Hedgehog (Hh) downstream targets29–33. Among the Hedgehog ligands, the Indian Hedgehog (IHH) signaling 
pathway is of particular importance in skeletal development. In the cartilage growth plate, IHH regulates the rate 
of hypertrophic differentiation, and alterations in this signaling cascade cause deleterious effects during skele-
togenesis34–37. Abnormalities in cilia architecture and/or function affect Hedgehog signaling and contribute to 
the SRPS phenotype4,5.

Results
IFT81 mutations identified in SRPS cases.  We ascertained a term male (International Skeletal Dysplasia 
Registry reference number R98-443) recognized at birth to have features consistent with ATD. The clinical find-
ings are summarized in Table 1. The radiographic abnormalities included midface hypoplasia, dolichocephaly, 
a prominent occiput (Fig. 1A), short ribs, handlebar clavicles (Fig. 1B) and short, curved appendicular bones, 
with the upper limbs particularly abnormally shaped (Fig. 1C). There was no polydactyly on either the hands or 
feet (Fig. 1D). The infant developed respiratory distress soon after birth and was initially treated by supplemental 
oxygen. His respiratory compromised worsened over time and he died at 19 months of age.

We also ascertained a second case, (R13-147A), first suspected to have SRPS by prenatal ultrasonography. 
The fetus was delivered by cesarean section at 35 weeks of gestational age and died a few minutes after birth 
from respiratory failure. Postnatal radiographs showed dolichocephaly, a prominent occiput, midface hypoplasia 
(Fig. 1F), a very small thorax with shortened horizontal ribs (Fig. 1G), markedly short long bones with rounded 
metaphyses and marked hypoplasia of the radii, ulnae, tibiae and fibulae (Fig. 1H). Other radiographic features 
included small iliac bones and postaxial polydactyly of all extremities (Fig. 1I), consistent with a form of short 
rib polydactyly syndrome closely resembling SRPS type II or Mohr-Majewski syndrome38. Although at birth the 
genitalia appeared phenotypically female, karyotype analysis showed 46 XY, suggesting that the mutations led to 
sex reversal or ambiguous genitalia. Other clinical findings are noted in Table 1 and the presence and extent of 
multilevel organ involvement supports the subgroup of SRPS type II, Mohr-Majewski syndrome.

Exome sequence analyses identified variants in the ciliary gene that encodes IFT81 [OMIM 605489] in 
both cases. ATD case R98-443 showed compound heterozygosity for two variants: c.87G >​ C, predicting the 
protein change p.Leu29Phe (rs200335504_dbSNP) and c.1534C >​ T predicting the protein change p.Arg512* 
(rs200335504_dbSNP) (Fig. 1J). Both changes are of low allelic frequency (5.322e-05 and 1.659e-05, respec-
tively), in the ExAC database (http://exac.broadinstitute.org). Leu29 is a highly evolutionarily conserved residue 
among vertebrates (Fig. S1) and the variant was rated as damaging by SIFT and PolyPhen with a MutationTaster 
prediction algorithm generating a probability of 0.999 by Bayes classifier (http://www.mutationtaster.org). The 
p.Arg512* mutation is predicted to be a null allele since the stop codon is not in the last or penultimate exon, so 
the transcript most likely undergoes nonsense-mediated decay (NMD).

The SRPS case, R13-147A, also showed compound heterozygosity for variants in IFT81: c.785T >​ G was 
predicted to cause a premature termination codon (p.Leu262*) and loss of the transcript. The second change, 
c.1303_1305delCTT, is predicted to result in an in-frame deletion of a highly evolutionarily conserved leucine 
residue (p.Leu435del) (Fig. 1J). Neither variant was found in the ExAC, 1000G or UW exome variant data-
bases (http://www.1000genomes.org, http://evs.gs.washington.edu) and both were predicted to be damaging by 
MutationTaster with scores of 1 and 0.999, respectively. The Leu435 deletion is predicted to alter the third of four 
coiled-coil domains of ITF81, which could alter the conformation of the protein.

IFT81 mutations destabilize anterograde IFT-B complex.  Cultured cells (chondrocytes) were only 
available for R98-443A and were used to assess the effect of the mutations on IFT81 mRNA and protein lev-
els. RT-PCR demonstrated at least a 50 percent reduction in the transcript level in mutant cells relative to con-
trols (Fig. 2A). Western blot analyses of IFT81 showed near complete loss of IFT81 in mutant cells (Fig. 2B). A 
non-specific band, that migrated slightly faster than IFT81, did not differ between control and mutant cells. These 
data demonstrate that compound heterozygosity for the mutations led to a significant loss of IFT81, more than 
could be accounted for by presence of one null allele, suggesting that the missense mutation destabilized IFT81.

In addition to the IFT81 mutations, the exome sequence analysis in R98-443A identified heterozygosity for 
a known TTC21B variant (c.2600G >​ A; p.Arg867His; rs76726265). Because TTC21B mutations have shown to 
cause ATD, and this variant was predicted to be damaging (SIFT, PolyPhen with Bayes probability of 0.999 by the 
MutationTaster algorithm), mRNA and protein levels were characterized by RT-PCR and Western blot analysis 
respectively. The data (Fig. S2) showed no difference between case and control chondrocytes by either measure 
(Fig. S2). The allelic frequency for this variant was 0.0005 (ExAC), with 70 individuals showing heterozygosity 
for the allele. However, 64 of the 70 heterozygotes in the databases were African-American (ethnic-specific allelic 
frequency =​ 0.006), the same ethnicity as the proband, suggesting that the change is a polymorphism in that 
specific population.

IFT81 is a component of the IFT-B core complex that is responsible for the anterograde transport of tubulin 
and other molecules to the tip of the cilium. As diagrammed in Fig. 2I, the IFT-B core complex is composed of at 
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least nine subunits 88, 81, 74, 70, 52, 46, 27, 25, and 2224,39. IFT74 directly interacts with IFT81 and heterodimers 
of IFT74/81 bind α​β​-tubulin, regulating their transport into the cilia in a concentration dependent manner25–27. 
IFT52 is another key member of the core complex, and forms a trimeric complex with IFT70 and IFT8840–42. 
There is also a peripheral IFT-B complex composed of the IFT particles 20, 54, 57, 80, 172, and others. Based on 
the barely detectable levels of IFT81 protein resulting from the mutations, we tested the hypothesis that loss of 
IFT81 could lead to destabilization of the core IFT-B complex. Quantification of core complex proteins IFT74, 
IFT52 and IFT88 by Western blot analyses showed markedly decreased levels of all three proteins in R98-443A 
cells (Fig. 2B,D–F), demonstrating that mutations in IFT81 destabilized the IFT-B complex members at the pro-
tein level. To determine if mutated IFT81 also disrupted the stability of the kinesin motor responsible for the 
movement of the IFT-B complex, we analyzed protein levels of KIF3A. This key component of the kinesin com-
plex43 showed similar protein levels between mutant and control cells (Fig. 2B,G), demonstrating that, although 
the anterograde IFT-B complex is altered, a key motor protein remained stable. As the IFT-B complex has been 
shown to bind tubulin monomers, we analyzed the levels of alpha-acetylated tubulin, a specific form of tubulin 
that constitutes the microtubules of cilia44,45. Acetylation of tubulin increases the stability of microtubules that 
comprise the cilium and recent data show that kinesin-1 prefers to travel on acetylated microtubule tracks45,46. We 
observed an increase of acetylated tubulin in R98-443 chondrocytes (Fig. 2B,H), suggesting impairment of proper 
turnover of tubulin in the cilium.

IFT81 mutations alter ciliogenesis.  Although many of the mutations causing SRPS affect retrograde 
transport proteins, at a molecular level they disrupt the normal trafficking of molecules inside the cilia5,15,47,48. 
These alterations frequently lead to defects in ciliogenesis, cilia architecture and contribute to alter Hedgehog sig-
naling activity. To investigate whether ciliogenesis was affected in mutant cells, we quantified both the abundance 
and length of cilia in mutant chondrocytes (Fig. 3A–D). The percentages of ciliated cells were similar between 
case and control cells (no difference detected by t-test p =​ 0.05) (Fig. 3D), but there was significant variability 
in cilia length among affected chondrocytes, with a significant increase in average cilia length in mutant cells 
(t-test P <​ 0.0001, Fig. 3C). To determine if expression of IFT81 could rescue the cilia phenotype, we expressed 
wild-type IFT81 (Origene) and again measured cilia length. As shown in Fig. 3, mutant cells transfected with 
wild-type IFT81 had reduced average cilia length compared with non-transfected cells, with cilia lengths similar 
to wild type cells.

IFT81 mutations alter Hh signaling.  To determine whether Hedgehog signaling was affected in mutant 
cells, we analyzed protein levels of GLI3, a bi-functional transcription factor that is activated through the Hh 
intracellular cascade. In the absence of Hh, GLI3 is proteolytically processed and acts as a transcriptional repres-
sor (R) of Hh downstream targets. Conversely, binding of Hh ligands to the Patched receptor activates Smo in 
the cilia, leading to repression of the processing of GLI3, increased full-length (FL) GLI3 transcriptional activa-
tor and increased transcription of Hh downstream genes. In the normal state, the GLI3 FL/R ratio determines 
the transcriptional output of Hh signaling. In ATD chondrocytes there was an increased FL/R ratio at baseline 
(Fig. 3G,H) that was exaggerated in response to the Hh agonist SAG (Fig. 3G,H), implying IFT81 mutant cells 
have permanently dysregulated Hh signaling. Transfection of the cells with IFT81 rescued the GLI3 FL levels 

Case R98-443 R13-147A

Diagnosis ATD Short Rib Polydactyly Syndrome type II 
(Mohr-Majewski)

Gestational Age at 
Delivery (weeks) Full term 35wk 4d

Birthweight (grams) 3797 g 3000 g

Birth Length (cm) 42.5 cm 38 cm

Apgar Scores 9, 9 Decreased minutes after birth

Head Dolicocephaly, relative macrocephaly and with prominent occiput Dolicocephaly, relative macrocephaly. 
Prominent forehead and occiput

Face Prominent eyes, depressed nasal bridge with long philtrum Flattened facies with midface hypoplasia

Ears Right-sided pre-auricular pit without cystic swelling of the ear 
cartilage Low set of ears

Heart Normal Ventricular septal defect

Thorax/Abdomen Long and narrow thoracic cage with shortened ribs Extreme shortened chest, severe pulmonary 
hypoplasia, omphalocele

Genitalia Normal male. Both testes descended. XY male with female genitalia 

Neuro Global hypotonia Global hypotonia

Upper extremities Rhizomelic shortening of the upper extremities greater than lower 
extremities, bilateral mesomelia of radii and ulnae Extreme micromelia

Hands and feet Broad hands and feet with short stubby fingers, bilateral simian 
creases and all of the fingers had two rather than three flexion creases

Polydactyly and syndactyly in the hands 
and feet

Lower extremities Bowing of the mesomelic segment, dimples over the lateral knees Extreme micromelia

Table 1.   Clinical Findings.
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(Fig. 3I,J) and partially rescued the FL/R ratio in mutant cells due to the simultaneous decrease of GLI3FL and R 
forms (Figs 3I and S3).

Mutations in IFT81 disrupt growth plate.  While the data presented here demonstrate that IFT81 is 
required for normal cilia architecture and Hh signaling, how mutations in this gene affect skeletal morphogen-
esis remains unclear. Since most of the skeletal ciliopathies affect Hh signaling, and differentiation of growth 
plate chondrocytes is regulated in part by Indian Hedgehog (IHH), it is likely that altered IHH signaling due to 
defective cilia influences bone morphogenesis in SRPS5,25,49–52. To determine the involvement of mutations in 
IFT81 in this process, histologic analyses were performed using distal femur growth plates from case R98-443A 

Figure 1.  Mutations in IFT81 cause SRP syndrome. Radiographic findings in R98-443 and R13-147A. 
(A,F) show dolicocephaly, prominent occiput, and midface hypoplasia. (B,G) show long narrow thoraxes, 
handlebar clavicles in R98-443 and very short horizontal ribs in R13-147. (C) Upper extremity of R98-443 
demonstrating shortened humerus and radius, and short, abnormally shaped ulna. (H) Lower extremity of R13-
174 showing marked deficiency of the femur, tibia and fibula. (D,I) show brachydactyly and polydactyly and 
poor mineralization (arrow) in SRP case R13-174. (E,J) Chromatograms illustrating compound heterozygosity 
for mutations found in each case.
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(Fig. 4). Sections of growth plate were stained with picrosirius red and showed disorganization of chondrocytes 
in the proliferative zone, with short columns of cells dispersed in more than one plane (Fig. 4). There was a very 

Figure 2.  IFT-B complex is destabilized in IFT81 mutants. (A) RNA levels of IFT81 in control and patient 
chondrocytes. β​-Actin serves as loading control. (B) Protein levels of several components of IFT-B complex 
(IFT81, IFT74, IFT88 and IFT52), acetyl-tubulin and kinesin motor component (KIF3A). GADPH serves 
as a loading control. (C–H) Bar graphs showing statistical analyses (t-Test) for the replicates of each studied 
protein between control and R98-443. (I) Cartoon of the IFT-B complex transporting α​β​-tubulin through a cilia 
microtubule.
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Figure 3.  IFT81 mutations induce cilia defects and abnormal Hh signaling. (A,B) ARL13B and Pericentrin 
staining of the centrosome and cilia in green in control and R98-443 chondrocytes. (C) Cilia length of control, 
R98-443 and rescued R98-443 chondrocytes with IFT81 vector showing that rescued cells partially corrected 
cilia length phenotype. (D) Percentage of cells with cilia in control and patient chondrocytes showing no 
difference in number. (E,F) Cilia staining with ARL13B and Pericentrin (both green) in rescued R98-443 
chondrocytes showing average length cilia. (F,F’) demonstrate that the IFT81-GFP fusion protein co-localized 
with Acetyl-Tubulin in the cilia. (G,H) GLI3 levels in control and R98-443 chondrocytes with and without SAG 
stimulation showing altered GLI3FL/R ratios. I-J GLI3FL levels were restored to control levels with R98-443 
chondrocytes rescued with vectors of IFT81 fusion protein (GFP and DDK flag).
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short hypertrophic zone with poor column formation and lack of the normal progressive increasing size of hyper-
trophic chondrocytes as they approach the primary spongiosum (Fig. 4B,C). Interestingly, an unusual band of 
collagenous extracellular matrix with rounded cells was ectopically positioned in the middle of the proliferative 
zone and the staining was suggestive of a bone-like matrix (arrow in Fig. 4C).

Discussion
Data presented here show that mutations in IFT81 destabilize the intraflagellar transport complex B, affect cilia 
architecture and Hh signaling, which results in altered growth plate and ultimately uncoupling the orderly process 
of skeletogenesis. However, differences in severity between the R98-443 and R13-147A phenotypes suggest that 
each mutation may exert different effects on functionality of the IFT81 protein. In both cases, one mutation is a 
null allele, so the phenotypic differences between the cases are likely to result from functional differences between 
the structural mutations. In the ATD case (R98-443), the missense mutation alters the calponin-like homology 
domain, which is involved in binding to the globular domain of α​β​-tubulin and may interfere with this key inter-
action regulating cilia structure. The consequence of the in-frame deletion of a leucine at residue 435 in the SRPS 
case is less clear. This residue is in a coiled-coil domain (coiled-coil domain residues 416-456), which in IFT81 
mediates interactions with IFT74 suggesting that the mutation may interfere with proper assembly of the IFT-B 
complex. The variant found in TTC21B gene in the R98-443 case could also act as a modifier of the phenotype19 
although the high frequency of this variant in the population makes it unlikely.

To date, two other families with IFT81 mutations have been described53. In both families the affected indi-
viduals had ciliopathy-like phenotypes. In one case there was homozygosity for a splice junction consensus 
sequence mutation predicted to lead to exon skipping and an in-frame deletion, implying loss of part of the sec-
ond coiled-coil domain. The affected individual presented at birth with postaxial polydactyly of the feet, bilateral 
hyperechogenic kidneys and intellectual disability, with no reported retinal or skeletal findings. In the second 
case there was homozygosity for a small deletion toward the 3′​ end of the gene, predicting a frameshift and 
extension of the IFT81 coding region beyond the normal stop codon. The affected individual showed retinal 
dystrophy and, over time, developed early-onset cone rod dystrophy. He was reported as having normal renal 
function and a normal skeleton. Phenotypically the cases reported here are quite distinct in that they primarily 
affect the skeleton, while the previously reported cases with IFT81 mutations had no skeletal involvement beyond 
postaxial polydactyly seen in one case. Fibroblasts from the second case showed stable levels of IFT81 protein, 
and immunofluorescence for other IFT-B core complex components, specifically IFT25 and RABL5/IFT22, was 
not altered in the cells53. The fibroblasts had a reduced number of cilia that were shorter overall, findings that 
differed from what was observed in our study. Our ATD case showed no alteration in ciliogenesis, an increased 
average length of cilia, and destabilization of the IFT-B complex at the protein level. The mechanisms of disease in 
the skeletal ciliopathies studied here thus appear to be distinct. Destabilization of the IFT-B complex is accompa-
nied by accumulation of acetylated-tubulin, the structural unit of the cilia microtubules. How this accumulation 
happens is unknown, but a possibility is that the destabilization of IFT-B complex leads to altered transport of 
acetylated-tubulin within the cilia. An emerging theme in the skeletal ciliopathies is that the ciliary abnormalities 
lead to loss of cilia length regulation5,22,54,55, a finding observed in the cases studied here. More specifically, longer 
cilia has been observed in other SRP cases with disruption of the IFT-B as well as other ciliopathies5,22,56,57. Studies 
have suggested that longer cilia are associated with increased anterograde IFT velocity and this can negatively 
impact the dynamic process of trafficking of signaling molecules and receptors into the ciliary compartment58. 
How this variability in length contributes to cellular and tissue abnormalities particularly in the skeleton remain 
unknown.

The abnormalities in Hh processing observed in the ATD mutant cells suggest that IHH signaling in the 
growth plate is likely to be altered. There are two aspects to the function of IHH in the growth plate that may be 
affected. IHH is synthesized by prehypertrophic and hypertrophic cells and regulates growth plate chondrocyte 
differentiation. The markedly abnormal structure of the ATD growth plate reflects defects in this process. In 
addition, IHH also determines the site of bone collar formation in the adjacent perichondrium, thus coupling 
chondrogenesis to osteogenesis during endochondral bone development59. The band of ectopic mineralized tissue 
across the growth plate suggests that inappropriate ossification effected through altered GLI3 FL/R ratios may 
have resulted from defective IFT81.

In conclusion, the data demonstrate that mutations in IFT81 produce ATD and SRPS, and expand the number 
of genes associated with the skeletal ciliopathies. Markedly diminished levels of IFT81 led to instability of the 
IFT-B complex, loss of ciliary length regulation, altered post-translation modification of tubulin and abnormal 
Hh signaling. Through studies of the human skeletal ciliopathies, identification of mutations in the genes encod-
ing each of the IFT particles have provided us with an integrated understanding of cilia function.

Methods
Informed consent was obtained from all patients under an approved human subjects protocol. All experimental 
protocols and methods were carried out in accordance with institutional guidelines and regulations and approved 
by the UCLA Institutional Biosafety Committee.

Exome analysis.  DNA was isolated and submitted to the University of Washington Center for Mendelian 
Genomics for library preparation and exome sequencing in a cohort of patient with “ciliopathies with major 
skeletal involvement.” The samples were barcoded, captured using the NimbleGen SeqCap EZ Exome Library 
v2.0 probe library targeting 36.5Mb of genome, and sequenced on the Illumina GAIIx platform with 50 bp 
reads. Novoalign was used to align the sequencing data to the human reference genome [NCBI build 37] and 
the Genome Analysis Toolkit (GATK) was used for post-processing and variant calling according to GATK Best 
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Practices recommendations. For each sample, at least 90% of targeted bases were covered by at least 10 independ-
ent reads. Variants were filtered against dbSNP137, 95 NIEHS EGP exome samples (v.0.0.8), 6503 exomes from 
the NHLBI Exome Sequencing Project (ESP6500), 1000 genomes (release 3.20120430), and 40 in-house exome 
samples. Mutations were further compared with known disease-causing mutations in HGMD (2012.2). Variants 
were annotated using VAX34 and mutation pathogenicity was predicted using the programs Polyphen35, Sift36, 
Condel37, and CADD38. Potential disease genes were identified under an autosomal recessive and X-linked 
recessive models, identifying either homozygous variants in one gene, two changes in the same gene, or hemizy-
gous changes on the X chromosome because both of the potential for a hemizygous change producing disease. 
The changes were then filtered because on whether the genes had a known role in cilia and IFT81 was identified 
as known IFT-B cilia gene. All the variants identified by this strategy in the two cases are listed in Supplemental 
Table 1. The mutations reported in this work were confirmed by bidirectional Sanger sequencing of amplified 
DNA from the proband. 5′​ 3′​ primer sequences were IFT81 ex2 Fw ccaggacttttgttgccagt; IFT81 ex2 Rv ggctttctgc-
tacccatcaa; IFT81 ex14 F ttctctgttgtttgggactgaa; and IFT81 ex14 Rv cacacctggcctgtatgtca. Sequence trace files were 
aligned and analyzed using 4peaks.

Figure 4.  Growth plate defects in a patient with mutations in IFT81. (A) X-ray of formalin fixed distal 
femur at 19 months of age showing irregular metaphyseal margin (arrow). (B,C) Picrosirius Red-Haematoxylin 
staining of same distal femur (B) magnified in (C) showing irregular hypertrophic column formation and lack 
of normal progressive enlargement of hypertrophic chondrocytes. Arrow points to an irregular collagenous 
band transecting the growth plate. (D,E) Differences between control and IFT81 defective growth plates.  
(D) Control. (E) R98-443. Bone is represented in red and cartilage in blue.
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Cell culture.  Primary chondrocytes were isolated from distal femurs of affected individuals or age- matched 
normal controls by incubation of fragmented cartilage with 0.03% bacterial collagenase II. Primary chondrocytes 
were cultured in DMEM with 10% FBS in low passage number. Experiments were performed starving chondro-
cytes in 0.5% serum for 48 h previous to cell collection or SAG stimulation. SAG stimulation was performed by 
adding 500 nM SAG (R&D) in starving media for 24 h. Non-stimulated control cells were cultured 72 h in starva-
tion to normalized cell growth.

Western blot.  Each antibody was tested in at least three experimental replicates from independent cul-
tures. Cell lysates were collected from 80% confluence starved cultures in RIPA buffer with proteinase inhibitors 
(SIGMA). Lysates were cleared by centrifugation and quantified (Pierce BCA protein assay kit) to equal loading. 
40 ug of each lysate were loaded with Laemmli buffer and run by 10% acrylamide SDS-PAGE gels and trans-
fer to PVDF membranes. Membranes were saturated for 1 h and antibody-incubated overnight in 5% milk in 
TBST. HRP secondary antibody and ECL-film exposure was used to detect bands. Antibodies used were: IFT81 
(Proteintech 1:1000); CMG or IFT74 (Abcam 1:500); IFT52 (Proteintech 1:1000); IFT88 (Proteintech 1:500); 
Aceto-Tubulin (SIGMA T6793 1:2000); KIF3A (Sigma 1:2000) Gli3 (R&D 1:200); GAPDH (Cell Signaling 
1:1000). HRP secondary antibodies were Cell Signaling (1:1000, anti-mouse and–rabbit) and Santa Cruz (1:3000, 
anti-goat). FIJI was used to quantify bands following Gel Analysis recommendations from ImageJ and Gassmann 
et al. (http://rsb.info.nih.gov/ij/docs/menus/analyze.html#gels)60 and Mann-Whitney test was performed for sta-
tistic analysis using Prism software.

RT-PCR.  RNA from primary chondrocytes was extracted with Trizol and RNA was treated with DNase I (Invitrogen).  
Reverse transcription was performed using RevertAid First strand kit (Thermo). PCR was performed with Platinum 
Taq Polymerase. Coding sequence primers used were: IFT81 87 Fw: TCAATAAGGAGCCCTTTAGGAA;  
IFT81 87 Rv: AATCACCAAACCCTGACGAA; IFT81 1534 Fw: GAAAGGACGAACATTGGATGA; IFT81 
1534 Rv: AAGACATTCTTCACGGAGTCTTC; Bact Fw: TCCCTGGAGAAGAGCTACGA; Bact Rv: 
AGGAAGGAAGGCTGGAAGAG.

Immunofluorescence and Cilia measurements.  Cells were cultured in 4-well chamber slides (LabTek). 
After serum starvation, cells were washed twice with PBS and fixed in PFA for 10 min and then permeabilized 
with 0.1% Triton-X-100 in PBS for 15 min at room temperature. Then cells were blocked in 10% goat serum for 
1 hr at room temperature. Primary antibodies were diluted in PBS containing 1% serum and incubated overnight 
at 4 °C. Antibodies used were: ARL13B (Proteintech 1:100); anti-acetylated α​-tubulin (Sigma T6793 1:2,000); 
Pericentrin (Abcam 1:2000); DAPI was used to stain nucleus. Detection was performed with secondary Alexa 
Fluor 488/568 antibodies (1:1000; Invitrogen). Images were captured on Zeiss Confocal 810. Images were col-
lected with 1024 ×​ 1024 pixel definition and Z-sections were taken at 0.5 μ​m step size. Max projections of the 
Z-stacks were used for primary cilium measurement and counting in ImageJ (NIH). Cilia length was measure in 
pixels (px) and compared from at least two experimental replicates with control chondrocytes (N =​ 226, 226, 67 
cilia counted in control, R98-443, and rescued cells).

Rescue experiment.  Proband chondrocytes were electroporated with a vector containing CMV-IFT81 
using a 4D-Nucleofector system and Amaxa P1 Kit under the program DS-150. Cells were recovered with starva-
tion media and cultured for 48 h previous to cilia analysis.

Histology.  Distal femurs from the proband was collected after death at 6 months of age cut in half for better 
preservation and fixed in formalin 10%. Then, bone was decalcified in Immunocal (Formic Acid) for three days, 
dehydrated and embedded in paraffin. Sections of 10 um were obtained and stained with picrosirius red for 30 
minutes and hematoxilline as counterstain.
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