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Self-organized sorting limits 
behavioral variability in swarms
Katherine Copenhagen1, David A. Quint2,3 & Ajay Gopinathan1

Swarming is a phenomenon where collective motion arises from simple local interactions between 
typically identical individuals. Here, we investigate the effects of variability in behavior among the 
agents in finite swarms with both alignment and cohesive interactions. We show that swarming is 
abolished above a critical fraction of non-aligners who do not participate in alignment. In certain 
regimes, however, swarms above the critical threshold can dynamically reorganize and sort out excess 
non-aligners to maintain the average fraction close to the critical value. This persists even in swarms 
with a distribution of alignment interactions, suggesting a simple, robust and efficient mechanism 
that allows heterogeneously mixed populations to naturally regulate their composition and remain 
in a collective swarming state or even differentiate among behavioral phenotypes. We show that, for 
evolving swarms, this self-organized sorting behavior can couple to the evolutionary dynamics leading 
to new evolutionarily stable equilibrium populations set by the physical swarm parameters.

Collective motion in natural systems is a well studied phenomena that spans many spatial and temporal time 
scales1,2, ranging from protein filaments driven by molecular motors3,4, to swarming bacteria5 and active colloidal 
crystals6, to fish7, birds8, and even robot swarms9,10. Such collective phenomena rely on the sharing or transmis-
sion of local information by constituents of the group leading to global consensus. Information flow and infor-
mation fidelity are therefore critically important for collective systems to persist, especially in situations where 
disorder is an issue.

Disorder may exist in the environment and it has been recently shown that topological disorder in the form 
of obstacles can have significant detrimental effects on the ability for systems to move collectively11–13. Disorder 
can also exist in the form of variability in behavior among members of the group, which has been modeled using 
agents with varying velocities14,15 or differing noise sensitivity16, agents that stochastically switch off social inter-
actions17 and migratory groups of agents with varying sensitivity to external directional cues18,19. An interesting 
manifestation of such behavioral heterogeneity would be swarms with agents that have varying abilities to process 
social cues. A specific scenario could be swarms with sub-populations of non-aligners that either refuse or are 
unable to participate in utilizing shared information with their neighbors resulting in significant impacts on the 
collective. For example, it has been observed in colonies of the quorum sensing bacteria P. aureginosa that colony 
collapse can occur if mutant cheaters (those that do not secrete signaling compounds to sustain colony swarming) 
are introduced into the swarm even though there are sufficient nutrients in the environment20–24. Differential 
behavior can also be a result of disease in organisms. For example, in locust swarms, the introduction of parasites 
(Paranosema locustae) inhibit the production of aggregation pheromones that promote gregarious behavior, thus 
resulting in a transition to a non-swarming state25. In analogy to these biological systems, non-alignment behav-
iors could also arise in robotic drone swarms9,26, where software viruses or hardware failures could cause agents 
to malfunction, leading to an inability to swarm effectively and requiring the development of novel algorithms to 
alleviate this problem27–29.

Since differential behavior or non-alignment can be fairly ubiquitous in swarming systems and too many 
such non-aligners will have a deleterious effect on the ability to swarm, it poses a number of significant questions 
regarding how natural swarms deal with non-aligners or more generally variations in alignment ability. Is there a 
maximum fraction of non-aligners that a finite swarm can carry and is there a simple predictive relation between 
the maximum non-aligner carrying capacity and the characteristics of the swarm? Could there exist robust mech-
anisms that allow the whole group to increase its non-aligner carrying capacity? Are there mechanisms that allow 
swarms to limit the spread of non-aligning? Do these same mechanisms operate if the alignment abilities have a 
more natural continuous spread? If there are fitness advantages associated with non-aligning how does it affect 
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the evolutionary dynamics? To address these issues, we study an agent based model of finite swarms with local 
aligning and cohesive interactions between neighbors and a sub-population of non-aligning agents within the 
group that do not align with their neighbors and do not have a defined internal preferred velocity.

The Model
Agents exist in a continuous two dimensional space where each agent interacts with other agents in its immediate 
neighborhood defined by a vision radius dv. At any given time, t, each agent has a position ��xi, and a direction of 
travel 

��
di. The direction of travel of the agent at the next time step is computed by taking into account both align-

ment and cohesive interactions with its neighbors as well as noise. This is implemented by computing an align-
ment interaction vector, 

��
dA and a cohesive interaction vector, 

��
dLJ. Here, 

��
dA for an agent is the sum of the direction 

vectors of its nearby neighbors, which is proportional to the mean consensus direction (see methods for details). 
The form of the alignment interaction we use is common in studies of swarming systems and can be found in 
many variants of the standard Vicsek model30–32, which was formulated originally to study a thermodynamic 
phase transition of aligning agents resulting from an increase in temperature or noise of the system. The form of 
the cohesive interaction is modeled as arising from a Lennard-Jones (LJ) interaction which is attractive at large 
distances and repulsive at close range (see methods for details). The effect of the LJ interaction in our model is to 
encourage agents to maintain a preferred distance (R) thus providing an overall cohesiveness as well as collision 
avoidance within the swarm, as seen in similar swarming systems29,33,34. It is to be noted that our results do not 
depend critically on the exact form of the potential as long as it prescribes a preferred separation distance. In what 
follows, we set ∼ .R d0 8 v, so that each agent sees only its first nearest neighbors on average, consistent with prior 
flocking models. The updated travel direction vector is then

α= + +
�� �� ��
d t d d noise( ) (1)i A LJ

Noise here is implemented as an angular adjustment by rotating the calculated travel direction vector through 
a randomly selected angle from a uniform distribution in the interval [− η/2, + η/2]. This is described in detail in 
the methods section below. Here the dimensionless parameters α and  measure the importance of alignment and 
cohesiveness respectively (equation (1)). Directional updates are only performed in time intervals of δt corre-
sponding to the physical reaction time of agents within the system. In contrast, positions are updated every sim-
ulation time-step, Δ t, which can be made arbitrarily small. It is to be noted that velocity is encoded by a new 
length scale, dr, the reaction distance, which determines how far an agent moves before reprocessing information, 
i.e. in time δt. Our model for the swarm produced expected stable collective dynamics30, including order-disorder 
transitions as a function of noise (see Supplementary Information 1.1), which have been subsequently studied 
using both hydrodynamics35,36, and agent based models37. Although such agent based models are quite simple and 
leave out many microscopic details, they have been shown to produce a rich and complex phase space of collective 
motion that mimics the behavior of real physical and biological swarming systems37–40.

To introduce behavioral heterogeneity in the form of non-aligners who refuse, or are unable, to participate 
in utilizing local alignment cues to guide their movements, we choose, at random, a fraction f of the swarm-
ing agents to be non-aligners after a transient time period where collective motion is established. Non-aligner 
agents follow the same update procedures as aligners, except that the alignment interaction is suppressed by 
setting α =  0, so they no longer have any intrinsic tendency to align with their neighbors. Thus the only forces the 
non-aligners feel arise from the LJ potential.

Results
Large inter-agent cohesiveness limit. We first consider the limit where the cohesive interactions are 
strong enough to produce a single swarm that cannot break apart and shows no rearrangements over time. This 
happens when α∼ , which is high enough to prevent the swarm from fracturing. Thus, once a random spatial 
distribution of non-aligners is established in the swarm, it remains fixed in a locked-in state thereafter. We begin 
by focusing on the effects of adding a fixed fraction of non-aligners, f, to our system and analyzing how the addi-
tion of these non-aligners affects the ability of the agents to swarm. To quantify the degree of order in the swarm 
we use the group polarization of all the agents, , defined by,

 ∑=
=

ˆ
N

d1

(2)i

N

i
1

Figure 1(a) shows that as f increases, the swarm undergoes a sharp transition from an ordered swarming state 
where  ≈ 1 to a static disordered non-swarming state with ≈ 0 . The transition occurs at a critical non-aligner 
fraction, f* , that is very weakly dependent on the system size as seen in Fig. 1(a) where the transition occurs near 
f*  ∼  0.5 for  =  1, dv/dr =  100, and various different system sizes. On the left of the transition the system has a low 
non-aligner fraction and all agent directions are aligned with each other, shown by the black arrow heads in 
Fig. 1(b) with non-aligners in red and aligners in blue, while on the right of the transition the system is no longer 
able to form an ordered state, and agents instantaneously have random directions (Fig. 1(c)), resulting in a state 
with no net movement of the center of mass of the swarm. Note however that each individual still moves within 
the cluster even in the disordered state. It is to be noted that the time at which non-aligners are introduced does 
not affect the results shown and there appears to be very little hysteresis in the system (see Supplementary 
Information 1.2 and 1.3), suggesting a possible first order transition17, which implies that the results for a fixed 
non-aligner fraction are fairly unique. Intuitively, increasing the fraction of non-aligners, f, while keeping the 
swarm together as a single unit, decreases net alignment with different parts of the swarm trying to go in different 
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directions and results in a disordered stationary state. With cohesive strength being fixed at a high value, the 
non-aligner carrying capacity, f* , then depends sensitively on the ratio, dv/dr, where dv ∼  R is the vision radius or 
agent-spacing and dr is the reaction distance. Figure 1(d) shows the value of f*  where the system transitions from 
an ordered to a disordered state (green) increasing with the ratio dv/dr.

To identify the cause for this behavior, we looked at the average magnitude of the alignment interaction, 
α〈| |〉
��
dA , over all agents in the swarm, and the average magnitude of the cohesive interaction, 〈| |〉

��
dLJ . As the 

non-aligner fraction f increases, we found that the average magnitude of the alignment interaction, α〈| |〉
��
dA  

decreases as the non-aligners do not contribute to alignment and that the transition occurs at a value of f ∼  f*  
when α〈| |〉

��
dA , becomes less than 〈| |〉

��
dLJ . Figure 1(d) shows the value of f where the measured value of α〈| |〉

��
dA  in 

the simulation becomes less than 〈| |〉
��
dLJ  (red) and we see that it compares well with the measured value f*  for the 

order disorder transition. Comparing the alignment and cohesive interactions also allows us to derive a simple 
analytic approximation for the value of f*  with no adjustable parameters (Equation 3).


α

∼ − ×⁎f C d
d

1
(3)

r

v

here, C is a constant set by the form of the cohesive interaction as well as the average number of neighbors per 
agent (See Supplementary Information 2 for derivation). The agreement between our analytical estimate and the 
simulation values is shown by the blue curve in Fig. 1(d).

The fact that f*  changes from about 10% to about 90% in just over a decade in the parameter dv/dr is of signif-
icance. Higher values of dv/dr correspond to situations where agents are spaced much further than they move 
between updating directions, resulting in agents being able to quickly correct for deviations from their perfect 
swarming formation. Thus a potential way for swarms to accommodate more non-aligners or malfunctioning 
agents is to increase dv/dr, which can be accomplished either by increasing their separation (increases dv) or by 
moving slower and/or processing information more quickly (decreases dr). The other mechanism to potentially 
increase the non-aligner carrying capacity f* , is by reducing the cohesiveness /α.

Figure 1. (a) Order vs non-aligner fraction of swarms with varying system sizes,  =  100. There is a clear 
transition from an ordered state with ≈ 1  to a disordered state with low  at non-aligner fractions above a 
critical value, f* . (b) Simulation snapshot with a value of f below the critical value, the agents (aligners shown in 
blue and non-aligners in red) all travel in the same direction (black arrow heads). (c) When the non-aligner 
fraction is larger than the critical value, the agents try to move in different directions, resulting in a net zero 
polarization. (d) f*  for the order-disorder transition (green) as a function of dv/dr compared to the non-aligner 
fraction at which the measured average cohesion becomes greater than that of the average alignment (red). The 
blue curve is the result of our analytical approximation comparing average alignment and cohesiveness.
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Tuning cohesiveness between agents allows for enhanced swarming. Reducing the cohesiveness 
results in a situation where the disorder is no longer quenched and the agents are able to rearrange themselves 
within the swarm or even cause the swarm to fracture. To study these cases, the system is initialized with a high 
 =  1 in the locked-in state and a high value of f >  f*  so that the system is in a static disordered state by default. 
After a transient time period allowing the system to reach a steady state,  is reduced, allowing for potential rear-
rangements and fracture. When  is reduced, we found that the system fragments into smaller clusters which can 
individually be ordered swarming clusters or disordered static clusters. Figure 2(A) shows the weighted average 
of the steady state order parameter  of the fragmented clusters of the system for a fixed non-aligner fraction 
f =  0.8 versus the relative strength of the LJ interaction, , for a system size of N =  100. A modest reduction in  
appears to have a dramatic effect. When  =  10−1.0 it appears that the polarization in the swarm is greatly amplified 
where swarming was completely suppressed in the quenched configuration case ∼( 1) . Thus, the previously 
immobile single cluster has now broken up into smaller clusters, many of which are mobile. As  is decreased 
further, the polarization begins to decay slightly suggesting that the cohesiveness has become so weak that some 
of the clusters begin to fracture into individual agents and thus are no longer part of ordered clusters. This sug-
gests that there is some optimal regime of  for collective motion in the presence of non-aligners.

We next probed the dynamics associated with the cluster reorganization. Figure 2(A inset) shows the percent 
change in the fraction of aligners (blue) and non-aligners (green) which are part of moving clusters as the simula-
tion time progresses. The mobility fraction of non-aligners steadily decreases while the mobility fraction of align-
ers steadily increases. This suggests a sorting mechanism whereby non-aligners are being left behind allowing for 
clusters with more aligners to become ordered and move collectively. This can be visualized in Fig. 2(B,C) which 
illustrates how the system starts out as a single disordered group and then breaks apart into smaller ordered clus-
ters with mixtures of non-aligners and aligners, as well as disordered clusters consisting of mostly non-aligners.

To examine the relative contribution of rearrangements within single clusters to the overall sorting, we meas-
ured the probability distribution of the angle between the direction of travel of the non-aligners and the cluster 

Figure 2. (A) The weighted average steady state order of all clusters against , for a fixed value of non-aligner 
fraction, f =  0.8 and system size of N =  100. (A inset) Plot of the percent change in mobility fraction for aligners 
and non-aligners against time after the initial transient phase with fixed  =  10−1 and f =  0.8. (B) At values of 
non-aligner fractions near the transition the system sorts from one single swarm without any order, to  
(C) smaller clusters with ordered clusters and disordered clusters. Separation shown between clusters in  
(C) is chosen for convenience and is much smaller than the actual separations by the end of the simulation.  
(D) Difference in the probability distribution of the angle between the direction of travel of non-aligners from 
the average cluster direction and the direction of aligners from the average cluster direction. Red shaded region 
is the angles which are within the range of the noise of the system.
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average, as well as the same probability distribution for aligners. We then calculated the difference in these two 
probability distributions (Fig. 2(D)). We observe that aligners contribute predominantly to angles close to zero 
(purple bar) within the spread due to noise (red shaded region), while non-aligners are more likely to travel at 
angles around π/2 (blue bars) with respect to the cluster average. This implies that non-aligners will gradually 
move towards the sides and backs of the clusters before getting left behind. By sorting out non-aligners, the over 
all average alignment interaction strength in the cluster increases due to the higher fraction of aligners present, 
and the smaller cluster is able to swarm.

We now consider the full range of behaviors exhibited by our system as the parameters, including cohesion 
and non-aligner fraction, are varied. Figure 3 (A) shows a phase diagram of the system in the non-aligner frac-
tion/cohesion (f,) plane where the colors indicate the value of the order parameter . We see that if the 
non-aligner fraction exceeds a critical value f* () predicted by equation (3) (solid white line), the system is in a 
disordered, static state - denoted “St”. Here, the cohesive forces dominate over the alignment, leading to the static 
state with no net order, due to the frustration of agents attempting to travel in differing directions exceeding a 
value which can be resolved by aligning to reach a consensus direction. Below the line, we see that the system is 
able to achieve order. There are, however, two very different behaviors within this region. For low values of f, the 
system is stable and achieves a high degree of polarization ( ∼ 1) as a single cohesive swarm, relieving frustra-
tion by aligning to reach a consensus direction. This is clearly shown by the swarming region labelled “Sw” in 
Fig. 3(B) where the colors now indicate the probability that the system fractures into two or more clusters. Now, 
as the non-aligner fraction is increased, we enter the sorting regime (“So”) that we examined earlier in this sec-
tion, where the system begins to fracture into smaller clusters, leaving behind non-aligner rich clusters, allowing 
aligner rich clusters to swarm and thereby increasing the net polarization. It is of interest to note here that the 
transition between the swarming and sorting phases roughly occurs at a constant value of the non-aligner 

Figure 3. (A) The order parameter of the system with dv/dr =  100 plotted by color against  and f. (B) The 
probability of the system fracturing into two or more clusters plotted against  and f. The three phases, swarming 
(Sw), sorting (So), and static (St) are labeled on the phase diagram, with the predicted ordering transition (from 
equation (3)) as a solid white line and the dashed white line corresponding to the critical non-aligner fraction at 
 =  1. (C) The non-aligner fraction within small clusters which are ordered in steady state vs. the initial non-
aligner fraction f, with N =  100, and  =  10−0.5,10−1.0,10−1.5, and 10−2.0, corresponding to the blue, green, red, and 
black curves respectively. The dashed green line shows the value of f*  =  0.5 with dv/dr =  100. The purple curve 
corresponds to f*  =  0.8, purple horizontal dashed line, with dv/dr =  200, and  =  10−1.0. The yellow curve 
corresponds to f*  =  0.2, yellow horizontal dashed line, with dv/dr =  67, and  =  10−1.0. The light blue line shows 
the non-aligner fraction in the system if it were unable to fracture. (C inset) The fraction of the system that is in 
ordered clusters for N =  500. (D) The spread of non-aligner fractions within the sorted swarming clusters for 
several different systems sizes. The shaded area shown for each system size represents the average ±  one 
standard deviation, for final cluster sizes in bins of size 10. Green dashed line as in (C).



www.nature.com/scientificreports/

6Scientific RepoRts | 6:31808 | DOI: 10.1038/srep31808

fraction, fc equal to the critical non-aligner fraction, f* , when the alignment and cohesion constants become 
equal,  =  1 (in units of α), which is shown by the dashed white line, suggesting that at non-aligner fractions above 
fc frustration within the system is relieved by fracture as well as alignment. The existence of these three regimes 
and their locations relative to the predicted transition lines turn out to be completely general and work over the 
range values of dv/dr feasible in our simulations with no adjustable parameters (see Supplementary  
Information 3).

Self-organized sorting. Starting with a cluster with a high non-aligner fraction, we showed that, for low 
enough cohesive energies, the swarm dynamics spontaneously cause the re-organization and break-up of the 
cluster. What, then, is the non-aligner fraction of the sub-clusters that are now mobile and able to swarm? To 
answer this question, we looked more closely at the fragmented clusters and measured the average non-aligner 
fraction of all swarming clusters which have > .0 9 . Figure 3(C) shows the final fraction of non-aligners aver-
aged over all swarming sub-clusters as a function of the initial non-aligner fraction in the system, for three differ-
ent values of fc of ∼ 0.3, 0.52 and 0.75, which is set by changing the value of dv/dr according to Fig. 3(D). For low 
values of the initial non-aligner fraction, f, the final non-aligner fraction appears to follow linearly with a slope of 
unity, implying that little sorting or fracturing occurs for low non-aligner fractions. This is as expected, since for 
non-aligner fractions below the transition for a single crystallized swarm, at fc, are within the “Sw” region of the 
phase diagram in Fig. 3(A,B), and no fracturing is necessary to relieve frustrations within the system.

Then, as the initial non-aligner fraction continues to increase and approach f ≈  fc, we enter a region where the 
final non-aligner fraction seems to level off. In this regime, the value of f is high enough that, if the cohesiveness, 
, were very high (> 1), the system would be in a frustrated state with no overall alignment and different agents 
trying to go in different directions but being held together. But since the cohesiveness is actually low, the frustra-
tion can be relieved by the cluster fragmenting into smaller pieces that can have a net alignment. The same logic 
holds for resulting smaller clusters that still have too high of a non-aligner fraction f - they will continue to frag-
ment. If a resulting cluster has a non-aligner fraction less than ∼ fc, it is within the “Sw” region of the phase dia-
gram in Fig. 3(A,B), so it can move collectively by reaching a consensus direction to relieve frustrations without 
fragmenting further. Thus the aligners have effectively self-organized into small clusters with an average 
non-aligner fraction close to the critical value fc. This picture is confirmed by Fig. 3(C inset) which shows the 
fraction of the system which is contained in ordered moving clusters. For low initial non-aligner fractions, almost 
the entire cluster is mobile, while beyond the critical non-aligner fraction, the mobility fraction decays linearly as 
predicted by the simple picture where non-aligners in excess of the critical fraction fc are simply left behind.

To examine how robust our results were, and, in particular, if they were sensitive to the initial system size, we 
fixed  and non-aligner fraction at  =  10−1.0, and f =  0.8, and examined the final swarming clusters for a range of 
initial system sizes. We also measured the spread of non-aligner fractions within final clusters of different sizes, 
again for a few systems sizes. Figure 3(D) shows the average ±  standard-deviation of the non-aligner fraction over 
the different final cluster sizes. We can see that both the average non-aligner fraction and its variance within the 
final clusters are fairly independent of initial system size.

One can now imagine a generic swarm where the fraction of non-aligners (or defective/diseased agents) 
increases over time. This could be due to the spreading of a disease among organisms or the breakdown/malfunc-
tioning over time of individual robotic agents, or simply the tendency of entropy to increase. As time goes on, 
the system will reach a state where the fraction of non-aligners exceeds the critical fraction, fc, thus entering the 
sorting regime, if the cohesive forces are in the right regime. Our results indicate that the system can then shed 
almost the entire excess non-aligner population (above the critical threshold) and revert to a fraction close to but 
just below fc. Then as the system evolves again over time the non-aligner fraction increases past the threshold and 
the process begins again. Thus, dynamical sorting can compete against natural processes that drive increases in 
the non-aligner fraction and provide a mechanism for the system to reach a dynamic equilibrium, regulating its 
composition so that it sits at the edge of criticality in behavior; reminiscent of a self-organized critical system.

Swarms with a distribution of alignment behaviors. So far, we have considered behavioral variability 
to be binary in character with agents being either aligning or non-aligning (α =  1, 0). It is, however, quite reason-
able to expect that many naturally occurring swarms might display a spectrum of behaviors that corresponds to 
natural abilities differing from individual to individual. We showed before that the phase behavior of the swarm 
is controlled by the mean level of alignment as compared to cohesion. Here we consider what happens if, instead 
of changing the mean level of alignment accomplished by changing the fraction of non-aligners in a binary sys-
tem, we keep the mean value fixed and change the spread in a system with continuous values of the alignment 
interaction strength α. To implement this, we selected α for each agent from a Gaussian distribution with mean, 
μ, and standard deviation, σ. We consider two types of systems, one with a high value of μ that would result in 
an ordered swarming system in the σ =  0 case and one with a low value of μ which would result in a static system 
with σ =  0. Keeping these two values of μ fixed, we vary the spread σ.

Figure 4(A) shows both the low μ (blue) and high μ (red) cases and we can see that as σ increases there exists a 
critical threshold, σc, beyond which the system will be likely to fracture (solid lines show probability of fracture), 
however the reason for fracture is different in both cases. The average order parameter (dashed line) for the high 
μ case starts out high and as σ increases and fracture begins to occur, the order decreases slightly because some 
individuals now have a low enough α that they behave like non-aligners and break off of the main body of swarm-
ers to form static clusters. In the case where μ is low the system has very low order at low σ and as the spread 
of α values increases the system begins to fracture and the average order increases. In this case some agents are 
reaching high enough α values to form an ordered state and will create clusters of ordered moving agents which 
break off from or fragment the static main body of agents. Figure 4(B) shows a snapshot from the simulation 
that started off as one swarming cluster. Here σ is high enough to allow fracture resulting in the sorting out of 
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a smaller, static cluster of agents with a predominantly low value of α. Thus the increase in the spread of α has 
similar consequences whether one starts with a high or low average α. There is a self-organized separation of the 
population leading to clusters of similar “phenotype” providing a mechanism for a natural limitation to the extent 
of variability in any swarming population.

Evolving populations. We now examine the idea that dynamical sorting could be a mechanism for evolving  
swarms to robustly sustain a certain composition over longer timescales. For swarms, over sufficiently long 
timescales, one could imagine that the non-aligner population fraction increases due to some fitness advantage 
that the non-aligners derive by not participating in orientational information processing. For example, in ref. 
18, an agent’s ability to decide on a preferred travel direction due to social interactions or migratory tendency 
is assumed to come at some cost due to energy expenditure or reduced predator awareness during directional 
information processing. In this case the non-aligners would be cheaters in the evolutionary sense which can lead 
to some interesting dynamics. To model the evolutionary dynamics we considered a model replicator system41 
where agents replicate themselves at a rate that is determined by their fitness, with the fitter species (cheater or 
non-cheater) being able to reproduce more quickly and increasing its proportion in the population over time. The 
assigned fitness of an individual agent depends on whether an agent is a cheater and whether it is in a swarming 
cluster. We take the fitness of an agent i at any point in time to be given by,

F OOφ φ σ= × + × (4)i cl c i

here, cl  is the polarization of the cluster that agent i belongs to, φ  represents the fitness advantage that agents 
gain by being in ordered clusters and φc is the fitness advantage gained by cheating agents (say by avoiding energy 
expenditures associated with orientational processing or signaling) and σi is equated to 0 for non-cheaters and 1 

Figure 4. (A) Probability of fracture (solid), and order parameter (dashed) plotted against σ for a high value of 
μ =  2.5(blue) and a low value of μ =  0.5(red). (B) Snapshot from a simulation with μ =  2.5, and σ =  1.2 showing 
fragments of a larger cluster that has sorted itself into an ordered cluster with a higher mean α and static, 
disordered cluster with α ∼  0 for most agents. Arrowheads signify direction of motion, and the color bar shows 
the value of α for each individual agent. (C) The relative fitness of all cheaters, rel , as a function of cheater 
fraction, f for Φ  =  0.2. The point where the dashed diagonal line crosses the fitness curve is a fixed point where 
the cheater fraction and fitness of the system become equal representing an equilibrium fixed point for the 
evolutionary dynamics. Red dashed line shows an example trajectory an evolving system would follow starting 
at f =  0.7 and approaching the fixed point after several generations. (D) The relative fitness of all cheaters, rel , in 
the system as a function of cheater fraction for different values of the ratio of fitness advantage constants 

φ φΦ = = . . . ./ 0, 0 2, 0 4, 0 6, 0 8,c  and 1 corresponding to the blue, green, red, cyan, purple and yellow lines 
respectively. The points were the dashed diagonal line crosses the fitness curves are evolutionary fixed points. 
For this system N =  500, dv/dr =  100, and  =  10−0.5.
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for cheaters. These fitness advantages are similar qualitatively to those postulated to study evolution in migratory 
populations where there were costs associated with obtaining directional cues from the environment and an 
overall fitness associated with migrating close to the desired direction18,42,43. We start with a system of N =  500 
agents with  =  10−0.5 with periodic boundary conditions at different total cheater fractions. For each simulation, 
the system is allowed to evolve until a steady state is reached and the relative fitness of all cheaters, rel, given by




 
=

+ (5)
rel

ch t

nc t ch t

is measured. Here ch nc t/  is the time averaged fitness of all cheaters/non-cheaters given by Eq 4. As an example, 
Fig. 4(C) shows how the relative fitness of cheaters rel varies with cheater fraction for the ratio of fitness advan-
tage constants φ φΦ = = ./ 0 2c . In our evolutionary dynamics, we take the relative fitness of all cheaters, rel, to 
be the expected fraction of cheaters in the subsequent generation. The red dashed line in Fig. 4(C) shows a typical 
evolutionary trajectory. Here, a population that starts with a cheater fraction f =  0.7 has ∼ .0 39rel  which results 
in a cheater fraction f ∼  0.39 in the subsequent generation which has ∼ .0 55rel  and so on. A fixed point at which 
the initial cheater fraction is equal to that in the next generation is then given by the intersection between the 
curve and the diagonal (black dot in Fig. 4(C)). An evolutionarily stable fixed point is obtained when a fixed point 
is an attractor of all evolutionary trajectories, as is the case here. Figure 4(D) shows how the relative fitness of 
cheaters rel varies with cheater fraction for several different values of the ratio of fitness advantage constants Φ . 
We observe a unique stable fixed point for each value of Φ , that increases with Φ , suggesting that in any system 
where both cheating and swarming are advantageous, competing pressures can result in stable populations of 
cheaters that are dynamically regulated by self-organized sorting.

Discussion
Within a group of swarming or flocking animals there may exist intrinsic behavioral heterogeneities that can 
effect the ability of the group to remain cohesive and move collectively. Behavioral differences can arise from 
natural individual variations, diseases or genetic mutations that occur randomly as the group of animals produces 
progeny. In artificial systems, such as robotic drones, differences can manifest as malfunctioning hardware or 
compromised software. In natural systems, therefore, it seems likely that there could exist collective mechanisms 
that allow the whole group to carry a subgroup of individuals that do not participate collective decision making 
(i.e non-aligners or cheaters).

We studied a system of swarming agents that display individual variations in their alignment strength. For the 
binary case of mixtures of aligners and non-aligners, we found that when the cohesion is strong, there is a criti-
cal fraction of cheaters f*  above which collective motion of the whole group can no longer be achieved. We call 
this critical non-aligner fraction, the maximum non-aligner carrying capacity. We showed that there is a simple 
predictive relation between the maximum non-aligner carrying capacity and the length and interaction strength 
scales that characterize the swarm. We showed that swarms can increase their non-aligner carrying capacity f*  
either by increasing the separation between agents or by moving slower and/or processing information more 
quickly, These simple robust mechanisms could allow for a swarm or flock to adapt to increased non-aligner loads 
“on the fly” and our results also suggest optimal designs of parameters for “non-aligner tolerant” artificial swarms.

Alternatively, we found swarming could be enhanced in an unusual manner by lowering the cohesive 
attraction between agents. We showed that, as cohesion is lowered, there exists a regime where the clusters can 
actively sort out and leave behind the excess non-aligning population. We find that the newly sorted clusters that 
emerge after segregating are capable of swarming and carry a fraction of non-aligners that is near a fixed critical 
non-aligner carrying capacity that we are able to predict. Thus the dynamics of the swarm naturally weeds out 
non-aligners above the critical capacity and maintains the non-aligner fraction in the swarm close to this value, 
reminiscent of a self-organized critical behavior. This result highlights a simple, robust and efficient mechanism 
that allows heterogeneously mixed populations to naturally regulate their composition and remain in a collective 
swarming state despite the natural tendency for cheating/diseased/defective population fractions to increase.

Lowering the value of cohesiveness too much can also lead to deleterious effects with the swarming clusters 
unable to hold themselves together. This suggests that, if such a sorting and segregation mechanism is utilized 
in nature, the relative magnitudes of cohesiveness and orientational alignment need to be tuned to lie within an 
optimal range. It is also interesting to note that though we considered cheaters or defective agents as having a 
negative effect on swarming, one could also consider situations where a swarm needed to break up or segregate 
between two populations. Our results indicate that a simple mechanism to achieve this would be for one group 
to simply become “non-aligners” and allow the swarm dynamics to automatically segregate and expel them from 
the swarm.

It is to be noted that we were able to map out the entire phase space of behaviors in these heterogeneous 
systems including swarming, static and sorting phases and relate them to simple relations between the swarm 
parameters. Furthermore, these swarm parameters can be directly observed or inferred from measurements of 
real swarms (see Supplementary Information 4). Thus our results provide us with predictive power about real 
swarms including their maximum non-aligner carrying capacity, their ability to sort and the critical non-aligner 
fraction that sorting leads to. It is also intriguing in this context that if there is a natural tendency for non-aligners 
to increase, we would expect to measure, in a real swarm, a composition of non-aligners close to a critical fraction 
that we can predict based on the estimated swarm parameters.

We were also able to show that our notions of sorting extend to swarms with a continuous distribution of indi-
vidual alignment preferences. In fact, the existence of outliers, whether they were non-aligners or “super-aligners” 
or both triggered the sorting process. This is suggestive of a natural means of separating different types of behavior 
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which could have implications not only for limiting variability in populations but also more generally for the divi-
sion of labor in collectively moving systems.

Finally, we pursued the idea of competing cheating and sorting by considering the evolutionary dynamics of a 
replicator system, where there was a fitness advantage associated with being in a collectively moving swarm and 
an advantage for being a cheater. We showed that the system has a globally stable evolutionary fixed point cor-
responding to a particular fraction of cheaters that is set by relative fitness advantage of cheating and the swarm 
parameters. It is interesting to note that evolutionary equilibria between successful strategies can thus be tuned by 
changing the physical parameters of the swarm. Our work therefore makes connections to studies of evolution-
ary dynamics in structured populations and networks44–46 and specifically to work that shows that both network 
structure47 and its dynamics48 can influence the success of cheating or defection. In the broadest sense, our results 
suggests the idea that the spread of a non-aligner/defector/cheater strategy within a population beyond a critical 
threshold can spontaneously trigger large-scale re-organization of the collective that expels outliers and effectively 
limits the spread of behavioral variability.

Methods
The alignment interaction is implemented by the agent choosing an updated direction of travel that, in the 
absence of cohesive interactions or noise, is the sum of the direction vectors of all its nearby neighbors, which is 
proportional to the mean consensus direction. In our model, at each reaction time step (δt), agents compute the 
summed direction 

��
d t( )A  (equation (6)) of all their neighbors (nbr) within a specified “vision” distance, dv. δt is the 

physical reaction time of agents within the system, rather than the timestep of the simulation (Δ t).

∑ δ= −
�� ˆd t d t t( ) ( )

(6)
A

j

nbr

j

The cohesive interaction is modeled as arising from a Lennard-Jones (LJ) interaction (equation (7)) between 
nearest neighbor agents which is attractive at large distances and repulsive at close range. To calculate the LJ inter-
action, ŝij is a unit vector pointing between the ith and jth agents and s is the separation between them.

∑= − ×




 −
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The LJ interaction is calculated as a unitless LJ direction vector, 


dLJ. For a standard LJ potential well with depth 
ε the corresponding LJ force would be ε

�
�d R/LJ . The agents calculate the alignment direction vector as well as the LJ 

direction vector dictated by the cohesive LJ interactions with all their neighbors (equation (7)) at each timestep. 
For our simulations the equilibrium separation between agents (R in equation (7)) is set to a distance, relative to 
the vision distance dv, such that each agent will see, on average, only their first nearest neighbors. A new direction 
of travel for the agent in the next time step is determined by the vector formed by adding α



d t( )A  with 


dLJ , where 
the dimensionless parameters α and  measure the importance of alignment and cohesiveness respectively (equa-
tion (1)).

New positions are then calculated for each agent according to equation (8), where dr is the reaction distance, 
or how far an agent moves in each timestep.

δ
+ ∆ = + ∆

�� �� ˆx t t x t d
t

d t t( ) ( ) ( ) (8)i i
r

i

To mimic the response of real swarming individuals, we need to account for errors, either in processing local 
orientation information or in the execution of movement. Errors are modeled as noise that is added to the calcu-
lation of the updated direction + ∆



d t t( ) by adding a randomly selected angle into the calculated direction, 
θ η= +


d darctan /i i y i x, , , where η


 is a randomly selected angle from a uniform distribution in the interval  

[− η/2, + η/2]. In our model we set η =  0.2, dv =  1, R =  0.7887, Δ t =  δt =  1, and α =  1.
Swarms are generated by randomly seeding N agents in a circle with radius equal to the vision radius of agents, 

dv and then allowing the swarm to set its own size by following the dynamics dictated by equation (1) and equa-
tion (8). The system has infinite boundaries and varying the initial density, and simulation time step have little 
effect on the resulting transitions (see Supplementary Information 1.4).
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