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Independent Manipulation 
of Topological Charges and 
Polarization Patterns of Optical 
Vortices
Ching-Han Yang1, Yuan-Di Chen2, Shing-Trong Wu3 & Andy Ying-Guey Fuh1,3,4

We present a simple and flexible method to generate various vectorial vortex beams (VVBs) with a 
Pancharatnam phase based on the scheme of double reflections from a single liquid crystal spatial light 
modulator (SLM). In this configuration, VVBs are constructed by the superposition of two orthogonally 
polarized orbital angular momentum (OAM) eigenstates. To verify the optical properties of the 
generated beams, Stokes polarimetry is developed to measure the states of polarization (SOP) over 
the transverse plane, while a Shack–Hartmann wavefront sensor is used to measure the OAM charge 
of beams. It is shown that both the simulated and the experimental results are in good qualitative 
agreement. In addition, polarization patterns and OAM charges of generated beams can be controlled 
independently using the proposed method.

It is well known that scalar optical vortices having a spatially distributed skew phase front exp(iϕ) have an orbital 
angular momentum (OAM) of ħ per photon, where  is topological charge1. Light-carrying OAM has some 
practical applications, such as optical communication2 and remote sensing3. Additionally, if the states of polariza-
tion (SOP) of light are space-variant, vectorial vortex beams (VVBs) with polarization singularities appear. A 
polarization singularity occurs around a point where a scalar vortex is centered in one of the scalar component of 
VVBs4. One interesting property of VVBs is that they can have OAM if a Pancharatnam phase is embedded on the 
beam5. The Pancharatnam phase, also called the Pancharatnam–Berry geometrical phase, usually occurs in the 
polarization manipulation of ligh6,7. Some optical devices such as q-plates8 or subwavelength elements9 based on 
the Pancharatnam–Berry phase can generate VVBs with the Pancharatnam phase, leading to the carrying of 
OAM. Recently, the potential for use of VVBs in optical communication has been demonstrated 
experimentally10,11.

In principle, VVBs are constructed by superimposing two orthogonally polarized OAM eigenstates with dif-
ferent topological charges. Nowadays, various methods are employed to generate VVBs by using a liquid crystal 
spatial light modulator (SLM)12–14. However, most previous works on this topic discuss cases where the mag-
nitudes of the two topological charges and weights of the two OAM eigenstates are equal14,15. Although exper-
imental results pertaining to unequal topological charge magnitudes are available, the OAM of light has not 
been investigated adequately16. In this paper, we apply a similar technique as that proposed by Moreno et al.15,17 
to study cases where both the topological charges and the weights of two OAM eigenstates are unequal. It is 
shown that using these degrees of freedom, independent control of polarization patterns and OAM charges of 
VVBs is possible. In addition, the generated VVBs with a Pancharatnam phase correspond to a coordinate on the 
hybrid-order Poincaré sphere18, which is proposed to describe the evolution of polarization states in inhomoge-
neous anisotropc media. In the experiment, the panel of a reflective SLM is divided into equal areas, and each 
of them displays a helical phase hologram to encode OAM eigenstates onto the x- and y-polarized components 
of incident light, respectively. Next, a quarter-wave plate (QWP) is used to transform the two linear polariza-
tion states into another pair of orthogonal polarization states; this step yields two orthogonally polarized OAM 
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eigenstates that further span the VVB subspace. The weighting factors of the two eigenstates can be controlled 
by adjusting the polarization angle of the incident linearly polarized beam, while the topological charge of each 
eigenstate can be controlled independently by two separate halves of a single SLM. To evaluate the properties of 
the generated VVBs, we successively apply two measurement procedures. First, we use Stokes polarimetry8,19 to 
study the polarization patterns of the generated beams. Second, we use a Shack–Hartmann wavefront sensor to 
demonstrate the existence of OAM and further infer the actual OAM charge of beams20. Theoretical and experi-
mental results pertaining to SOP and OAM charges are in good agreement.

Results
Theoretical description of vectorial vortex beams.  The normalized Jones vector of a VVB propagating 
along the +​z direction can be expressed as follows18,21
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where êi  (i =​ 1, 2) denotes one of orthogonally polarized OAM eigenstates with a topological charge of mi, ϕ is 
the azimuthal coordinate of the beam, and the weighting factors of each eigenstate are governed by two complex 
constants ci =​ |ci|
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For the benefit of the reader, we briefly outline the approach to constructing VVBs by using equation (1). For 
simplicity, we first consider a special case where ê1  =​ ŷ  and ê2  =​ x̂ , that is, two orthogonal linear polarization 
eigenstates. By substituting equation (1) into the definition of Stokes parameters, we obtain
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where δ ≡​ δ1 −​ δ2 is the phase difference between the two complex constants of ci, and it is related to the choice 
of origin of the azimuthal ϕ-coordinate. Equations (4)–(6) imply that all SOP on the transverse plane can 
be described completely by a geodesic path with a radius of 2|c1||c2|, located on the plane of intersection of 
S1 =​ |c2|2 −​ |c1|2 with the Poincaré sphere, as shown in Fig. 1(a). Moreover, both S2 and S3 depend only on the 
value of (m1 −​ m2) and, therefore, SOP does, too. The fact of SOP depend only on (m1 −​ m2) can also be found in 
equation (1) because the sum of m1 and m2 is only relevant to the common phase factor of the two orthogonal 
eigenstates. To control SOP, one can adjust the coefficients of ci, which would result in shifting of the geodesic path 
on the sphere, or adjust the value of (m1 −​ m2). Figure 1(b–d) show the simulated results of the orientation angle 
(ψ) and the ellipticity angle (χ) of SOP for c1 =​ 0.5 and c2 =​ 0.87, but different values of (m1 −​ m2) =​ 1, −​3, and 
3. These results were obtained by substituting equations (4)–(6) into equations (23) and (24), where the angle ψ 
(−​π/2 ≤​ ψ ≤​ π/2) determines the direction of the major axis of the polarization ellipses, and χ (−​π/4 ≤​ χ ≤​ π/4) 
determines the ratio of the minor to the major axes of the ellipses. In addition, χ is positive for right-handed 
polarizations (blue ellipses) but negative for left-handed (red ellipses). By comparing Fig. 1(b–d), it can be seen 
that the azimuthal gradient of SOP depends on the absolute value of (m1 −​ m2) while the distribution of handed-
ness depends on its sign. Furthermore, the distribution of SOP depends only on the azimuthal angle of ϕ because 
there is only one spatial variable of ϕ in equation (1). Although we discuss only orthogonal linear polarization 
eigenstates, similar discussions can be applied to another pair of orthogonally polarized eigenstates. For detailed 
discussions, please refer to the supplementary information.

The average OAM charge 


 in equation (1) can be found by examining the ratio of the z component of OAM 
to its energy over the transverse plane of light22. This is given as follows
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where c is the speed of light in free space, ω is the angular frequency of light, jz is the z component of OAM den-
sity, pz is the z component of linear momentum density, and α and β are complex amplitudes of the x and y elec-
tric field components of the VVBs22. In fact, it is shown in the supplementary information that the average OAM 
charge in equation (1) is independent of the selection of polarization eigenstates of êi . As proved in the supple-
mentary information, the average OAM charge is

= + m c m c (10)1 1
2

2 2
2

One can also find the Pancharatnam phase ϕp in equation (1) from the following definition5,22,23
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where ϕ= =
��
E r( 0, 0)  is the reference field, and the operator “arg” denotes the argument of the inner product. 

By comparing equations (10) and (11), it can be found that if c1 =​ c2 and m1 =​ −​m2, either the Pancharatnam 
phase or the OAM charge vanishes, while other opposite cases are true. From above discussions, we conclude that 
SOP depend on the value of (m1 −​ m2), as well as on the two selected orthogonal polarization eigenstates, whereas 
OAM charge depends not only on the weighting coefficients but also on the values of m1 and m2. Consequently, 
independent control of OAM charges and polarization patterns of VVBs can be achieved by manipulating various 
parameters. Details of the relationship between the OAM charge and the Pancharatnam phase can be found in the 
literature22.

Experimental setup.  The double modulation scheme is shown in Fig. 2. A diode-pumped solid-state (DPSS) 
laser beam (Verdi, λ =​ 532 nm) is filtered and expanded by the first telescope consisting of lens L1 (f1 =​ 15 mm) 
and L2 (f2 =​ 150 mm) and then passes through a polarizer (P1) and an HWP. P1 is introduced to generate a linearly 
polarized beam, and the HWP is used to adjust the polarization plane of the linearly polarized beam. The beam 
with its polarization making an angle θ with the x-axis is then incident on the half panel of a phase-only reflec-
tive SLM (Holoeye Photomics, PLUTO-VIS, 1920 ×​ 1080 pixels) with LC molecules aligned in the x direction. 

Figure 1.  Illustration of using equation (1) to construct VVBs. (a) In this example, polarization eigenstates of 
êi  in equation (1) are chosen as linearly polarized states, denoted by êx and ê y, respectively. The two weighting 
coefficients are c1 =​ 0.5 and c2 =​ 0.87, respectively. The geodesic path (green line) marked on the Poincaré sphere 
describes the SOP on the transverse plane. (b–d) Simulation results of ellipticity and orientation angles of 
polarization ellipses. The blue and red ellipses on the color maps represent right- and left-handed polarizations, 
respectively.
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The extinction ratio of the SLM is about −​18 dB. Two different helical phase holograms with 900 ×​ 900 pixels 
are simultaneously displayed side by side onto the SLM to independently encode the x and y electric field com-
ponents of the incident beam. After the first reflection is generated on area 1, where only the x component is 
modulated, the beam is then imaged onto area 2 through a reflective type 4f (f3 =​ 75 cm) system in which QWP1 
is inserted to spatially rotate the polarization state by 90°. After reflection from area 2, where, again, only the 
x component is modulated, the beam is then imaged onto QWP2 by using a second telescope consisting of L4 
(f4 =​ 20 cm) and L5 (f5 =​ 30 cm). QWP2 may be rotated to transform two linearly polarized OAM eigenstates into 
another pair of orthogonally polarized OAM eigenstates and attain the VVBs. Finally, the generated beams are 
passed through Stokes polarimetry consisting of QWP3 and polarizer P2, the transmission axis of which is fixed 
on the x-axis. QWP3 is electrically controlled by a computer, and the resolution is set to be 3°. A CCD camera 
(Newport LBP-4-USB) is used to record the variation of intensity distributions as QWP3 is rotates by 360°. Hence, 
the point-to-point Stokes parameters on the beams cross section can be obtained. Afterwards, Stokes polarime-
try is removed and the CCD camera is replaced by a Shack-Hartmann wavefront sensor (Throlabs, WFS150-5C 
camera mounted with AR coated lens arrays at a pitch 300 μ​m and effective focal length of 14 mm) to measure the 
OAM charge of VVBs.

Theoretical modeling of vectorial vortex beam generation.  To begin with, we briefly review the 
fundamental principle of the double modulation scheme17. Because of the phase-only modulation effect of reflec-
tive SLM, the LC molecules are aligned in a parallel fashion in the x-direction relative to the laboratory reference 
frame. As a result, only the x component of the reflected modulated beam carries the designed phase information, 
while the y component does not. To encode the y component, the polarization state must be rotated by 90° so that 
the x and y components are inverted. This explains why the modulation scheme uses both a SLM that is divided 
into two equal areas to modulate the incident beam twice and a reflective-type 4f system combined with a QWP to 
rotate the polarization state, as shown in Fig. 2. It should be mentioned that the extinction ratio of our calibrated 
SLM is about −​18 dB (shown in the supplementary information) and, therefore, the y component will also be 
phase modulated in each modulation process. This may cause small errors in our experimental results.

As demonstrated in the supplementary information, the Jones vector of the resultant modulated-beam after 
passing through the double modulation system is given by

θ θ= +ϕ ϕ ϕΔ��
ˆ ˆE e e e e e(cos sin ) (12)i im im

1 2
1 2

where ϕeim1  ̂e1 and ϕeim2  ̂e2 are two orthogonally polarized OAM eigenstates with topological charges of m1 and m2, 
respectively. Δ​ϕ denotes the relative phase offset between the eigenstates; thus, it is related to the choice of origin 
of the azimuthal ϕ-coordinate. As described in Fig. 2, θ is the angle between the polarization of the initial linearly 
polarized beam and the x-axis, and it controls the weights of the two orthogonal eigenstates. A comparison of 
equations (1) and (12) reveals that c1 =​ cos θ and c2 =​ sin θ, respectively; therefore, a theoretical OAM charge can 
be obtained by substituting c1 and c2 into equation (10). The polarization patterns of the VVBs generated based on 
equation (12) are measured experimentally by Stokes polarimetry. The point-to-point Stokes parameters over the 
transverse plane can be retrieved from several intensity patterns recorded using a CCD camera (details are given 
in the methods section). For measuring the OAM charge, Stokes polarimetry is replaced with a Shack–Hartmann 

Figure 2.  Experimental setup of the double modulation scheme. L: lens, P: polarizer, HWP: half-wave late, 
QWP: quarter-wave plate, M: mirror. The inset at right-top corner shows an example of displaying two helical 
phase holograms with different topological charges of (m1, m2) =​ (8, −​4) onto the SLM.
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sensor. The sensor consists of an array of lenses of the same focal length such that each microlens generates a spot 
on the sensor. The spot shift between the actual spot position and its corresponding reference position is propor-
tional to the local skew angle of the Poynting vectors with respect to a beam axis20,24,25. Thus, this 
non-interferometric technique enables us to infer an actual OAM charge of VVBs.

Generation results and discussion.  As mentioned previously, the QWP2 in Fig. 2 is employed to control 
the polarizations of two orthogonal OAM eigenstates, and the HWP controls their weighting factors. The experi-
mental results of three different polarization eigenstates are presented in the following subsections.

Circular polarization eigenstates.  In this subsection, the slow axis of QWP2 in Fig. 2 is set to 45° such that ê1 and 
ê2 in equation (12) are the right-handed circular polarization (RCP) and left-handed circular polarization (LCP) 
states, respectively. Figure 3 shows the corresponding experimental results obtained using different parameters. 
Here, black and blue marks in the first, second, and third columns represent the ideally linear and right-handed 
polarization states, respectively. The first row of the figure shows a generally polarized CVB. The second and third 
rows show the results obtained using higher indexes of m1 and m2. A comparison of simulated and experimentally 
measured SOP reveals that they are in good qualitative agreement for all results. At the same time, we also show 
the measured results of orientation and ellipticity angles of polarization ellipses in the second and third columns. 
The fourth column shows the intensity patterns of light behind a polarizer. The patterns obtained exhibit three 
extinction regions on the beam cross section. Our simulations indicate that, as a general rule, the total number of 
angularly distributed extinction regions around the beam axis is |m1 −​ m2|. Moreover, when the value of θ deviates 
from 45°, the contrast of the intensity pattern in the fourth column reduces because of the impurity of the linear 
polarization states. The last column shows the intensity patterns of light without passing through a polarizer; all 
of the intensity patterns obtained display a donut-shaped distribution.

Linear polarization eigenstates.  In this subsection, the slow axis of QWP2 in Fig. 2 is set to 0° such that ê1 and ê2 
are the y- and x- linearly polarized eigenstates, respectively. To understand how SOP is affected by Δ​ϕ, Fig. 4(a,b) 

Figure 3.  VVBs constructed by circularly polarized OAM eigenstates. The first column shows simulated SOP, 
where the black and blue marks represent linear and right-handed polarization states, respectively. The second 
and third columns show measured SOP with angles of orientation and ellipticity of polarization ellipses. The 
fourth column shows the transmitted intensity patterns of light behind a polarizer with its transmission axis in 
the x direction. The last column shows intensity patterns of light without passing through a polarizer. Associated 
parameters in each row are (a) (m1, m2) =​ (−​1, 1), θ =​ 45°, and Δ​ϕ =​ 90°, (b) (m1, m2) =​ (3, 6), θ =​ 45°, and Δ​
ϕ =​ 0°, (c) (m1, m2) =​ (3, 6), θ =​ 30°, and Δ​ϕ =​ 0°.
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show the experimental results obtained using (m1, m2) =​ (1, 2), θ =​ 45°, and different Δ​ϕ values. Figure 4(c,d) 
show the experimental results obtained with higher indexes of (m1, m2). In addition, we consider the effect of 
swapping the indexes of (m1, m2) on SOP. A comparison of Fig. 4(a,b) reveals that a change in Δ​ϕ influences the 
spatial rotation of SOP with respect to a beam axis. We carried out a series of simulations (results not shown) and 
found that the polarization distribution on the beam rotates through an angle Δ​ϕ/(|m1 −​ |m2|) about a beam axis 
for a given shifted value of Δ​ϕ; this distribution shows counterclockwise and clockwise rotations, respectively, for 
positive and negative values of Δ​ϕ. A comparison of Fig. 4(c,d) reveals that swapping the indexes of (m1, m2) 
leads to inversion of the handedness of SOP, but the intensity patterns remain the same regardless of the presence 
of a polarizer. A comparison of the simulated and experimentally obtained SOP reveals that they are in good 
qualitative agreement. The fourth and fifth columns show the intensity patterns of light behind a polarizer with its 
transmission axis at 45° and 0°, respectively. As can be seen, when the polarizer axis is set to 45°, which is orthog-
onal to some local linear polarization states on the beam, the contrast of the intensity patterns is high. However, 
as indicated in the fifth column, this contrast disappears when the polarizer is oriented to 0° because the polarizer 
is no longer orthogonal to any local polarization state. The last column shows the intensity patterns of light that 
has not passed through a polarizer. As in the case of circular eigenstates, all obtained patterns feature a 
donut-shaped intensity distribution.

Elliptical polarization eigenstates.  In this subsection, the slow axis of QWP2 in Fig. 2 is set to 22.5°, and the cor-
responding eigenstates are sketched in the supplementary Fig. S5 online. The effect of introducing Δ​ϕ is similar 
(results not shown) to those of the linear eigenstates. The experimental results of different indexes of (m1, m2) 
where θ =​ 45° and Δ​ϕ =​ 0° are shown in Fig. 5. There is a good agreement between the simulated and experi-
mentally measured SOP in the figure. The fourth and fifth columns show the intensity patterns of light behind a 
polarizer with its transmission axis respectively set to 45° and 0° with respect to the x-axis. The intensity patterns 

Figure 4.  VVBs constructed by linearly polarized OAM eigenstates. The first column shows simulated SOP, 
where the blue and red ellipses, respectively, represent the right- and left-handed polarization states. The second 
and third columns show measured SOP with angles of orientation and ellipticity of polarization ellipses. The 
fourth and fifth columns show transmitted intensity patterns of light behind a polarizer with its transmission 
axis in the 45° and 0° directions, respectively. The last column shows intensity patterns of light without passing 
through a polarizer. Associated parameters in each row are (a) (m1, m2) =​ (1, 2), θ =​ 45°, and Δ​ϕ =​ −​90°,  
(b) (m1, m2) =​ (1, 2), θ =​ 45°, and Δ​ϕ =​ 0°, (c) (m1, m2) =​ (3, 6), θ =​ 45°, and Δ​ϕ =​ 0°, (d) (m1, m2) =​ (6, 3), 
θ =​ 45°, and Δ​ϕ =​ 0°.
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depend on the orientation of a polarizer, as in the case of linear eigenstates. The last column shows the intensity 
patterns of light that has not passed through a polarizer. Similar to previous results, there is a donut-shaped inten-
sity distribution when a polarizer is not used.

Thus far, we have considered only the SOP of VVBs. Another important characteristic of light is the OAM 
charge. As pointed out in equation (11), the Pancharatnam phase can be divided into two independent parts, and 
each of which is discussed in the following subsections.

•	 Case with θ =​ 45°.

�In the case of θ =​ 45°, equally weighted eigenstates leading the Pancharatnam phase and OAM charge are as 
follows
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The experimental results of different sets of (m1, m2) are shown in Fig. 6. Figure 6(a,b) correspond to the same 
differences but different sums of (m1, m2); in particular, the sum of m1 and m2 in Fig. 6(b) is zero. Figure 6(c,d) 
correspond to another pair of values of sums and differences. The first two columns of Fig. 6 show the meas-
ured SOP, as well as the orientation and ellipticity angles of the polarization ellipses. Those figures with the 
same values of (m1 −​ m2) reveal the same SOP, as indicated by equation (1). In practice, referring to Fig. 2, the 
distance from QWP3, in which the VVBs are generated, through Stokes polarimetry to the CCD camera is 
about 8 cm; hence, SOP evolution during propagation cannot be ignored13. This condition is confirmed by the 
measured phase difference δ (x, y) on the transverse plane shown in the third column, which is obtained by 
substituting the measured Stokes parameters into supplementary equations (S4) and (S5). The structure of 
δ (x, y) around the beam center is distorted for  ≠​ 0, but it remains stable otherwise. The fourth column shows 
the displacement of focal spots between the actual spot position and its corresponding reference position, as 
measured by the Shack–Hartmann sensor. A substantial amount of curl around the beam axis for  ≠​ 0 may 
be observed; the opposite is true when  is zero. The length and direction of each arrow correspond to the 
projection of the local Poynting vector onto the wavefront sensor plane, which is perpendicular to the beam 
axis20. Hence, for higher values of , the azimuthal component of the local Poynting vector is larger, yielding 
longer displacement of the spot shifts pointing toward the azimuthal direction. A comparison of Fig. 6(a,c) 
reveals that the opposite sign of  yields the reverse spatial evolution of the Poynting vector. The last column 
shows the intensity patterns obtained by using a conventional CCD camera instead of Stokes polarimetry. 
These patterns show that the size of the central dark spot increases with increasing sum of the modulus of m1 
and m2, as will be discussed in the next subsection. The screw angle (γ ≡​  ϕP

P z
 =​  

kr
), which is the angle between 

Figure 5.  VVBs constructed by elliptically polarized OAM eigenstates. The first column shows the simulated 
SOP, where the blue and red ellipses are the right- and left- handed polarization states, respectively. The second 
and third columns show measured SOP with angles of orientation and ellipticity of polarization ellipses. The 
fourth and fifth columns show transmitted intensity patterns of light behind a polarizer with its transmission 
axis in the 45° and 0° directions, respectively. The last column shows intensity patterns of light without passing 
through a polarizer. Associated parameters in each row are (a) (m1, m2) =​ (1, 2), θ =​ 45°, and Δ​ϕ =​ 0°, (b) (m1, 
m2) =​ (3, 6), θ =​ 45°, and Δ​ϕ =​ 0°.
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the ϕ- and z- components of the Poynting vectors20, can be obtained by projecting the transverse displace-
ment of the focused spots onto the ϕ direction with respect to the beam axis, and subsequently dividing it by 
the focal length of the lens arrays of the wavefront sensor. A comparison between the theoretical and the 
measured screw angles at different beam radii is shown in Fig. 7, where the dashed lines (square points) are 
theoretical (measured) values of γ, and each color corresponds to each row of Fig. 6. As can be seen, there is 
good agreement between the theoretical and the measured results at all positions other than those close to the 
central singularity of a beam. The average OAM charge obtained by averaging the measurements for radii of 
0.2 mm to 2 mm together with the corresponding standard deviation (SD) are listed on the side of Fig. 7. It can 
be found that the value of SD is proportional to  due to the larger central dark spot at the beam center yield-
ing to inaccurate measurement.

•	 Case with m1 =​ −​m2.

In the case of m1 =​ −​m2, the Pancharatnam phase and OAM charge are
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Figure 6.  SOP and Poynting vector distributions of VVBs at elliptical eigenstates for θ = 45°. The first two 
columns show the measured SOP, as well as the orientation and ellipticity angles of polarization ellipses. The 
blue and red ellipses are the right- and left-handed polarization states, respectively. The third column shows the 
distribution of δ (x, y). The fourth column shows the displacements of focal spots on the Shack–Hartmann 
sensor plane. The last column shows the intensity patterns of light without passing through a polarizer. 
Associated parameters in each row are (a) (m1, m2) =​ (−​3, −​7),  =​ −​5, (b) (m1, m2) =​ (2, −​2),  =​ 0, (c) (m1, 
m2) =​ (4, 6),  =​ 5, (d) (m1, m2) =​ (2, 4),  =​ 3. All of the above parameters correspond to the same values of 
θ =​ 45° and Δ​ϕ =​ 0°.
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2
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Both of them now depend on the weighted coefficients as well as the values of (m1, m2). The experimental results 
of different sets of (m1, m2) are shown in Fig 8. Figure 8(a,b) correspond to completely different values of 
(m1 −​ m2). Figure 8(b,c) correspond to equal but opposite signs of (m1 −​ m2). By contrast, the value of θ in 
Fig. 8(d) is specifically set to 45°, and the theoretical value of  is zero. The first two columns of Fig. 8 show the 
measured SOP. The second column shows the distribution of δ (x, y) on the transverse plane. No distortion of  
δ (x, y) around the beam center is observed, regardless of the value of ; by contrast, as seen in the third column of 
Fig. 6, only when  is zero δ (x, y) is not distorted. Actually, this distortion is due to the different Gouy phases of 
the two OAM eigenstates26,27. The fourth column of Fig. 8 shows the displacement of focal spots as measured by 
the Shack–Hartmann sensor. As expected, higher values of  result in larger amounts of curl around a beam axis. 
The opposite sign of  also leads to the reverse spatial evolution of the Poynting vectors. The last column presents 
the intensity patterns of light without passing through a polarizer. Similar to the previous fifth columns of Fig. 6, 
the size of the central dark spot increases as the sum of the modulus of m1 and m2 increases, likely because of the 
diffraction behavior of each OAM eigenstate. Based on the diffraction theory28, the larger the topological charge 
of the OAM mode, the larger is the local spatial frequency and the more likely it is that rays with larger skew 
angles with respect to the z-axis will be produced during propagation. Thus, larger values of |m1 +​ m2| yield larger 
radii of the central dark spot. This inference can be verified by comparing the fourth columns of Figs 6(b) and 
8(d). These two cases correspond to the zero value of  and show no obvious azimuthal component of the 
Poynting vectors. However, the energy spread of light in the radial direction is significant in the latter case because 
of the larger value of |m1 +​ m2|. Figure 9shows the measured screw angles of Poynting vectors at different beam 
radii, where different colors correspond to the respective rows of Fig. 8. As can be seen, there is good agreement 
between the theoretical (dashed lines) and the measured results (square points). The fluctuation for each curve is 
larger when the measurements are close to the central point, where the intensity is too low yielding to inaccurate 
measurement. Finally, it should be mentioned that while only VVBs constructed by two orthogonally polarized 
elliptical OAM eigenstates are described in this work, similar results can also be obtained for another pair of 
orthogonal polarization states.

Conclusion
In this paper, we successfully generated a variety of VVBs with different polarization patterns and OAM charges 
based on the double reflection of a single SLM. The polarization patterns of the generated fields were analyzed 
by using Stokes polarimetry, while OAM charge was measured using a Shack–Hartmann wavefront sensor. We 
confirmed that the SOP around the beam axis becomes unstable during wave propagation if the Gouy phases of 
the two OAM eigenstates are unequal. Both the experimentally measured SOP and OAM charge of the generated 
VVBs are close to the theoretical values. In addition, we demonstrated that both polarization patterns and OAM 
charges can be controlled individually by using the proposed system.

Methods
Measurement of the Stokes parameters.  The passage of light through an optical element may change 
its polarization state. Using Stokes parameters, the action of optical elements on the Stokes parameters can be 
completely described in the Stokes space. In this representation, a polarization state is represented by a Stokes 
vector, as expressed in equation (17), and the matrix of the optical element is represented by the Mueller matrix. 
Therefore, the Stokes vector 



Sout of the outgoing beam can be obtained by carrying out matrix multiplication, as 
given in equation (18).

=















S

S
S
S
S (17)

in

0

1

2

3

Figure 7.  Measured skew angle γ of Poynting vectors at different beam radii. Each curve corresponds to 
each row of Fig. 6. The average OAM charge and standard deviation are listed on the side.
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= ⋅
 

MS S (18)out in

where Si (i =​ 0, …​, 3) in equation (17) are the Stokes parameters of the incident light. As shown in Fig. 2, VBBs 
to be analyzed is sent through a rotating QWP3 and then through a polarizer P2 whose transmission axis is fixed 
along the x-axis. Subsequently, a CCD camera is used to record the beam intensity as a function of the rotation 
angle of QWP3. Thus, the Stokes vector of the outgoing beam passing through Stokes polarimetry can be obtained 
by

′ = ⋅ ⋅
 

M MS S (19)out p QWP out2 3

where MP2
 and MQWP3

 in equation (19) can be written as,

=












M

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0 (20)

P2

Figure 8.  SOP and Poynting vector distributions of VVBs at elliptical eigenstates for m1 = −m2. The first 
two columns show the measured SOP, as well as the orientation and ellipticity angles of polarization ellipses. 
The blue and red ellipses are the right- and left-handed polarization states, respectively. The third column shows 
the distribution of δ (x, y). The fourth column shows the displacements of focal spots on the Shack–Hartmann 
sensor plane. The last column shows the intensity patterns of light without passing through a polarizer. 
Associated parameters in each row are (a) (m1, m2) =​ (6, −​6), θ =​ 30°, and  =​ 3, (b) (m1, m2) =​ (10, −​10), 
θ =​ 30°, and  =​ 5, (c) (m1, m2) =​ (−​10, 10), θ =​ 30°, and  =​ −​5, (d) (m1, m2) =​ (10, −​10), θ =​ 45°, and  =​ 0. All 
of the above parameters correspond to the same value of Δ​​ϕ =​ 0°.
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where ′


Sout and 


Sin represent the Stokes vectors of the incident and outgoing beams, respectively, M p2
 is the Muller 

matrix of the polarizer P2, MQWP3
 is the Mueller matrix of the QWP3, the phase retardation Γ​ of which is π/2, and 

the slow axis of which makes an angle θ with the x-axis. The intensity pattern of I(θ) recorded on the camera is 
closely related to the first element of ′



Sout. After some algebra, the intensity variation versus rotation angle of θ 
presents the following form

θ θ θ θ θ= + + +I S S S S( ) 1
2

( cos 2 cos2 sin2 sin2 ) (22)0 1
2

2 3

Therefore, the Stokes parameters of VVBs can be obtained by using Fourier series analysis of the intensity pat-
tern I(θ). We emphasize here that, because VVBs possess different SOP on the transverse plane, point-to-point 
Fourier series analysis must be performed over the entire x–y plane. When the Stokes parameters are obtained, 
other polarization parameters, such as the orientation and ellipticity angles of polarization ellipses, ψ and χ, can 
also be obtained by

ψ =
S
S

tan2
(23)

2

1

χ =
S
S

sin2
(24)

3

0
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