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Optimal Device Independent 
Quantum Key Distribution
S. Kamaruddin* & J. S. Shaari*

We consider an optimal quantum key distribution setup based on minimal number of measurement 
bases with binary yields used by parties against an eavesdropper limited only by the no-signaling 
principle. We note that in general, the maximal key rate can be achieved by determining the optimal 
tradeoff between measurements that attain the maximal Bell violation and those that maximise the 
bit correlation between the parties. We show that higher correlation between shared raw keys at the 
expense of maximal Bell violation provide for better key rates for low channel disturbance.

Quantum cryptography, which is often a reference to the more specific study of quantum key distribution (QKD) 
had been developed as a secure way of distributing or establishing secure keys between parties1. While the secu-
rity is based on information theoretic definitions (as opposed to modern cryptography with security based on 
computation complexity), the operational ingredient of such a cryptographic system would lie in the use of quan-
tum systems as information carriers, thus setting definite constraints of quantum physics on information theo-
retic tasks.

Despite the various security proofs afforded thus far, the most pessimistic demands would not be satisfied as 
these proofs rely strongly on the requirement that the exploited degrees of freedom lies within the control of the 
legitimate users. Relaxing such a requirement has led to the birth of “device independent QKD” (DIQKD). The 
basis for security guarantee of this framework lies in the establishment of nonlocal correlations; a correlation 
that cannot be reproduced by any local theory. Such security feature in which can be observed from the violation 
of Bell-inequality2, assures that the output produced would still retain some amount of secrecy despite not hav-
ing any prior knowledge of its internal process. The possibility of exploiting the nonlocal resource as a security 
measures was initially highlighted by ref. 3 though it would be ref. 4 that points out its potential in a device inde-
pendent context. The preliminary work in the direction of DIQKD was first proposed by demonstrating proofs 
of security against an eavesdropper constrained by the no-signaling principle5. The no-signaling condition states 
that the marginal probabilities for any subset of the parties, say Alice and Bob, are independent of Eve’s measure-
ment choice z (with measurement result e)6:

∑ ≡ ∀ .abe xyz ab xy zPr( ) Pr( )
(1)e

Though the protocol is proven to be inefficient, it follows from this idea that ref. 7 proposed the CHSH protocol  
(in which further detail was given in ref. 8) that is secure against an individual attack by an adversary who is 
supra-quantum, i.e. not limited by the dictates of quantum theory though bounded by the non-signaling principle.  
The individual attack strategy requires Eve, the adversary, to distribute a mixture of deterministic strategies and a 
nonlocal box, given by the Popescu-Rohrlich (PR) box9 to the legitimate parties.

One of the main setbacks regarding the CHSH protocol however, is its immediate implementation given Alice 
and Bob’s quantum framework. Such a protocol sees the legitimate users setting their choice of measurements to 
achieve a maximal CHSH violation for which any subset to be used for sharing a common string would, inher-
ently carry errors due to non-overlapping basis. It is actually quite obvious to note that measurements to maxi-
mally estimate the nature of correlations for a bipartite entangled state; i.e. local or otherwise, is not compatible 
with measurements which would extract the maximally possible amount of correlation. This can be immediately 
seen as follows: If Alice and Bob wished to extract the maximal number of bits per-entangled pair by local meas-
urements on each half of the pair, then every round of measurement requires them to have identical measurement 
bases and thus would not enable a determination of the type of correlation involved with certainty as evident 
from eq. (4) where subscribing to maximally overlapping bases results in the maximal value being 2. On the other 
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hand, any measurement to ascertain the maximal possible local violation with certainty would not allow for Alice 
and Bob to share an error free string; the CHSH protocol is in fact an immediate example of this.

In ref. 10, a possible implementation which, while does not subscribe to a maximal CHSH violation, does 
nevertheless allow for a secret key to be established; as a matter of fact it was shown to exceed the CHSH protocol 
under a noiseless channel scenario. In this work, we shall consider in detail such protocols and determine their 
optimality. In effect, we will work with a binary measurement QKD for two parties, Alice and Bob, where each 
party would commit to either one of two measurement basis and each yields only binary results (contrary to ref. 
6 in which Alice would be given the freedom to choose between 3 measurement bases instead of only two). The 
measurements settings would of course subscribe to quantum formalism. We will then consider two different 
scenario of how subsequent classical distribution of information between the legitimate parties, thus defining the 
protocol may allow for different secure key rates to achieve the highest possible.

Results
Binary Measurement QKD.  We begin with a description of the protocol, which we define within a frame-
work as described by quantum physics. Let Alice submit to Bob a quantum state of which each party would 
measure subsystems thereof available to them. In an ideal setup, we assume that this would result in Alice and 
Bob sharing the following maximally entangled states (a depolarizing channel would result in a Werner state11):

Ψ = −
1
2

( 10 01 )
(2)

In each run, Alice and Bob can independently choose to apply one of two measurements with each choice result-
ing in binary outcomes. For definiteness, we describe Alice’s and Bob’s measurements as x and y with x, y ∈​ {0, 1} 
and the binary results for their measurement choices are a, b ∈​ {0, 1}, respectively.

Restricting measurements to projecting states on the X –Z plane of the Bloch sphere, any measurement can be 
described as projecting into the following states;

θ θ θ
θ θ θ
= +
= −

+

−
cos( ) 0 sin( ) 1
sin( ) 0 cos( ) 1 (3)

and we set x =​ 0 to be in the Z basis i.e. θ =​ 0 and x =​ 1 indicate the measurement made in angle θ =​ α. Meanwhile, 
Bob’s setting is described such that y =​ 0 and y =​ 1 correspond to measurement angles θ =​ β and θ =​ γ, respectively.

At the end of the transmission and measuring process, Alice and Bob would exchange classical information 
to allow them to share a raw key. The simplest scenario is that of ref. 8 in which only Alice would reveal her 
measurement bases over a public channel and Bob would commit to flipping bits in selected cases to maximize 
correlations with Alice for key purposes (we refer to this as Version I). Another scenario (which we refer to as 
Version II) would be for both to disclose their bases (as in ref. 10) and a raw key is defined by the bits derived from 
the measurement set x =​ y =​ 0. In both cases, the parties will determine the security of the protocol by means of 
checking for violation of Bell inequality2 on a subset of the measurement results. In this work we will consider the 
case where Alice and Bob would compute the amount of the following CHSH correlations12:

= = = + = = + = = − = =CHSH x y x y x y x y0, 0 0, 1 1, 0 1, 1 (4)

in which local correlations is bounded by inequality −​2 ≤​ CHSH ≤​ 2.
However, in modeling a noisy setting, we shall assume a depolarizing channel between the legitimate parties 

and thus, (2) is transformed to

ρ = Ψ Ψ + −F F I(1 )
4 (5)

where 0 ≤​ F ≤​ 1 with F =​ 1 represent the noise-free condition. From the results obtained when measuring state ρ 
(see Table 1), it is not difficult to show that the estimation of CHSH violation (4) can be written as

α β α α γ β= − − + − +CHSH F [ cos (2( )) 2 sin( )sin( 2 ) cos (2 )] (6)

Depending on the results, Alice and Bob may choose to abort the protocol or proceed to error correction and 
privacy amplification.

y =​ 0, b =​ 0 y =​ 0, b =​ 1 y =​ 1, b =​ 0 y =​ 1, b =​ 1

x =​ 0, a =​ 0 β + −sin ( )F F
2

2 1
4 β + −cos ( )F F

2
2 1

4 γ + −sin ( )F F
2

2 1
4 γ + −cos ( )F F

2
2 1

4

x =​ 0, a =​ 1 β + −cos ( )F F
2

2 1
4 β + −sin ( )F F

2
2 1

4 γ + −cos ( )F F
2

2 1
4 γ + −sin ( )F F

2
2 1

4

x =​ 1, a =​ 0 α β− + −sin ( )F F
2

2 1
4 α β− + −cos ( )F F

2
2 1

4 α γ− + −sin ( )F F
2

2 1
4 α γ− + −cos ( )F F

2
2 1

4

x =​ 1, a =​ 1 α β− + −cos ( )F F
2

2 1
4 α β− + −sin ( )F F

2
2 1

4 α γ− + −cos ( )F F
2

2 1
4 α γ− + −sin ( )F F

2
2 1

4

Table 1.   The correlations table as a result of measuring state ρ.
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Security Analysis: Supra-quantum Eve.  We consider the pessimistic view where Eve has control of the 
degrees of freedom of Alice and Bob’s observables. We could imagine that the eavesdropper, Eve fabricated the 
devices and she is in fact controlling the source. The legitimate parties are essentially ignorant of the internal pro-
cess of the protocol and their devices may be regarded as black boxes with binary inputs and outputs. We define 
Eve’s strategy as being constrained by the no-signaling principle while requiring observations made by both Alice 
and Bob to be consistent with quantum predictions.

Similar to the CHSH protocol7,8, Eve’s strategy is to submit to Alice and Bob a convex combination of prob-
abilistic distributions of deterministic and nonlocal strategies. A deterministic strategy is a strategy for which 
results obtained for any given set of Alice’s and Bob’s measurement would be fully determined (i.e no uncertainty 
and conforms completely to a local theory)13. On the other hand, a nonlocal strategy is one in which a PR box is 
distributed and measurement results are not only probabilistic, but also violates the CHSH inequality up to its 
algebraic maximum13. However, since our protocol is described in terms of an anti-correlated state (2) (like in 
ref. 10), it would be appropriate to use the anti-PR (aPR)14 box for which all measurement settings (except for 
x =​ y =​ 1) result in anti-correlations rather than the PR box that provides for correlations. The aPR box, which is 
equivalent to the PR box up to a trivial local processing13, violates the lower bound of CHSH (as opposed to the 
PR box violating on the positive side) is given by the probability function,

=







+ = ⊕a b xyPr
1
2

, 1

0, otherwise (7)
aPR

where ⊕​ is addition modulo 2. The deterministic strategies are described by four deterministic functions 
G:[4] ×​ {0, 1} →​ {0, 1} for r =​ 1, 2, 3, 4 defined by

=








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=
=
=

+ =

G r x

r
r

x r
x r

( , )

0, 1
1, 2

, 3
1, 4 (8)

Thus, the sixteen deterministic strategies are given by δ δ= = | ∈= =D a b a b x yD { ( , ) , , , {0,1}}rs rs
xy

G r x a G s y b( , ) ( , )  
where D a b( , )rs

xy  gives the probability of having input x, y resulting in output a, b for strategy rs13. However, like in 
ref. 10, we are only interested in the following eight deterministic strategies, D12, D14, D21, D23, D32, D33, D41, D44 
which would saturate the local bound on the negative side of the CHSH range. Eve’s strategy and her information 
on Alice-Bob distribution can be summarized in Table 2 which is a ‘complimentary’ table to that in ref. 8 where 
Eve would use a PR box9 instead. Note that the symbol prs represent the probability of sending strategy Drs and pNL 
is the probability of sending aPR box. While it remains unclear if this strategy should be the most general one 
available to Eve, we feel that there may be some reasonability for this choice; this is in view of the argument made 
in ref. 10 for Eve’s distribution of a two-party non signaling correlation instead of a possible three-party scenario 
where the latter results in two out of three parties being totally uncorrelated. It would certainly be interesting to 
consider a complete proof for the optimality of such attack schemes for a supra-quantum Eve though this would 
be outside the scope of the current manuscript.
With aPR box violating the CHSH inequality up to its algebraic minimum value of −​4, the estimation of local 
correlation, 〈​CHSH〉​ that Alice and Bob may find would be

≥ − − + −CHSH p p( 4)(1 ) ( 2) (9)L L

y =​ 0, b =​ 0 y =​ 0, b =​ 1 y =​ 1, b =​ 0 y =​ 1, b =​ 1

x =​ 0, a =​ 0 p33 (D33) pNL/2 (PaPR)
p12 (D12)
p14 (D14)
p32 (D32)

p14 (D14) pNL/2 (PaPR)
p12 (D12)
p32 (D32)
p33 (D33)

x =​ 0, a =​ 1 pNL/2 (PaPR)
p21 (D21)
p23 (D23)
p41 (D41)

p44 (D44) pNL/2 (PaPR)
p21 (D21)
p41 (D41)
p44 (D44)

p23 (D23)

x =​ 1, a =​ 0 p41 (D41) pNL/2 (PaPR)
p12 (D12)
p14 (D14)
p44 (D44)

pNL/2 (PaPR)
p14 (D14)
p41 (D41)
p44 (D44)

p12 (D12)

x =​ 1, a =​ 1
pNL/2 (PaPR)

p21 (D21)
p23 (D23)
p33 (D33)

p32 (D32) p21 (D21) pNL/2 (PaPR)
p23 (D23)
p32 (D32)
p33 (D33)

Table 2.   Table showing probability distribution of Eve sending the corresponding strategy (as shown in the 
parentheses) to Alice and Bob. This is a ‘complimentary’ table to that in ref. 8 where Eve would use a PR box 
instead.
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in which pL =​ 1 −​ pNL with pL =​ p12 +​ p14 +​ p21 +​ p23 +​ p32 +​ p33 +​ p41 +​ p44. In the ensuing sections, the security 
analysis, given Eve’s attack is constructed within the framework of an eavesdropper who may be supra-quantum 
but would emulate Alice and Bob’s expectations; i.e. the statistics of their measurement results must be consistent 
with the expectation of quantum physics. We thus assume a one-to-one correspondence rule from the set of Eve’s 
probabilities of strategies sent, Eijkl, where i, k and j, l are Alice and Bob’s measurement settings and results respec-
tively to the set of probabilities of Alice-Bob’s measurements, Pr(a =​ i, b =​ j|x =​ k, y =​ l).

Version I.  We consider the simplest case where only one party, say Alice, would publicly disclose her measure-
ment bases. To ensure that Eve would be at a disadvantage in regards to the correlations between Alice and Bob, 
i.e. to ensure the correlations are derived from strategies that should include the nonlocal box, referring to Table 2, 
we consider the stipulation where Bob would flip all his bits except in the event where Alice declares x =​ 1 and 
Bob measure y =​ 1. This step is equivalent to the pseudosifting procedure introduced by ref. 8 (the main concern 
there was to maximize the correlations between Alice and Bob). The error rate for Alice and Bob, eAB

I  originates 
from Eve’s sending strategies, which after pseudoshifting is given by the probability, ∑ ⊕Ek l i ii kl, , 1 . In terms of of 
the angles α, β, and γ, we refer to the one-to-one correspondence between the legitimate parties’ measurement 
settings and the probabilities of Eve’s strategies (Tables 1 and 2 respectively) and the error rate is then given by

α γ α β β γ= − + − + − + +

= − + .

e F F

CHSH

1
4

(2 2 [sin ( ) cos ( ) cos ( ) cos ( ))]

8
1
2 (10)

AB
I 2 2 2 2

For each deterministic strategy, Eve would only learns about one of Alice’s setting, while being totally ignorant 
about the other. This is described in detail in ref. 8, and assuming the choice of measurement basis is equiproba-
ble, Eve’s information gain on Bob would then be

=

=
+
.

I
p

CHSH
2

4
4 (11)

BE
L

From eq. (10) and eq. (11), the key rate, KI is then given by15

= − −K I h e1 ( ) (12)I BE AB
I

with the binary entropic function h(p) =​ −​plog2p −​ (1 −​ p)log2(1 −​ p). It is obvious that the secret key rate is a 
monotonically increasing function of the CHSH violation (it is clear from eq. (10) that an increase in 〈​CHSH〉​ 
would decrease the uncertainty between Alice and Bob) and thus maximized for angles α, β, γ maximizing the 
CHSH violation and the protocol would be the CHSH protocol7,8. This could be actually derived from eq. (25) in 
ref. 8 where in a quantum setup, Alice and Bob prescribe measurements that would maximize the Bell violation. 
Thus we can conclude that generalizing the angles of measurements, in a case where only Alice reveals her meas-
urement bases, the most optimal protocol would necessarily reduce to that of CHSH protocol7,8.

Version II.  In this version, we require that both Alice and Bob reveal their measurement bases, and bits for key 
purposes would be extracted from the case x =​ y =​ 0. The error in the strings that Alice and Bob would have to 
correct, eAB

II  (corresponding to Eve’s strategy ∑ ⊕Ei i i( 1)00) is given by,

β= −e F1
2

[1 cos (2 )] (13)AB
II

As Alice’s and Bob’s measurements’ settings are eventually made known, any measurement coinciding with the 
receipt of Eve’s deterministic strategies would provide the latter with complete information. Given that, Eve’s 
information gain, IAE =​ pL and along with eq. (9) the key rate, KII can be shown to be,

= − −K I h e1 ( ) (14)II AE AB
II

≥ −




+ 

 −

CHSH h e1 4
2

( )
(15)AB

II

in which

β
β

β
β=





 +





−

+





− −





h e F F

F
F( ) 1

2
2 cos (2 )log 1 cos (2 )

cos (2 ) 1
log (1 ( cos (2 )) )

(16)
AB
II

2 2
2

It should be noted that, as Alice’s and Bob’s measurement bases are randomly chosen, the actual fraction of bits 
that go into KII from the total number of runs would be less than 1 (in fact if the choices were equiprobable, then 
the case x =​ y =​ 0 would occur only 1/4 of the time). However, given that the cases when x, y =​ 1 are not used for 
raw key purposes, i.e only for checking a CHSH violation (along with a sample for when x, y =​ 0), similar to ref. 6, 
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one can imagine having a bias in bases’ choice, and so long as sufficient statistics is achieved towards determining 
CHSH violation, one can have the probability for x =​ y =​ 0 approaching 1. In maximizing the key rate, we con-
sider the following partial derivatives;

α
β γ α β γ

∂
∂
= − − −

K F2 sin( )cos (2 ) (17)
II

γ
α α γ

∂
∂
= − −

K F2 sin( )cos( 2 )
(18)

II

β
α α β

β
∂
∂
= − −

∂
∂

K F h e2 cos( )sin( 2 ) ( )
(19)

II AB
II

where

β
β β

β
∂
∂

= −





−
+







h e F F
F

( ) sin (2 )log 1 cos (2 )
1 cos (2 ) (20)

AB
II

2

Considering eq. (4), it is obvious that measurement choices such {x =​ 0} =​ {x =​ 1} or {y =​ 0} =​ {y =​ 1} would 
result in no violation of the CHSH inequality no matter the given bipartite state. Thus, α ≠​ 0 and β ≠​ γ and equat-
ing the partial derivatives of KII to zero, we find α −​ 2γ =​ π/2 +​ I1 and 2α −​ β −​ γ =​ π/2 +​ I2 where I1 and I2 are 
non-negative integers. Solving this gives us

γ β π− = − + = −I I I I3 /2 , 2 (21)3 3 2 1

Thus a choice of one variable, say β determines all other angles. By defining F =​ 1 −​ 2D, such that the disturbance, 
D represent the probability that the measurement results from the same basis agree, we can see from Fig. 1, a plot 
of the secure key rate for varying β (for simplicity we choose I1 =​ I2 =​ 0).

An analytical solution is unfortunately not immediate; and we plot a numerically optimised secure key rate in 
Fig. 2. While it is the case that a different value for disturbance, D, would require a different set of angles used, this 
may be not too practical as one must commit to determining D prior to choosing the angles. It is possibly simpler 
to decide on one fixed value of β (thus the other angles as well) and derive a secure key for every possible D. We 
could simplify matters greatly by considering the choice in ref. 10 of β =​ 0, and letting I1 =​ I2 =​ 0. We then have 
γ =​ −​π/6 and α =​ π/6. In order to show that a maximal key rate is in fact achievable with such angles for β =​ 0, we 
consider the Hessian matrix, H which is given by

= 


−

−


H F F

F F
2

2 (22)

From eq. (22), we can easily see that = −
α

∂

∂
F2K II

2

2  and |H| =​ 3F2. Since F does not take on a negative value and F2 

will always be positive then we can deduce that <
α

∂

∂
0K II

2

2  and |H| >​ 0 thus implying that a maximal key rate is 
achievable when γ =​ −​π/6 and α =​ π/6 given β =​ 0.

Discussion
We compare the performance of the protocols of Version I and II in Fig. 2. We can immediately observe that the 
protocol of Version II (for varying β and β =​ 0) outperforms Version I for D up to about 3% and 2.4% respectively 
when the terms related to error correction (in terms of Alice-Bob mutual information) play a more prominent 
role in determining the maximal achievable key rate as opposed to privacy amplification. In general, this can be 
understood in the context of the legitimate parties making measurements to maximise correlations between them 

Figure 1.  Key rate, KII for varying β and D. 
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at the expense of determining the actual amount of local violation their bits are derived from. On the other hand, 
for larger values of D, the information that Eve gleans from Bob becomes more pronounced for Version II; where 
Alice and Bob have little information on the type of correlation they actually share. We can in fact, in this vein, 
write an inequality to denote when the secure key rate of one protocol, KII would exceed another, KI in terms of 
the difference of mutual information between the protocols.

> ⇒ − > −K K I I I I (23)II I AB
II

AB
I

BE
II

BE
I

where IAB
II  and IAB

I  are the mutual information between Alice-Bob for protocols I and II respectively while, IBE
II  and 

IBE
I  are Eve’s information gain for protocols I and II respectively.

We see from Fig. 3 in fact such an inequality holds only up to D ≈​ 0.03 where errors between the two legitimate 
parties become less important in determining the key rate as the difference between the two versions decrease 
while the difference in Eve’s gain increases.

The case for the protocol Version II with β =​ 0 against Version I is similar and applying inequality of eq. (23) 
gives

−




+ 



<



− 

 −





− 




F h F h F1 5 2 2
4

1
2

2 2
4 (24)

so long as D <​ 2.4% (this can be checked through simple numerics for eq. (24)). The fact that the protocol of 
Version II for varying β exceeds that of β =​ 0 is rather obvious from the fact that the former is based on the opti-
mal choice for β.

Conclusion
In the search for an ultimately secure key distribution procedure with the most pessimistic assumptions, proto-
cols based on violating Bell inequalities were conceived. Limiting an adversary, Eve, with only the no-signaling 

Figure 2.  Key rate as a function of disturbance, D. (a) KII represent numerically optimised key rate (b) β=KII
0 

denote the extracted key rate given that β =​ 0 (c) KI indicate the key rate achievable by CHSH protocol7,8 
without postprocessing.

Figure 3.  Differences of Alice-Bob mutual information (orange curve) and Eve information gain (blue 
curve) between the protocols of Version I and Version II versus D .
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principle while being supra-quantum still nevertheless allows for secure key distribution to be established. 
However, in this work we have noted that deriving a secure key and determining a Bell violation are clearly two 
incompatible processes; one can only be achieved maximally at the expense of the other and thus generating the 
most optimal secure key rate must necessarily capitalise on a possible trade-off.

In this work, we have considered two variants of a QKD protocol where the basic building block would really 
be two parties committing to measurements, each chosen from a set of two bases and each yielding binary results. 
Version I, which allows for the legitimate parties to make measurements with non overlapping bases and minimal 
disclosure of bases (by Alice only) provides for maximal determination of a Bell violation. This naturally results 
in the CHSH protocol8. It however, evidently sacrifices the actual correlation between the resulting shared raw 
key. Version II on the other hand allows for higher correlation between the shared raw key though at the expense 
of ascertaining a Bell violation; hence decreasing the legitimate parties’ ability to determine how secure their key 
is from Eve and effectively resulting in more bits to be discarded in privacy amplification. We have also used a 
simpler form of Version II by having a maximal correlation between Alice and Bob in one set of bases’ choice 
(setting β =​ 0). On the whole, we note that Version II exceeds Version I for disturbance on the channel for up to 
about 3% and 2.4%, the latter is for the case β =​ 0. The latter may provide for ease for practical implementation 
due to having a fixed set of measurement bases for any disturbance on the channel while Version II on the whole 
is better suited for the low channel disturbance.
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