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Functional Brain Networks: Does 
the Choice of Dependency Estimator 
and Binarization Method Matter?
Mahdi Jalili

The human brain can be modelled as a complex networked structure with brain regions as individual 
nodes and their anatomical/functional links as edges. Functional brain networks are constructed 
by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise 
level. Different methods have been used to estimate the dependency values between the nodes and 
to obtain a binary network from a weighted connectivity matrix. In this work we study topological 
properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity 
strength between two time series, we use Pearson correlation, coherence, phase order parameter and 
synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum 
Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-
preserving methods. We find that the detected AD-related abnormalities highly depend on the methods 
used for dependency estimation and binarization. Topological properties of networks constructed using 
coherence method and MCC binarization show more significant differences between AD and healthy 
subjects than the other methods. These results might explain contradictory results reported in the 
literature for network properties specific to AD symptoms. The analysis method should be seriously 
taken into account in the interpretation of network-based analysis of brain signals.

Human brain is a complex network composed of regions connected through a networked structure. Recently, 
many research studies applied graph theory tools to signals recorded from the brain1. The brain networks 
can be studied in two categories: anatomical and functional. Anatomical brain networks are often extracted 
using Diffusion Tensor Imaging (DTI) technique2, while the functional networks can be extracted by analy-
sis data recorded using Electroencephalography (EEG), Magnetocephalography (MEG) or functional Magnetic 
Resonance Imaging (fMIR) modalities3–5. In functional brain networks, the nodes (or vertices) are individual 
brain regions (e.g., EEG/MEG sensor locations or regions of interests in fMRI) and the edges are the functional 
links connecting the nodes.

There are various research studies linking the brain cognitive functioning to its network structure6. Research 
studies showed that brain networks, similar to many other real-world networks, have non-trivial topological 
features such as small-world-ness and hierarchy; see a review in1,7,8. Various brain disorders have been shown 
to disrupt statistical and dynamical properties of its network structure, such as Alzheimer’s Disease (AD)4,  
schizophrenia9, epilepsy10, early blindness11, Autism12 and Parkinson’s disease13. AD is the source of dementia 
in more than 50% of the cases, which is mainly caused by early deterioration of cerebral circuitry14. AD alters 
structural and functional brain connectivity. fMRI-based studies have shown low-frequency fluctuations in the 
functional connectivity of AD brains15,16, while the high-frequency (especially in alpha and beta bands) abnor-
malities have been frequently reported in various EEG studies17–19. Graph theory tools have been extensively 
applied to fMRI and EEG signals recorded from AD painters, and reported various aspects of abnormalities in the 
network measures. AD brains are often characterized by loss of small-worldness in their functional networks20,21. 
These networks also show decreased communication efficiency (i.e., increased average path length between brain 
regions)4,22,23, as well as decreased synchronizability24.

The first step in studying the functional brain network is to extract a connectivity matrix indicating the 
strength of interactions between the brain regions. This matrix is a weighted all-to-all connected matrix where 
the weights represent the connection strengths. The connectivity between two nodes is often estimated using 
some kind of statistical correlation (or dependence). Various linear and nonlinear methods have been used to 
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obtain these connectivity matrices from EEG, MEG or fMIR signals. Pearson correlation coefficient, for instance, 
is a time-domain connectivity measure that is applied to filtered time series to obtain functional dependencies 
between two nodes3,25–27. Coherence is another linear dependency measure between two nodes, which has been 
applied to estimate functional connectivity matrices12,28,29. This measure obtains a value between 0–1 for each 
frequency. These values are integrated over the range of desired frequencies to obtain the dependency value for 
that frequency band. Another class of dependency measures are those to detect nonlinear correlations between 
the time series. Phase lag index and phase order parameter have been used to construct the weighted connectivity 
matrices by estimating the phase synchrony between the nodes30–32. To apply these measures, first appropriate 
methods are used to extract individual phases from the time series, and then the synchronization value is cal-
culated between the phases. Another measure to detect nonlinear correlations is synchronization likelihood33, 
which measures the level of generalized synchronization between the time series. These measures have been 
widely applied to brain signals34,35.

The brain networks can be studied in either weighted or unweighted (binary) fashions. Often the weighted 
connectivity matrices are binarized to minimize the noise level and obtain more meaningful interpretation of 
the results. However, there is no standard way for binarization, and each method has its advantages and pitfalls. 
The simplest method is to use a uniform threshold, i.e., if the connectivity value between two nodes is larger 
than a certain threshold, they are connected through an undirected binary link9,20,34. It is not straight forward to 
determine the single threshold value, and thus one has to study the network properties for a range of threshold 
values. The main problem with this method is that the extracted networks have different densities (i.e., number of 
edges). Topological properties of networks significantly depend on their density, and comparing networks for the 
same threshold value can be biased to this effect. A solution can be to apply thresholds such that the final binary 
networks have the same density value (different threshold value for each network)3,5,36. In order to be insensitive 
to the threshold or density values, one can study the minimum spanning tree of the networks24,32. However, the 
minimum spanning tree of a network is highly sparse and many significant local connections are neglected. One 
can also study the minimum connected component, in which the local connections are preserved37.

Previous studies of functional brain networks in AD have used different methods for connectivity estimation 
and network binarization. There are also some contradictory conclusions across the studies. In this manuscript, 
we consider EEGs recorded from AD patients and healthy controls, and investigate to what extent the network 
properties depend on the choice of analysis method. By applying different methods on EEGs recorded from AD 
and control groups, we find that the results highly depend on the choice of method and in some cases opposite 
conclusions are drawn. Therefore, one should seriously take into account the effect of analysis method when 
interpreting a network-based study of brain signals.

Methods
Subjects and EEG recording.  The EEGs of 16 newly diagnosed patients suffering from AD symptoms (Age: 
69.1 ±​ 10.6) and 14 healthy controls (Age: 68 ±​ 11.2) were considered in this study. The subjects were recruited 
from the Memory Clinic of the Neurology Department (CHUV, Lausanne). The clinical diagnosis of probable 
AD symptoms was made according to the NINCDS–ADRDA criteria38, and cognitive functions were assessed 
with the Mini Mental State Examination (MMSE39). To confirm the absence of psychoactive drugs use and cog-
nitive deficits, or diseases that may interfere with cognitive functions, MMSE of potential control subjects were 
also tested. The AD and control groups were not different in their age and educational level. AD patients showed 
significantly less MMSE scores than control subjects; AD MMSE: 21 ±​ 4.5, Controls’ MMSE: 29 ±​ 1 (P <​ 0.0001; 
Wilcoxon’s ranksum test). All the patients, caregivers, and control subjects gave written informed consent. All the 
applied procedures conform to the Declaration of Helsinki (1964) by the World Medical Association concerning 
human experimentation and were approved by the local Ethics Committee of Lausanne University.

The EEGs were recorded in resting-state condition with eyes-closed. The data were collected while subjects 
were sitting relaxed in a semi-dark room. To record the EEG data for duration of 3–4 minutes for each subject, the 
128-channel Geodesic Sensor Net (EGI, USA) machine was used. The recordings were made with vertex refer-
ence at a sampling frequency of 500 Hz, and were further filtered (FIR, band-pass of 1–50 Hz; 50 Hz notch filter) 
and re-referenced against the common average reference. Then, the data were segmented into non-overlapping 
epochs each with 1-second length. All computations were first performed on individual epochs and then aver-
aged over all artifact-free epochs in order to obtain the measures for each individual subject. Artifacts in all 
channels were edited off-line: first, automatically, based on an absolute voltage threshold (100 μ​V) and on a 
transition threshold (50 μ​V), and then on the basis of a thorough visual inspection. The sensors located in the 
outer ring showed low signal-to-noise ratio. They were further removed from the analysis, leaving 111 sensors. It 
is well-known that surface EEG is contaminated by volume conduction, which makes its interpretations limited. 
In order to minimize the effects of volume conduction (although not removing it completely), a high-resolution 
Laplacian transformation was used. For computing Laplacian transform of EEG signals, the CSD toolbox (psy-
chophysiology.cpmc.columbia.edu/Software/CSDtoolbox) was used. In this work, we study the EEG signals only 
in alpha (7–13 Hz) band. A fifth-order Finite Impulse Response (FIR) filter was used to filter the original EEG 
time series. These subjects have been used in our previous studies for studying topography of synchronization 
maps and synchronizability of AD brains18,24,40.

Computing connectivity matrices.  The first step in studying functional brain networks is to compute 
connectivity matrices from EEG, MEG or fMRI time series. In this work we use EEG time series to obtain a 
111-by-111 weighted connectivity matrix for each subject, where its entries show the strength of connectivity 
between the nodes (EEG sensor locations). We use four methods to compute the connectivity matrices: corre-
lation, coherence, phase order and synchronization likelihood. Pearson correlation coefficient measures linear 
dependency in the time domain. The correlation coefficient between sensors i and j can be obtained as



www.nature.com/scientificreports/

3Scientific Reports | 6:29780 | DOI: 10.1038/srep29780

=R i j
i j

cov( , )
var( )var( )

,
(1)

ij

where cov(i,j) is the covariance between nodes i and j, and var(i) is the variance of node i. Coherence is another 
method to measure linear dependencies, which is computed in frequency domain. Coherence of sensors i and j 
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where Gij(f) is the cross-power spectral density at frequency f and Gii(f) is the auto-power spectral density. In 
order to obtain the coherence value for a frequency band, one should get the mean over the values for all frequen-
cies of in that range.

Phase order and synchronization likelihood are based on different aspects of synchronization phenomena, 
both measuring nonlinear dependencies between the sensors. Two oscillators with phases ϕ1 and ϕ2 are called to 
be phase synchronized when the difference between their phase values are always less than a constant value. To 
compute phase synchrony between two time series, one needs to extract individual phases out of the filtered time 
series. Let’s suppose that the EEG time series of sensor i is yi

t, t =​ 1, …​, T, where t indicates a sample in a single 
epoch and T is the number of available samples. Let’s consider the Hilbert transform of yi

t as hi
t41. The instanta-
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Figure 1.  Global Efficiency of EEG-based functional networks in AD and healthy controls in alpha band 
(7–13 Hz). The graphs show group-level mean values with the asteric above the lines indicating a significant 
difference between AD and Control groups (P <​ 0.05; Wlcoxon’s ranksum test). Different methods are used to 
estimate the connectivity matrices, from left column to the right: Correlation, Coherence, Phase Order, and 
Synchronization Likelihood. The weighted connectivity matrices are binarized using MCC or MST (top panel), 
Threshold (middle panel), or Density (bottom panel); see the text for complete description of the methods.
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The degree of phase synchronization between sensors u and v, with phase values computed as above, is esti-
mated by42
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where j is the imaginary unit. This index scales as 0 ≤​ P ≤​ 1, where one has P ~ 0 for completely independent 
motion (uncoupled oscillators), and the case P ~ 1 indicates that the time series are phase synchronized.

Synchronization likelihood is another measure that quantifies nonlinear dependencies between two time 
series33. It is a measure of the generalized synchronization between two time series yi and yj. The first step is to 
convert yi and yj as a series of state space vectors, which can be done using time delay embedding as
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where L is the time lag and e is the embedding dimension. Synchronization likelihood measures the conditional 
likelihood that the distance between Yi

t1 and Yi
t2 is smaller than ri given that the distance between Yj

t1 and Yj
t2 is 

smaller than rj. This value scales between 1 (for maximal synchronization) and a small non-zero value Pref for 
independent motion. Let’s define correlation integral as
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where N is the number of vectors, w is the Theiler correction for autocorrelation and θ is the Heaviside function. 
Then, one should choose ri and rj such that CI(ri) =​ Pref and CI(rj) =​ Pref. The synchronization likelihood is defined as
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In this work, we set the parameters as Pref =​ 0.01, L =​ 10, e =​ 10 and w =​ 0.134.

Figure 2.  Node betweenness centrality in AD and healthy brain networks. Other designations are as Fig. 1.
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Constructing weighted and binary brain networks.  The next step is to extract binary graphs from the 
weighted connectivity matrices. Not all the weighted links in the original connectivity matrices are significant, 
and one should use a method to remove the non-significant ones and minimize the noise level. Network bina-
rization can be a good candidate solution to this problem; however, there is no unique strategy to binarize the 
connectivity matrices. In this work, we consider four methods to this end.

A simple method to binarize a weighted (often all-to-all connected) connectivity matrix is to apply a threshold 
th, that is if a link has a weight higher than th, the corresponding entry of the adjacency matrix is one, and zero 
otherwise. The problem with this method is that one cannot find a unique threshold value to extract only the sig-
nificant links. The threshold values are often considered in a certain range and the9,34. Let’s denote this method by 
Threshold. There are individual variations in the functional connectivity; some subjects might have higher average 
functional connectivity than others. When one uses the same threshold for all subjects, the extracted networks 
will have different densities (i.e., number of links). Network density has a major role in many of its topological 
properties, and any observed pattern can be biased by this factor. In order to avoid this problem, one can study the 
network properties as a function of density instead of threshold3,26,43,44. The connectivity matrices are thresholded 
such that all extracted binary networks have the same density values. One can consider a range of density values 
and study topological properties of the extracted networks. Let’s denote this method by Density.

We also consider two other techniques to extract the binary networks: Minimum Spanning Tree (MST) and 
Minimum Connected Component (MCC). MST of a graph is defined as the subgraph that connects all nodes 
while minimizing the summation of link weights and without forming any loops. It has been shown that MST is 
insensitive to the threshold and density value, and can be considered as a good technique for graph binarization32. 
MST was first applied on brain networks in45, and then used by many studies, e.g., refs 24,31. The problem with 
MST method is that it results in a highly sparse network (a MST network with N nodes has N-1 edges), and thus 
many short-range connections (which is observed in many real systems) will be absent in MST. Another possible 
approach is to use MCC37, which is also a spanning subgraph and is constructed as follows. First, N nodes without 
any links are considered. Then, the strongest weight is considered and the corresponding binary link is created. 
Then, the second strongest weight is considered and so on. This procedure is continued until a connected graph is 
obtained, which is denoted as MCC. MCC is a spanning tree with at least N-1 edges and does not have the sparsity 
problem of MST.

Figure 3.  Edge betweenness centrality in AD and healthy brain networks. Other designations are as Fig. 1.
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Graph theory metrics.  As the binary functional networks are extracted, their topological properties are 
studied. There are many graph theory metrics in the literature; however not all of them are relevant for studying 
cognitive functions of the brain. Here we consider a number of neurobiologically relevant network measures. 
These metrics are related to brain cognitive functions including binding (information segregation and integra-
tion) and hierarchy. The first set of features is based on shortest paths between the nodes (global efficiency, nodes 
and edge betweenness centrality) that are related to the communicability of the brain and its integration proper-
ties. Global efficiency of a network is inversely proportional to its average shortest path length and is defined as46
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where N is the number of nodes and lij is the length of the shortest path between nodes i and j. High values of GE 
indicate efficient communication between the nodes.

In order to take into account the centrality of nodes/edges in the brain networks, their betweenness centrality47  
is considered. Let’s denote the edge between nodes i and j by eij. Edge-betweenness centrality EBCij of the network 
is defined by as
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where Γ​pu is the number of shortest paths between nodes p and u in the graph and Γ​pu(eij) is the number of these 
shortest paths making use of the edge eij. Node-betweenness centrality NBCi is a centrality measure of node i in a 
graph, which shows the number of shortest paths making use of node i (except those between the i-th node with 
the other nodes)47. One can compute it as
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where Γ​jk is the number of shortest paths between nodes j and k and Γ​jk(i) is the number of these shortest paths 
making use of the node i.

Figure 4.  Local efficiency in AD and healthy brain network. Other designations are as Fig. 1.
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We consider local efficiency and modularity index as metrics characterizing hierarchal structure and segre-
gation properties of the brain. Local efficiency is analogous to clustering coefficient (or transitivity), and is calcu-
lated as follow. Local efficiency of node i is computed as46

∑=
− =
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d d l
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(11)

i
i i k j G k j, ,i

where di is degree of node i and Gi is the subgraph of neighbors of nodes i excluding node i. The local efficiency of 
the network is obtained by making average over all the nodes, more precisely
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In order to capture the degree of modularity in the network with predetermined M modules, we use the  
following index48
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where the network is fully partitioned into M non-overlapping modules (clusters), and qij represents the pro-
portion of all links connecting nodes in module i with those in module j. The modularity index is computed by 
estimating the optimal modular structure for a given network.

Networks may undergo random and/or intentional failures in their components, and their resiliency against 
such a failure is of high importance for their proper functioning. Degree-degree correlation has a significant role 
in determining resiliency of complex networks, which can be quantified by calculating the assortativity measure, 
as defined by49

Figure 5.  Modularity index in AD and healthy brain networks. Other designations are as Fig. 1.
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where E is the total number of the edges in the network. If r >​ 0, the network is assortative, whereas r <​ 0 indicates 
a disassortative network. For r =​ 0 there is no correlation between the node-degrees. In assortative networks, 
high-degree nodes often tend to interconnect, whereas in disassortative networks, nodes with high degree tend 
to connect to low-degree nodes. Assortative networks are likely to consist of mutually coupled hub nodes with 
high degrees and to be resilient against random failures. In contrast, the disassortative networks are likely to have 
vulnerable high-degree nodes49.

Statistical assessments.  In order to assess whether AD and control groups have statistically significant 
network properties, we use non-parametric Wilcoxon’s ranksum test. The results with P <​ 0.05 are considered to 
be statistically significant. All computations are performed using MatLab and its associated toolboxes.

Results
Global communicability.  The first set of metrics studied in this work is those related to the global com-
municability between the nodes and include global efficiency, node and edge betweenness centrality, which are 
computed based on shortest paths. Fig. 1 shows the global efficiency when different methods are used. There are 
variations across the connectivity extraction and binarization methods. The nonlinear methods (phase order 
and synchronization likelihood) show significant differences between AD and controls in neither of binarization 
methods. When the connectivity values are estimated by coherence, AD networks show significant decrease in 
the global efficiency when MCC or Threshold are used for binarization. This pattern is observed for Density when 
correlation is used for connectivity estimation. We find similar pattern for the node and edge betweenness cen-
trality measures (Figs 2 and 3). We find extensive increase of node/edge betweenness centrality in AD brains for 
different threshold values when coherence is used to measure the connectives. Apart from some patchy changes 
(both decrease and increase), there are no significant changes for the other connectivity estimation methods.

Local connectivity.  The local efficiency and modularity index are used to measure the strength of local 
connections and hierarchical structure, and the results are shown in Figs 4 and 5, respectively. AD networks show 

Figure 6.  Assortativity in AD and healthy brain networks. Other designations are as Fig. 1.
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significant decline of the local efficiency when coherence or synchronization likelihood is used for connectivity 
estimation and MCC for binarization. Note that MST results in the minimum spanning tree for which the local 
efficiency for each node is zero. MST extracts the minimum spanning three, and thus when a node is removed 
from its neighbouring set, they will be disconnected with zero local efficiency. Likewise, clustering coefficient will 
also be zero in the networks extracted by MST. Thus, MST cannot capture the profile of local connectivity, while 
other metrics do not have this problem. Choosing Threshold as the binarization method, coherence estimation 
shows significant decrease of the local efficiency for a broad range of the threshold values, while other methods 
do not show any changes. All connectivity extraction methods show decreased local efficiency for a range of small 
density values. The patterns for the modularity index are inconsistent; MCC/coherence shows significant increase 
of modularity in AD networks, whereas MST/phase order shows decrease of the modularity in AD. Similar to 
other metrics, the modularity index also shows significant changes in AD brains for a broad range of threshold 
values in Threshold/coherence, while there are only some patchy changes for other methods.

Degree-degree correlation.  Figure 6 shows the assortativity values for different methods. MCC and MST 
show completely opposite patterns. While both AD and control brains are assortative under MCC binarization, 
they are disassortative under MST binarization method. However, there are significant differences for AD vs. con-
trols in neither of them. AD networks show significantly higher assortativity than healthy brains for Threshold/
coherence, while other methods do not identify significant differences apart from few threshold or density values.

Discussion and Conclusion
Tools available in graph theory and network science have been extensively applied to study the human brain. 
Studying network properties in various brain disorders have revealed their abnormal behaviour. Previous studies 
showed that functional and anatomical networks in AD patients demonstrate altered network properties such as 
average path length, clustering coefficient, small-worldness and synchronizability4,24,50–52. These studies often use 
a dependency estimation method such as correlation, coherence, phase order index and synchronization likeli-
hood. Although these methods quantify the strength of connectivity between two nodes, they measure different 
aspects of functional connectivity. Cross-correlation is a way to decide the extent to which two nodes covary, 
while coherence indicates “similarity” by looking at the similarity for two nodes in frequency space, rather than 
time space. It has been shown that coherence values are smaller than correlation values for a signal with any 
noise, however, coherence is more robust for increasing level of noise53. Correlation and coherence measure 
linear dependencies between two time series, and cannot capture nonlinear interconnections. Synchronization 
likelihood and phase order index can detect the effects caused by nonlinear connectivity. Synchronization like-
lihood measures the generalized synchronization that is to what extent one of the variables is synchronized with 
a general function of the other variable. Phase order index computes the synchronization in the phase space. All 
these measures are sensitive to the volume conduction effect (although phase order index being less sensitive than 
others), and proper pre-processing should be applied (e.g, Laplacian or source transformation) to minimize the 
unwanted effects of volume conduction.

In this work we studied EEG-based complex network properties of functional brain networks in AD. EEG, 
as a non-invasive and cheap neuroimaging modality, has been extensively used to study AD mechanisms in the 
brain18,54–56. To study AD-specific properties of functional brain networks, we applied different connectivity esti-
mation and binarization methods on EEGs recorded from AD patients and healthy control subjects. The literature 
on network properties of AD brain is contradictory, which is partially due to the use of different analysis methods. 
Table 1 summarizes previous research studies on the functional network properties of AD brains. These studies 
used various neuroimaging modalities including fMRI, PET, EEG and MEG. Each study used one of the four 

Study
Brain 
signal

Connectivity 
measure Binarization Findings

Seo, et al.57 PET Correlation Density Decreased CC and no change in APL

van Haan et al.63 MEG Synch Likelihood NA Decreased modularity in lower bands and increased 
modularity in higher bands

Stam et al.4 EEG Synch Likelihood Threshold/Density Increased APL and no change in CC

De Haan & Jalili58 EEG Synch Likelihood Density Decreased CC in alpha and beta bands and decreased 
APL in alpha and gamma bands

Afshari et al.22 EEG Coherence Density Decreased GE and increased LE in alpha and beta bands

Spekar et al.59 fMRI Correlation Threshold Decreased CC

Zhao et al.52 fMRI Correlation Density Increased LE and decreased GE

Ciftci64 fMRI Coherence MST No change in the degree distribution

Sanz-Arigita et al.62 fMRI Synch Likelihood Threshold/Density Decreased APL and no change in CC

Stam et al.20 MEG Phase Synch NA Decreased CC and APL in alpha band

Brier et al.60 fMRI Correlation Density No change in APL and reduced CC and modularity

Li et al.61 fMRI Correlation Threshold Decreased GE and CC

Wang et al.23 fMRI Correlation Threshold Increased APL

Table 1.   Previous studies reporting abnormalities of functional brain networks in AD. APL: Average Path 
Length, CC: Clustering Coefficient, GE: Global Efficiency, LE: Local Efficiency.
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dependency estimation methods considered in this work, and Density, Threshold or MST as binarization method. 
There was no study using MCC and some of them did not indicate the binarization method.

Previous studies reported contradictory findings. For example, while Zhao et al.52 and Afshari et al.22 
reported increase of local efficiency, others reported decrease of local connectedness measured by clustering 
coefficient20,57–61. Some reports did not find any significant changes in the clustering coefficient4,62. Note that 
local efficiency is analogous to clustering coefficient, both measuring local connectedness among the nodes. Our 
data showed either decreased or no change in the local efficiency of AD brains, depending on the connectivity 
estimation and binarization method used for the analysis. This is consistent with many of the previous reports. 
Therefore, the local connections are likely to be destroyed in AD, which is captured by both types of connectivity 
estimation methods, linear (coherence and correlation) and nonlinear (phase order and synchronization likeli-
hood), although by different confidence levels.

Global efficiency, which measures the global communicability in the network is inversely proportional to the 
average path length, i.e., the higher is the average path length, the lower the global efficiency. Previous studies 
reported contradictory findings for the average path length (or global efficiency) as well. Studies carried out by 
Wang et al.23, Li et al.61, Zhao et al.52, Afshari et al.22 and Stam et al.4 reported increase of average path length 
(decrease of global efficiency) in AD brains, while De Haan et al.58 and Sanz-Arigita et al.62 reported decrease of 
average path length in AD indicating better global communicability of AD brain than healthy brains. Some stud-
ied did not find any AD-specific changes in the average path length. Depending on the connectivity estimation 
and binarization method, we found either decreased or no AD-specific changes in the global efficiency, which is 
not in agreement with58,62. These two reports used synchronization likelihood to estimate the weighted connec-
tivity matrices, for which we did not identify any significant differences between AD and healthy brains. Previous 
works did not report the node and edge betweenness centrality for AD brains. We found that the AD-specific 
changes in the betweenness values highly depend on the analysis method. While coherence showed increase of 
betweenness in AD brains (wide-spread change for Threshold and some patchy changes for Density), other meth-
ods showed either no change or decreased betweenness in AD.

Note that none of methods are right or wrong per se and each has its own interpretation. Therefore, one should take 
into account the analysis method when interpreting results obtained by applying network theory tools to the brain.
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