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Metal-free carbon nanotubes: 
synthesis, and enhanced intrinsic 
microwave absorption properties
Xiaosi Qi1,2, Jianle Xu2, Qi Hu2, Yu Deng1, Ren Xie2, Yang Jiang2, Wei Zhong1 & Youwei Du1

In order to clearly understand the intrinsic microwave absorption properties of carbon nanomaterials, 
we proposed an efficient strategy to synthesize high purity metal-free carbon nanotubes (CNTs) over 
water-soluble K2CO3 particles through chemical vapor decomposition and water-washing process. 
The comparison results indicated the leftover catalyst caused negative effects in intrinsic microwave 
absorption properties of CNTs, while an enhanced microwave absorption performance could be 
observed over the metal-free CNT sample. Moreover, the results indicated that the microwave 
absorption properties could be tuned by the CNT content. Therefore, we provided a simple route to 
investigate the intrinsic properties of CNTs and a possible enhanced microwave absorbing mechanism.

In order to prevent electromagnetic (EM) radiations caused by the rapid development of wireless communica-
tions and high frequency devices, microwave absorbing materials (MAMs) have attracted more and more atten-
tion all over the world1–3. It is well known that the reflection and attenuation properties of MAMs are mainly 
determined by the balance between the complex permittivity ε ε ε= ′ − ″j( )r r r  and the complex permeability 
µ µ µ= ′ − ″j( )r r r . Because of the mismatch in the values of μr and εr, it is very difficult to obtain a good matching 

on the single dielectric loss materials or magnetic loss materials4–8. Therefore, much research has been focused on 
core/shell structured nanohybrids (dielectric shells and magnetic nanoparticles as cores) as high efficiency 
MAMs, due to the synergetic effect between magnetic and dielectric losses9–12. Among these nanohybrids, core/
shell structured magnetic nanoparticles and carbon-based including carbon nanomaterial (CNM) and graphene 
nanohybrids have received an increasing attention in recent years13–18. In order to explore high efficiency core/
shell carbon-based nanohybrids, the EM parameters and microwave absorption properties of CNMs and 
graphene should be understood truly. Therefore, graphene and their derivatives were investigated intensively as 
potential microwave absorbers recently19,20. However, as we all know that CNMs such as carbon nanotubes 
(CNTs) and carbon nanofibers (CNFs) are usually synthesized by the methods of electric arc discharge, laser 
evaporation and catalytic chemical vapor deposition21–23. And the transition-metal catalysts are indispensable in 
these currently known methods, which makes the raw CNMs produced by these methods inevitably contain high 
concentration metal impurities. Moreover, because of the special physical and chemical properties of metal cata-
lyst, the previous reported purification routes for CNMs are less effective and destructive24–26. Therefore, the 
intrinsic EM and microwave absorbing properties of CNMs still not be fully understood at present due to the 
leftover metal catalyst and the challenge of CNM purification27, which brings a huge obstacle to study and explore 
high efficiency carbon-based MAMs.

Therefore, the aim of this work is to synthesize high purity metal-free CNMs and investigate their intrinsic 
EM and microwave absorbing properties. Herein, based on the previous work28–32, we report a facile and efficient 
strategy to produce metal-free CNTs in large quantity over K2CO3 particles. Because the catalyst is water-soluble, 
the leftover catalyst particles can be removed completely from the raw CNMs through a very mild water washing 
process. Therefore, high purity and undamaged metal-free CNMs can be obtained by a simple and effective route, 
which can fulfill the investigation of the intrinsic properties of CNMs. Our results suggest that the microwave 
absorption performance of the CNT sample enhanced greatly after the removal of catalyst. And the possible CNT 
formation mechanism and enhanced microwave absorbing mechanism were discussed in details.
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Results
Figure 1 gives the XRD patterns and Raman spectra of raw sample obtained over A-K2CO3 and the purified 
sample. As shown in Fig. 1a, all the diffraction peaks of raw sample are ascribable to graphite carbon and the 
corresponding catalyst K2CO3 (JCPDS: 71-1466). Because of its water-soluble property, the used catalyst should 
be removed easily and completely from the raw sample through the repeated washing processes. Figure 1b shows 
the XRD patterns of purified CNMs. One can find that all the peaks can be attributable to graphite carbon, and 
no signal assignable to the used catalyst can be detected over the purified sample. And the broad carbon peaks 
as shown in Fig. 1a,b indicate the relatively poor graphitic crystallinity of the obtained raw and purified samples. 
The comparison results imply that the catalyst particles can be removed effectively from the raw CNMs, and 
high purity CNMs can be obtained by this method. The graphitic property of the obtained sample can also be 
confirmed further by its Raman spectra. As shown in Fig. 1e, two peaks at ca. 1324 cm−1 (D band) and 1587 cm−1 
(G band) can be observed clearly. It is well known that the D band can be attributed to the presence of sp3 defect 
within the carbon, and the G band is indicative of high crystallinity graphitic layer. Moreover, the intensity ratio 
of G and D bands (IG/ID) is usually used to characterize the crystallinity of CNMs. In our study, an IG/ID of ca. 1.05 
was recorded for the raw sample. Compared to CNMs reported previously33–35, the obtained sample exhibits a 
relatively low IG/ID value, which displays its poor crystallinity. It is well known that the growth of CNMs is mainly 
determined by their experimental conditions such as the temperature, catalyst and so on. Therefore, compared 
to CNMs synthesized at high temperature or/and over the transition catalysts33–35, the relatively low IG/ID value 
of the obtained CNMs should be related to the low pyrolysis temperature or/and inactive catalytic property of 
K2CO3.

In order to investigate the effect of purification process on the microstructures of raw CNMs, the FE-SEM 
and TEM images of raw sample obtained over A-K2CO3 and the purified samples are given in Fig. 2. As shown in 
Fig. 2a,b, CNTs are the majority in the obtained raw sample. The raw CNTs show a relatively uniform size (average 
diameter: ca. 80 nm). Moreover, besides high content of CNTs, different sizes of catalyst particles (as indicated by 
the arrows in Fig. 2a,b) can be observed clearly in the raw sample. Figure 2c shows the FE-SEM image of purified 
sample. After the repeated washing process, the catalyst particles cannot be seen and only CNTs can be observed 
in large scale. And the tube structure can be seen evidently by the closer TEM observation (as indicated by the 
arrows in Fig. 2d). Similar to the results reported before31,36, the comparison results indicate that the catalyst par-
ticles can be removed effectively from the raw sample, and the washing process does not bring any destruction on 
the morphology of the obtained CNTs.

In order to confirm the obtained results of purified CNTs, detailed electron microscopy characterization of 
the purified CNTs was carried out and the results were shown in Fig. 3. As shown in Fig. 3a–c, one can observed 
clearly that the product displays the hollow tubular structure and the top section of CNTs appears as an onion-like 

Figure 1. (a,b) XRD patterns, and (c) Raman spectra of the raw and purified samples.
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structure. Moreover, no evident damages can be observed over the purified CNTs, and catalyst particle cannot be 
seen inside the obtained CNT. And the high resolution TEM (HRTEM) result (as shown in Fig. 3d) indicates the 
obtained CNTs exhibit the relatively low crystallinity of graphitic layer, which is consistent with the obtained XRD 
and Raman results. To prove the effective purification process, the energy dispersive X-ray spectroscopy (EDS) 
results of dark area and top end of CNTs are provided (as shown in Fig. 3e,f), respectively. The EDS results are 
obtained from the areas as indicated by the red and blue square in (c), respectively. One can find only C, O and Cu 
can be detected over the purified CNTs. In this study, we think that the C signal originates from CNT, Cu signal 
comes from the copper grid and the water-washing process induces the formation of O. Generally, because the 
used catalyst is water-soluble, the purification process here is simple, mild, low-cost, environment-friendly and 
effective, and the route may make the properties and applications of CNMs verified or realized fully.

In order to study the effect of catalyst preparation method on CNM growth, the obtained B-K2CO3 was used 
as catalyst for the decomposition of acetylene. With the other experimental conditions unchangeable, about 0.1 g 
of black sample could be collected in the ceramic plate. As shown in Fig. 4, one can find that the obtained sample 
at the case consists of CNTs with high selectivity and catalyst particles with different sizes. Compared to CNTs 
obtained over the catalyst A-K2CO3 particles, the leftover catalyst particles can be observed very frequently and 
big sizes of CNTs can be seen. To investigate the stability of the designed experiments, each experiment was 
repeated three times to confirm the obtained results. Generally, as shown in Table 1, one can find that the prepa-
ration method for catalyst has a great impact on the yield and size of the obtained CNTs, and the designed experi-
ments show a good reproducibility. Moreover, the yield of CNTs obtained over A-K2CO3 is much higher than that 
of CNMs reported previously31,37,38.

According to the transmission line theory, the reflection loss (RL) and attenuation constant (α) were calcu-
lated by the following equation39–41:
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Figure 2. Microstructures of the obtained samples: (a,b) FE-SEM images of the raw sample, and (c,d) FE-SEM 
and TEM images of the purified sample.
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where f is the frequency of the EM wave, d is the thickness of an absorber, c is the velocity of light and Zin is the 
input impedance of absorber.

Based on Eqs (1) and (2), the RL values of the CNT composites containing 30 wt% of the raw or purified 
CNTs were calculated and the results are shown in Fig. 5. Figure 5a,b show the color map of RL values of raw and 
purified CNT samples. It is obvious that the minimum RL moves toward to the lower frequency region with an 
increasing thickness. A minimum RL value of − 17.2, − 20.2 dB was observed at 17.4, 14.2 GHz on the raw and 
purified CNT samples with a matching thickness of 1.93, 2.28 mm, respectively. RL values below − 10 dB (90% 
of EM wave attenuation) can be obtained over the purified CNT sample in the frequency range of 5.8–18 GHz. 
Generally speaking, the purified CNT sample exhibits better microwave absorption ability than the raw one. 
Figures 5c,d shows a typical RL versus frequency for the raw and purified CNT samples with the thickness of 3.0 
and 3.5 mm. One can find that the minimum RL is observed at the different frequencies with the same matching 
thickness. In general, the obtained result indicates that the remained catalyst particles cause a big gap between the 
measured and intrinsic properties of CNM. Moreover, the results show that the intrinsic microwave absorption 
ability of CNTs is superior to those of the previously reported graphene and their derivatives42,43.

Figure 3. Electron microscopy characterization of the purified CNTs: (a) TEM image, (b,c) Enlarged TEM 
images, (d) HRTEM image, (e,f) EDS spectra from the area as indicated by the red and blue square in (c), 
respectively.
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Figure 6 shows the effect of CNT content on microwave absorption performance of the as-prepared CNT 
composites in the frequency range of 2 to 18 GHz. As shown in Fig. 6a, a minimum RL value of − 32.7 dB is 

Figure 4. FE-SEM of the sample obtained over the B-K2CO3 particles. 

Catalyst A-K2CO3 B-K2CO3

=yield m m/total catalyst

11.02 1.01

10.98 1.04

11.03 1.02

TEM studies CNTs CNTs

Size of carbon species 60–100 nm 60–200 nm

Table 1.  Effect of the catalyst preparation method on the CNM growth.

Figure 5. Microwave absorption characteristics of the raw and purified CNT (30 wt%) composites: (a,b) color 
map of the RL values, and (c,d) RL versus frequency with the thickness of 3.0 and 3.5 mm.
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observed at 4.6 GHz for the CNT (45 wt%)-paraffin composite with a thickness of 4.13 mm. While a minimum RL 
value can reach − 7.2 dB (as shown in Fig. 6b) at 15.8 GHz for the CNT (60 wt%)-paraffin composite with a thick-
ness of 1.10 mm. As shown in Fig. 6c,d, the typical RL results for the CNT (30, 45 and 60 wt%)-paraffin composite 
with the thickness of 3.0 and 3.5 mm indicates further that the microwave absorption performance improves 
gradually with the increase of CNT content from 30 to 45 wt%. Nevertheless, degraded EM wave absorption abil-
ity is observed for the CNT (60 wt%)-paraffin composite. Moreover, the RL peak moves to the lower frequency 
region with the increasing CNT content in the as-prepared composites, which can be attributed to the enhance-
ment of εr as pointed out by Fan et al.44. Generally speaking, the results show that the microwave absorption 
abilities of the CNT composites can be tuned by the CNT content, and the similar results and possible reasons 
were reported previously45–47.

Discussion
In order to understand the possible mechanism of K2CO3-catalyzed CNT growth, detailed TEM investigations 
were performed and the results were shown in Fig. 7. Figure 7 displays the microstructures of the raw CNTs with-
out purification. Because of the water-soluble property, the obtained samples are very easy to deliquescence in 
the air. And the catalyst nanoparticles, which are encapsulated into the obtained CNTs, are very difficult to find. 
The same phenomenon was also reported before by Xu et al.37. Figure 7a,b presents the encapsulation of catalyst 
particle by CNT. And the results of EDS and element mapping (as shown in Fig. 7c–e) reveal that the top section 
of CNT is composed of C, O, Cu and K. As we all know that, the C signal originates from CNT and Cu signal 
comes from the copper grid. Therefore, the results give conclusive evidence that it is the K2CO3 nanoparticles that 
acts as the catalyst to catalyze the growth of CNTs. Moreover, based on the obtained TEM results (as shown in 
Fig. 3), one can find that the top section of purified CNTs appears as an onion-like structure should be related to 
the removal of catalyst particle after the water-washing process.

It is well known that K2CO3 particles do not have the ability to decompose and react with carbon source 
such as acetylene. Based on the obtained results, the onion-like structures can be seen evidently at the top end of 
CNTs, which provides a direct evidence for the possible CNT growth mechanism. Same to the results reported by  
Xu et al.37, we also think the K2CO3 nanoparticles only act as a “seed” during the CNTs growth process. Based 
on the previously reported models and results28,37,48, the schematic illustration for the possible formation mech-
anism of CNTs over K2CO3 particles is given in Fig. 8. The possible pathways to grow CNTs are as follows: (1) 
the formation of carbon atoms through the decomposition of acetylene at relatively high temperature; (2) the 
K2CO3 nanoparticles provide the nucleation sites, and the generated carbon atoms nucleate on the surface of the 
K2CO3 nanoparticles; (3) the nucleated carbon atoms will assemble gradually over the K2CO3 nanoparticles; and  
(4) assemble of much more generated carbon atoms leads to the growth of CNTs.

Figure 6. Microwave absorption characteristics of the raw CNT-paraffin composites with filler loading of (a) 
45 wt%, (b) 60 wt%, and (c,d) RL versus frequency of the composites with the thickness of 3.0 and 3.5 mm.
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In order to analyze the difference in obtained RL results and probable absorption mechanism, the EM param-
eters, dielectric and magnetic loss ability, attenuation constant and impedance matching are presented. Figure 9 
shows the variations of complex permittivity and permeability of the raw and purified CNT (30 wt%) samples 
with frequency. As illustrated in Fig. 9a, the values of the real (ε′) part of relative complex permittivity are found 
to decrease with the frequency in the tested frequency region. According to the Debye theory, ε′ can be described 
as:

ε′ ε
ε ε
ω τ

= +
−
+∞

∞

1 (4)
s

2 2

where εs is the static permittivity, ε∞ is the relative dielectric permittivity at the high frequency limit, ω is angu-
lar frequency, τ is polarization relaxation time. Based on the equation (4), one can find that the decrease of ε′ 
is mainly attributed to the increase of f. As reported previously47,49, the phenomenon can be considered as the 
polarization relaxation in the lower frequency range. Obviously, the real (ε′) and imaginary (ε″) parts of relative 
complex permittivity of the purified CNT sample are slightly higher than those of the raw CNT sample. The 
increment of ε′ may be attributed to the fact that the removal of K2CO3 catalyst can increases the dipolar polari-
zation50. According to ε″ ∝ σ/2πε0 f, the decreasing of the resistance (R) will lead to the increasing of dielectric 
loss. The CNT purification should enhance the conductivity (σ) of the sample due to the electrical conductivity 

Figure 7. Microstructures of the raw sample: (a) TEM image; and (b–e) HRTEM image, EDS spectrum, EDS 
elemental mapping of C and K from the area as indicated by the red square in (a).

Figure 8. Schematic diagram for the possible formation mechanism of CNTs over K2CO3 nanoparticles. 
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of catalyst. Therefore, the difference in these values of complex permittivity should be related to the existence of 
the catalyst in the raw sample. Figure 9b shows the real (μ′) and imaginary (μ″) part of complex permeability 
obtained over the raw and purified CNT samples as a function of frequency. One can see that the former is close 
to 1.0 while the latter to 0. Because there are no magnetic particles in raw and purified CNT samples, the diversion 
of complex permeability can be negligible between the raw and purified CNT samples. Therefore, the leftover 
catalyst particles actually bring a great difficulty on the EM characterization of CNM.

Based on the data of the measured complex permittivity and permeability (as shown in Fig. 9a,b), the dielec-
tric tangent (tan δE =  ε″/ε′) and magnetic tangent loss (tan δm =  μ″/μ′) were calculated, and the result is shown 
in Fig. 10a. One can find that all the samples exhibit much higher tanδE values than those of tan δm in the whole 
frequency range, which indicating that the dielectric loss plays the main role in the EM absorption. Moreover, 
it can be found clearly that the dielectric loss ability of the CNTs enhanced greatly after the purification of cata-
lyst, and the magnetic tangent loss ability is almost unchangeable due to the nonmagnetic property of catalyst. 
As the papers reported recently51–53, the enhanced microwave absorption properties mainly resulted from the 
attenuation constant (α) and impedance matching. According to equation (3), the obtained α values of the raw 
and purified CNTs in the entire frequency range are shown in Fig. 10b. The attenuation loss ability of the purified 

Figure 9. Frequency dependence of (a) complex permittivity, and (b) complex permeability for the raw and 
purified samples.

Figure 10. (a) Loss tangent, (b) attenuation loss, and (c) impedance matching of the raw and purified samples.
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CNTs is evidently superior to the raw CNTs, which showing that the microwave absorption properties may be 
enhanced through the catalyst purification process. The impedance matching ratios of the obtained samples were 
provided in Fig. 10c. It is clearly seen that the purified CNTs exhibits much better impedance matching properties 
at the higher frequency range (ca. 10.0–18.0 GHz). Generally, the enhanced microwave absorption abilities of the 
purified CNTs can be ascribed to the tradeoff among the dielectric and magnetic loss ability, attenuation constant 
and impedance matching.

In order to understand the difference in obtained RL results, the EM properties, dielectric and magnetic loss 
ability, attenuation constant and impedance matching of the as-prepared composites with the different filler con-
tents were obtained. Figure 11a shows the complex permittivity of the as-prepared composites. These composites 
present a typical frequency dependent permittivity, the values of ε′ decrease with the frequency in the whole 
frequency range. And significant enhancement is achieved in both ε′ and ε″ with the increase of CNT loading 
ranging from 30 to 60 wt%, which is similar to the other composites reported before45–47. The enhancement of 
εr confirms further the shift of obtained RL peak (as shown in Fig. 6c,d) with the increasing CNT content in the 
as-prepared composites. Figure 11b presents the dielectric tangent and magnetic tangent loss of the as-prepared 
composites. The CNT composites exhibit enhanced tanδE values with the increasing CNT content. And the tanδM 
values are almost unchangeable when the CNT content increases. Figure 11c displays the calculated α values 
of the as-prepared composites. It can be seen clearly that the value of α increases with the CNT content. The 
impedance matching ratio of the as-prepared composites is presented in Fig. 11d. With the increasing CNT con-
tent from 30 to 60 wt%, the impedance matching ability of the CNT composites is getting worse. It is well known 
that the enhanced microwave absorption performance mainly can be ascribed to the good impedance matching 
ratio, high values of α, tanδE and tanδM, good compensation between the dielectric loss and magnetic tangent 
loss. Based on the aforementioned results, one can found that the enhanced microwave absorption abilities of 
the CNT (45 wt%) composite can also be attributed to the tradeoff among the dielectric and magnetic loss ability, 
attenuation constant and impedance matching, which is similar to the recently reported CoxFey@C composites51.

In summary, we propose an efficient strategy to synthesize metal-free CNTs through the chemical vapor dep-
osition and water washing process. The studies on the microstructures of the obtained samples indicate that 
the K2CO3 nanoparticles serve as seeds and provide the nucleation sites for CNT growth. The investigation of 
microwave absorption properties indicates that the leftover catalyst causes problems in intrinsic property charac-
terization of CNTs, and an enhanced microwave absorption performance can be found over the purified sample. 
Moreover, the obtained results indicate that the microwave absorption properties of the as-prepared composites 
can be tuned by the CNT content. The enhanced microwave absorption performance of the CNT composite can 
also be attributed to the tradeoff among the dielectric and magnetic loss ability, attenuation constant and imped-
ance matching. Therefore, we propose a simple and effective route to study the intrinsic properties of CNMs and 
their possible enhanced microwave absorption mechanism.

Figure 11. (a) Complex permittivity, (b) loss tangent, (c) attenuation loss, and (d) impedance matching of the 
CNTs-paraffin composites with filler loading ranging from 30 to 60 wt%.
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Methods
Catalyst preparation. All the materials used here were commercially available and analytically pure. In 
order to study the effect of catalyst preparation method on the growth of CNMs, the catalyst K2CO3 particles 
could be generated by the two different methods. In the first typical method, 0.1 mol KOH and 0.1 mol oxalic 
acid were dissolved in 200 ml of absolute alcohol. After stirring at 60 °C for 6 h, the mixture was kept at 80 °C for 
several hours until the formation of a white powder. The obtained powder was heated twice in air at 550 °C for 4 h 
and the catalyst was obtained. For distinguish, the K2CO3 generated by this method is denoted as A-K2CO3. And 
the catalyst K2CO3 particles could also be obtained as follows: (i) firstly, the purchased commercial and analyti-
cally pure K2CO3 was dissolved in deionized water; (ii) then the solution was kept at 80 °C for several hours until 
the formation of a white powder. The K2CO3 produced by this method is denoted as B-K2CO3.

Generation of CNTs. In the typical experiment, 0.1 g of the obtained white powder (A-K2CO3 or B-K2CO3) 
was dispersed on a ceramic plate that was placed inside a quartz tube. After that, the temperature of the furnace 
was raised from room temperature (RT) to 450 °C with Ar flowing through the reaction tube. Then shutting off 
Ar, acetylene was introduced into the tube at 450 °C for 6 h at atmospheric pressure. After cooling to RT, about 
1.1 g of black sample can be obtained in the ceramic plate. In order to obtain high purity carbon nanomaterials 
(CNMs), the obtained raw black sample was purified through the repeated washing process.

Measurement. The samples were examined on an X-ray powder diffractometer (XRD) at RT for phase iden-
tification using CuKα radiation (model D/Max-RA, Rigaku). Raman spectroscopic investigations were performed 
using a Jobin-Yvon Labram HR800 instrument with 514.5 nm Ar+ laser excitation. The morphologies of the sam-
ples were examined using a transmission electron microscope (model JEM-2000EX, operated at an accelerating 
voltage of 200 kV), and a field emission scanning electron microscope (FE-SEM) (model FEI Sirion 200, operated 
at accelerating voltages of 5 kV). For microwave measurement, the as-prepared CNTs obtained over the cata-
lyst A-K2CO3 and purified CNTs were mixed with paraffin. The relative complex permittivity (εr = ε′ −  jε″) and 
permeability (μr = μ′ −  jμ″) of the composite were measured in frequency range of 0.5–18 GHz over an Agilent 
E8363B vector network analyzer.
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