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Impact of climate change on larch 
budmoth cyclic outbreaks
Sudharsana V. Iyengar1, Janaki Balakrishnan2 & Jürgen Kurths3

Periodic outbreaks of the larch budmoth Zeiraphera diniana population (and the massive forest 
defoliation they engender) have been recorded in the Alps over the centuries and are known for their 
remarkable regularity. But these have been conspicuously absent since 1981. On the other hand, 
budmoth outbreaks have been historically unknown in the larches of the Carpathian Tatra mountains. To 
resolve this puzzle, we propose here a model which includes the influence of climate and explains both the 
8–9 year periodicity in the budmoth cycle and the variations from this, as well as the absence of cycles. We 
successfully capture the observed trend of relative frequencies of outbreaks, reproducing the dominant 
periodicities seen. We contend that the apparent collapse of the cycle in 1981 is due to changing climatic 
conditions following a tipping point and propose the recurrence of the cycle with a changed periodicity of 
40 years – the next outbreak could occur in 2021. Our model also predicts longer cycles.

Tree-ring analysis of larch trees in the Alpine region have shown 123 outbreaks over the past 1200 years. While the 
predominant periodicity found is of around 9 years, an 8 year cycle has also been observed, and (less frequently) 
a 10 year cycle, with other periodic outbreaks occurring a fewer number of times1. The last outbreak occurred in 
1981 after which the cycles have collapsed2. Experiments reported in ref. 3 revealed changes in periodicity when 
the densities of the budmoths were altered by manual removal or spraying of pesticides. Such outbreaks are not 
seen in the Tatra mountains in the Carpathians. Trees in the Tatra mountain range are at much lower altitudes 
and are hence exposed to much warmer conditions in comparison to their Alpine counterparts. The presence of a 
constant cloud cover in the Tatras also exposes these larches to less sunshine, and they are sparser – another dis-
tinguishing feature between the Alpine and Tatra larches4. The absence of budmoth outbreaks in the Tatra region4 
as opposed to that in the Alps has been a puzzle thus far and a challenge for modelling the ecological system.

In this contribution we propose a mathematical framework that enables us to capture all the above mentioned 
facts along with the observed relative frequencies of occurrence of the various periodicities as well as the absence 
of expected cycles. Additionally, our model predicts future possible cycles.

Wasteful feeding by budmoth larvae on larch foliage leading to a scorched appearance of the entire landscape, 
has prompted several investigations of the population cycles of this insect pest (see for instance ref. 5). Previous 
studies on larch budmoth (LBM) population cycles have established the presence of a third trophic level – parasi-
toids which prey upon budmoth larvae6–9. The population densities of the budmoth, the parasitoids preying upon 
them and needle lengths of the larch10 are all known to show periodic cycles which are mutually synchronized. 
This tritrophic system was first modelled by Turchin8 (see Methods).

On an average, larch needles grow upto 30 mm in length, lengthier needles being an indicator of good health. 
The current health of the plant which depends upon its nutrient supply and its previous state after the last bud-
moth infestation is hence captured well through a dimensionless Plant Quality Index (PQI) which is directly 
related to the needle length9 (see Methods). Turchin’s model8 had tightly tuned parameters, adjusted to match the 
observed 9 year budmoth cycle.

In ref. 11 we considered this tritrophic system using the dimensionless scaling introduced in ref. 12; however 
the decay of foliage was no longer represented by a constant, but rather by a density-dependent function of the PQI.

In the present work, we substantially generalize our model to incorporate, for the first time, factors which 
relate to environmental and climatic conditions.

Model for the Tritrophic System with Climate Parameters
Our description of the tritrophic system is represented in the following model (see Methods):
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, xt and yt denote respectively the population densities of budmoth and parasitoid in 

dimensionless form and zt the PQI at time t. Other factors influencing larch growth are modelled thus: the intrin-
sic growth rate of the budmoth is denoted by λ, α denotes plant-vulnerability; h is a climate/environmental factor 
and s the budmoth-larch interaction strength which depends upon climatic conditions. The other system param-
eters are the efficiency c of the parasitoid in parasitising the budmoth, the budmoth’s infestation efficiency m, qz 
which is related to its intraspecific competition and qy which is related to the parasitoid wasting time.

Equation 3 (that governs the PQI) now has three contributions therein – one from the evolution of 
infestation-free leaves (term without climate factors), another from the regeneration (under favourable climatic 
conditions) of previously damaged larch needles (term containing h); and third, a density dependent interaction 
term representing current budmoth infestation (with factor s).

Incorporating climatic effects influencing this system is especially important in correctly capturing its evolu-
tion in a model. In particular, warm weather immediately after snow thaw and direct exposure to sunlight helps 
larch foliage thrive during the vegetation period13. Growth is enhanced by an early, warm springtime, but a late, 
cool spring retards growth10. Short, dry summers and very cold winters are conditions favourable to the larch. 
Good precipitation is beneficial for both larch and budmoth, although continuous cloud cover hampers larch 
growth4. Increased overall temperatures in the active vegetation period and increased frost do not appear to 
favour larch growth14. Our model, with eight parameters, is the most versatile one available to analyze the system 
and includes the effect of climate. In general, large values of h and s can be taken to correspond to favourable 
environmental conditions, and low values to adverse conditions. We can, for example, interpret h as a measure of 
precipitation, and s as an inverse temperature. If winter temperatures are high, it leads to high egg mortality and 
hence, low budmoth populations. This important effect of temperature is incorporated in our model through the 
parameter s. Because of the complex relationship between various parameters in the system, a strict interpretation 
of all high h, s values being uniformly favourable may not, however, be feasible.

Our model incorporates q-deformation in the equations, as the tritrophic system’s population cycles bear 
memory of previous years’ growth of the larch. There is a strong and complex interplay between the parasitoids 
living off budmoth larvae, the plant quality index measuring the health of the larch, and the larch budmoth. This 
memory makes the system non-ergodic, since all possible states are no longer equiprobable and certain events 
may possibly be favoured over others. The probability distribution is now skewed, since the organisms’ behaviour, 
led by different kinds of signals received at different times15–18, causes a suppression of some probabilities while 
enhancing others. Owing to the variety of factors contributing to the information content in a biological system 
at any instant of time, with memory of previous configurations being retained in the system, a Boltzmann-Gibbs 
distribution that attributes equal probabilities to all situations is no longer applicable and fails. Such systems as 
well as those with long range interactions and strong correlations are better explained with Tsallis probability 
distribution19 which introduces a parameter q that allows, depending upon its value, some probabilities to be 
suppressed and some to be enhanced. Thus the q-value would indicate how the system’s behaviour is manifested 
— whether through rare events or through common events. Tsallis’ non-extensive statistical mechanics expresses 
naturally through q-deformed numbers, with q ≠  1, the standard Boltzmann-Gibbs distribution being recovered 
in the limit q →  1.

The functional response functions in the tritrophic model which generate hyperbolic response naturally have 
the form of Jackson’s q-deformed numbers20 used by Tsallis: = = ρ

µ+ − − +
yq

y
q y

y
y1 (1 )(1 ) (1 )

 with q ≠  1 — this 
choice avoids overcounting of individuals (see Methods, eqn. (7)). Our model incorporating q-deformation of 
numbers (corresponding to the choice qy ≠  1, qz ≠  1 and qx =  1) is therefore a better and natural candidate to 
model the tritrophic system.

Results
The general behaviour is expressed in terms of equilibria: stationary states, periodic solutions, etc. depending 
upon parameter values. Our model has several equilibria (x*, y*, z*) (see Methods): (i) the stable state of the unin-
fested larch, (ii) parasitoid-free states and (iii) non-trivial equilibria which can also support periodic behaviour 
(stable limit cycles) — these produce the observed cycles in the budmoth and parasitoid populations and the 
needle lengths and are depicted in Fig. 1.

Figure 1(a,b) are reminiscent of the Tatra region where larches grow sparser than in the Alps. This leads to 
high intraspecific competition between the budmoths, or equivalently, low values for c. Cycles could then be 
sustained only when climatic conditions are very favourable for growth of the larches (large h values) and when 
the budmoth intrinsic growth rate λ is very high (see Fig. 1(a,b)). The Tatras which are under cloud cover most of 
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the time, receiving lesser sunshine than the Alps, would be characterized by low h values and hence would never 
have cyclic outreaks. Also λ, known to be strongly influenced by the plant quality index9 appears to be a distin-
guishing parameter beteeen the Alps and the Tatras We note that the other parameters are species-specific and 
can be changed only by long term factors like evolution (or some very drastic change that permanantly changes 
everything, such as forest fires or some other catastrophe). We have assumed a slow climate change which began 
towards the end of the last century; our assumption is also consistent with the observations.

Histograms of the frequencies of occurrence of the budmoth population cycles from our model and those 
generated from the budmoth outbreak data available from1 are very similar. In Fig. 2 our model is compared 
with the observed outbreaks reconstructed from tree rings data for a time-span of 1200 years1. Both histograms 
show the 9-year cycle as the predominant one followed by 8-year cycle and then a 10-year cycle. Even the relative 
frequencies are comparable. In ref. 1, a twenty five year cycle was assumed as no outbreak had occurred until 
then since 1981, and global warming (i.e., bad climatic conditions) was hypothesized as a possible reason for 

Figure 1. Limit cycles in favorable (large h values) and unfavorable (low h values) climatic conditions and 
different intrinsic growth rates λ of the budmoth. For very good climatic conditions (large h values) limit 
cycles are born at very low values of growth rate λ, while for these to occur in unfavourable conditions, a much 
higher λ is required. The amplitude of the cycle is larger for a given λ when h is high. For instance, (a,b) could 
well represent the Tatra region, with low c values (low parasitoid efficiency/large intra-specific competition 
among budmoths): limit cycles appear only for higher values of h and λ. (c–f) could represent the Alpine region 
well: with large c, and limit cycles present even for low h and λ. (a) c =  2, λ =  2, (b) c =  2, λ =  6.5, (c) c =  12, λ =  2, 
(d) c =  6, λ =  2, (e) c =  6, λ =  3, (f) c =  12, λ =  5. Other parameters (for (a–f)): α =  0.5, m =  13, qy =  1.13, qz =  1.34.
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non-occurrence or changed periodicity of the budmoth cycles. However, no outbreak has been reported yet after 
1981. Our model predicts that longer periodicities of 40 and 100 year cycles are possible (see Methods). It would 
be interesting therefore to check for outbreaks 5 years from now (if the 40 year cycle is realized) or if it occurs in 
2081 (hence confirming the 100 year cycle). Our model successfully simulates the conditions for both the Alps as 
well as for Tatra and it could be used to study the system elsewhere in the world too, where the larch is endemic.

Studies indicate that there were regime shifts in the 1980s in environmental and ecological indicators driven 
by rapid global warming21 causing a global shift of the climatic system to a warmer state in a time span of only 
a few years. Clear warming trend of the troposphere temperatures but cooler stratosphere temperatures above 
Switzerland since the 1980s have been noted22. This21,22 appears to suggest that a climatic tipping point was 
reached in the 1980s, with the climatic system now being in a different (stable) state.

Environmental changes following a climatic tipping point may affect the atmosphere, hydrosphere, biosphere, 
etc., which in turn are reflected in various ways such as changes in the home range of animals, changes in flow-
ering and sprouting times, changes in population cycles, etc. These changed conditions would be manifested as 
different phenomena in the resulting bifurcation diagrams with respect to the climate parameters. In particular, 
certain regions of the parameter space would act as repellers while some other regions would act as attractors, 
respectively creating and annihilating fixed points, changing the periodicity of the system, and taking it to a dif-
ferent state. The new stable equilibrium points would correspond to the new state where the system would now 
live in after attaining the climatic tipping point, different from the previous state of the system.

Figure 2. Relative frequency distributions of budmoth infestations return-time found using our model (in 
blue), with recorded data in ref. 1 (in red) and from Turchin’s model-2 (in (a)) and model-1 (in (b))(in green) 
(For Turchin’s models, his choice of parameter values: w =  0.17, α =  0.5, k =  250, c =  0.9, γ =  100, δ =  0.22, 
a =  2.5); for our model: (qy =  1.13, qz =  1.34, α =  0.5, c =  12, m =  13; h & s are varied from 0–1, and λ from 
0–12). (c) 2-d q-deformed models comprising of either just budmoth-larch, or budmoth-parasitoid, do not 
yield the observed dominant cycle of 9-years. On the other hand, our model clearly captures this periodicity, 
explicitly validating the requirement of a deformed, tritrophic system. Differences of our model results from the 
Alpine data could indicate parameter regimes yet to be realised or observed.
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Some of our results depicted through movies of bifurcation diagrams for the climate parameters h and s can be 
viewed in the Supplementary multimedia files linked to Fig. 3. As the movies run, varied behaviour is seen: source 
and sink-like regions (attractors/repellors) are formed, bubble creation and destruction at specific s values, different 
chaotic bands, etc., converging from either side and merging, or getting repelled away from source. These appear to 
be stability boundaries of basins in the phase space of the system, demarcating regions of differing stability. This sug-
gests that source or sink-like regions seen in the bifurcation movies may be identified with climatic tipping points.

Conclusions
By incorporating for the first time climate effects in an ecological model bearing memory of past events, we captured 
the observed consequences of climate change on pest outbreak cycles, resolving the puzzle of the occurence, absence 
and collapse of larch budmoth cycles. We suggest using bifurcation movies for identifying climatic tipping points; 
and after careful calibration of climate parameters with observed data, their use for predicting future outbreaks.

Methods
Tritrophic model discussed in the literature. Plant quality index (PQI) which quantifies the health of 
the larch is defined at any given time t by making the leaf quality Lt dimensionless in relation to the average needle 
length (15 mm): = −Qt

L 15
15

t . In ref. 8 the following tritrophic model (model-1) was proposed to explain popula-
tion cycles of the larch budmoth.
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where Nt and Pt represent respectively the population densities of the budmoth and the parasitoids, Qt the PQI, β a 
measure of the intra-specific competition within the budmoth population, for resources and space, δ the half satura-
tion constant for the plant quality index, γ controls the maximum rate of the moth population uptake upon the plant, 
a the searching rate for the parasitoids, w the wasting time of the parasitoids; the handling time of the parasitoids has 
been taken to be zero in these equations8. The parameter b stands for the number of surviving parasitoids produced 
by each parasitized moth. Here, the parasitoid-budmoth interaction is described through the Nicholson-Bailey 
model23 except that it incorporates a different functional response (Holling type-2)24 for the parasitoid which mim-
ics some of the observed data; in particular, prey consumption rises as a function of prey population density at very 
small prey population numbers, while plateauing to a constant value with increased prey availability. The interaction 
between the larch tree and the budmoth is modelled as a plant-herbivore interaction through a Ricker-like growth 
model25, and a density dependent growth rate that is proportional to the available larch needle-lengths.

In refs 7,9, a variant of this model was considered which differed only in the equation for the budmoth:
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In this model (which we refer to as model-2 of Turchin), the budmoth intrinsic growth rate is dynamically gen-
erated as the system evolves. K is the budmoth carrying capacity and r0 is the intrinsic rate of population increase 
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Figure 3. An example of (a) attracting and (b) repelling regions in the bifurcation diagrams in the 
Supplementary material movies, which suggest the presence of tipping points.
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at the first time step when the system begins to evolve. The comparison histograms are plotted for both models in 
Fig. 2. The dynamics of Turchin’s plant-budmoth and budmoth-parasitoid models (but not the tritrophic model) 
were further studied in ref. 12 by rescaling to dimensionless variables:

β βγ
β

= = = = = .x N y aP z Q m c ab, , , with ,
(6)t t t t t t

We have incorporated these transformations in our tritrophic model (equations (1–3)).

q-deformations. A generalization of numbers and functions to q-deformed ones can be illustrated by 
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where ρ, μ are as used in Equations 1–3. These q-deformed numbers and functions arise naturally with Tsallis’ 
non-extensive statistical mechanics and preserve the Legendre transform structure of thermodynamics.

Nicholson and Bailey’s model23 for the budmoth-parasitoid is recovered for qy =  1 (or yq =  y); this situation 
incorporates the assumption that the parasitoid lays eggs whenever it encounters a host – this results in over-
counting of the parasitoid number. This is avoided if qy ≠  1.
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qz =  1 +  β11. Since the parasitoid wasting time w can range from 0 to ∞ , qy varies between 1 and 2. The budmoth 
intra-specific competition can vary between 0 and ∞  but the positivity of δ restricts qz to vary between 1 and 2. 
Thus qy is related to the budmoth intraspecific competition and qz is related to the parasitoid wasting time.

Realizations of non-Gaussian17 and q-Gaussian18 distributions have been demonstrated in the literature.

Stability Analysis. The climate parameters h, s and α vary between 0 and 1, while the deformation  
parameters qz and qy vary between 1 and 2. Our system has the following equilibria (x*, y*, z*): (i) the  
uninfested larch (0, 0, z*): stable state with neither budmoth nor parasitoid, where = ±
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The stability of the equilibrium points may be determined using the Routh-Hurwitz criterion. For the 
non-trivial fixed points, the elements of the Routh array are given by:
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and  is introduced in place of zero for convenience to calculate the next entries of the array which depend upon 
its value. There are two sign changes in the first column of the Routh array — the trivial case is clearly unstable. 
Using the Routh array one also confirms that stable periodic solutions exist26,27. Stable limit cycles are generated 
via Neimark-Sacker bifurcations (Fig. 1).

Histograms in Figure 2. The histograms are obtained as follows. The parameters λ, h and s were varied from 
minimum to maximum values (h and s were varied from 0 to 1 in steps of 0.1 and λ from 1 to 12 in steps of 0.1) to 
generate the time series and FFT was performed on these.

We have taken for the plant vulnerability a constant value α =  0.5 for the larch; this could perhaps take a 
different value for some other tree species. We take a constant value for qy since we do not expect the parasitoid 
wasting time to change much unless something drastic happens to the parasitoid (such as being sprayed over by 
some pesticide). Similarly qz related to intra-specific competition is also taken to be constant. Numerically we 
have checked and verified that qz does not not affect the time period much.

It must be mentioned that although we have chosen the parameters to be constant, it is only under the assump-
tion that the effect of the environment on these parameters is negligible. It could well be that there are certain 
thresholds beyond which these effects may not be negligible. For such scenarios one may have to additionally 
introduce appropriate equations governing the evolution of the parameters. We have not considered such situa-
tions for the sake of simplicity.

For Turchin’s model-2, the budmoth intrinsic growth rate is a dynamically varying quantity. However r0, the 
growth rate at the begining of the time step is a constant; r0 is varied from 2.3 to 2.7 as in refs 7 and 9. This cor-
responds to λ varying from 1 to 9.7336 for r0 =  2.3, to λ varying between 1 and 14.4593 for r0 =  2.7. Since the 
intrinsic growth rate is generated dynamically as Qt varies from 0 to 1, several λ values are generated for each r0.

The simulation is performed as follows. First r0 takes a value. The system is allowed to run for 10,000 iterations. 
The last 1000 values are taken and FFT is performed over them, which produces the time period for these values. 
The maximum of the FFT is considered to be the dominant frequency and the corresponding time period is 
stored as an array element. If the FFT happens to be flat, the value is discarded. Sometimes the last 1000 values in 
the time series may not have any recurring point and hence the time period returned would be 999; this is also 
discarded. r0 is incremented and again a similar procedure follows. Finally an array containing, say, N entries of 
the time periods is produced. A time period of N ±  0.5 is assigned to Nth bin (years). The histograms are con-
structed by plotting the relative frequency Ri (defined as =Ri

n
N

i  where ni be the total number of occurances of N 
years), as a function of the years.

Since h and s of our model have not been calibrated with actual measurements from field work, we varied h, s 
and λ equally in all possible values, discarding those values of h, s and λ that yield no cycles, because they do not 
represent favourable conditions for cycles or they have not occurred, else there would have been a break in the 
1200 year data.

Parameter values of h =  0.7, s =  0.84 and λ =  1.23, and h =  0.76, s =  0.53 and λ =  1.13, respectively yield 40 
and 100 year cycles. These two cycles are very rare events, so that the relative frequencies of their outbreaks are 
both as small as about 10−6 and are shown in the Supplementary Information, in Fig. S4 with larger marker-size.
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In conclusion, the observation that after 1981 there have been no cycles yet can mean that there have been 
changes in the system parameters such that either the alpine system has slipped into a non-cyclic state or it has 
moved into cycles with much longer time period (40, 100 years).

References
1. Esper, J., Buentgen, U., Frank, D. C., Nievergelt, D. & Liebhold, A. 1200 years of regular outbreaks in alpine insects. Proc. R. Soc. B 

274, 671–679 (2007).
2. Baltensweiler, W. Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first 

time since 1850. Oecologia 94, 62–66 (1993).
3. Berryman, A. A. What causes population cycles of Lepidoptera? Trends Ecol. Evol. 11, 28–32 (1996).
4. Konter, O. et al. Tree-ring evidence for the historical absence of cyclic larch budmoth outbreaks in the Tatra Mountains. Trees 29, 

809–814 (2015).
5. Baltensweiler, W. & Fischlin, A. “The larch budmoth in the Alps”, in Dynamics of forest insect populations ed. Berryman, A., Ch. 17, 

331–351 (Plenum Publishing Corporation, 1988).
6. Delucchi, V. Parasitoids and hyperparasitoids of Zeiraphera Diniana and their role in population control in outbreak areas. 

Entomophaga 27, 77–92 (1982).
7. Turchin, P. et al. “Population Cycles of the Larch Budmoth in Switzerland”, in Population cycles: The case of trophic interactions, ed. 

Berryman, A., Ch. 7, 130–141 (Oxford University Press, 2002).
8. Turchin, P. et al. Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology 84, 1207–1214 

(2003).
9. Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis (Princeton University Press, 2003).

10. Baltensweiler, W., Weber, U. M. & Cherubini, P., Tracing the influence of larch-bud-moth insect outbreaks and weather conditions 
on larch tree-ring growth in Engadine (Switzerland). Oikos 117, 161–172 (2008).

11. Iyengar, S. V. & Balakrishnan, J. “q-deformations and the Dynamics of the Larch Bud-moth Population Cycles” in Nature’s longest 
threads: New Frontiers in the Mathematics and Physics of Information in Biology, eds. Balakrishnan, J. & Sreekantan, B. V., Ch. 8, 
65–80 (World Scientific Publishing Company Pte. Ltd., Singapore, 2014).

12. Jang, S. R.-J. & Johnson, D. M. Dynamics of discrete-time larch budmoth population models. J. Biol. Dyn. 3, 209–223 (2009).
13. Berryman, A. “Population cycles - causes and analysis”, in Population Cycles: The case of trophic interactions, ed. Berryman, A., Ch. 

1, 3–28 (Oxford University Press, 2002).
14. Serre, F. The dendroclimatic value of the European larch (Larix decidua Mill.) in the French maritime Alps. Tree-Ring Bull. 38, 25–34 

(1978).
15. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).
16. Edwards, A. M. et al. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1048 

(2007).
17. Schuster, F. L. & Levandowsky, M. Chemosensory responses of Acanthamoeba castellanii: visual analysis of random movement and 

responses to chemical signals. J. Eukaryot. Microbiol. 43, 150–158 (1996).
18. da Silva, P. C. A., Rosembach, T. V., Santos, A. A., Rocha, M. S. & Martins, M. L., Normal and Tumoral Melanocytes Exhibit 

q-Gaussian Random Search Patterns. PLOS One 9(9), e104253, 1–13 (2014).
19. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys 52, 479–487 (1988).
20. Jackson, F. H. A generalization of the functions Γ (n) and xn. Proc. Roy. Soc. London 74, 64–72 (1904).
21. Reid, P. C. et al. Global impacts of the 1980 regime shift. Glob. Chang. Biol. 22, 682–703 (2015).
22. Brocard, E. et al. Upper air temperature trends above Switzerland 1959–2011. J. Geophys Res: Atmospheres. 118, 4303–4317 (2013).
23. Nicholson, A. J. & Bailey, V. A. The balance of animal populations. Proc. Zool. Soc. London 1, 551–598 (1935).
24. Gotelli, N. J. A Primer of Ecology (Fourth Edition), (Sinauer Associates Inc., 2001).
25. Ricker, W. E. Stock and Recruitment. Journal of the Fisheries Research Board of Canada 11, 559–623 (1954).
26. Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 

1983).
27. Han, M. & Yu, P. Normal Forms, Melnikov Functions, and Bifurcations of Limit Cycles. (Springer, New York, 2012).

Acknowledgements
S.V.I. thanks CSIR (Council for Scientific and Industrial Research) New Delhi, India for funding. JK acknowledges 
support from IRTG 1740 (DFG).

Author Contributions
J.B. conceived and directed the study, S.V.I. performed the numerics, all authors (J.B., S.V.I. and J.K.) discussed the 
results, performed the analysis, drew conclusions, edited and prepared the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Iyengar, S. V. et al. Impact of climate change on larch budmoth cyclic outbreaks. Sci. 
Rep. 6, 27845; doi: 10.1038/srep27845 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Impact of climate change on larch budmoth cyclic outbreaks
	Introduction
	Model for the Tritrophic System with Climate Parameters
	Results
	Conclusions
	Methods
	Tritrophic model discussed in the literature
	q-deformations
	Stability Analysis
	Histograms in Figure 2

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Impact of climate change on larch budmoth cyclic outbreaks
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27845
            
         
          
             
                Sudharsana V. Iyengar
                Janaki Balakrishnan
                Jürgen Kurths
            
         
          doi:10.1038/srep27845
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep27845
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep27845
            
         
      
       
          
          
          
             
                doi:10.1038/srep27845
            
         
          
             
                srep ,  (2016). doi:10.1038/srep27845
            
         
          
          
      
       
       
          True
      
   




