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Laser-Induced Breakdown 
Spectroscopy Coupled with 
Multivariate Chemometrics for 
Variety Discrimination of Soil
Ke-Qiang Yu1,2, Yan-Ru Zhao1, Fei Liu1,3 & Yong He1,3

The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) 
coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were 
selected and their LIBS spectra were captured. Characteristic emission lines of main elements were 
identified based on the LIBS curves and corresponding contents. From the identified emission lines, 
LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal 
component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious 
cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares 
support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 
types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver 
operating characteristic (ROC) curve was used to evaluate the performance of models and the results 
demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places 
were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM 
model. The research revealed that LIBS technology coupled with chemometrics could conduct the 
variety discrimination of soil.

Soil has an extremely complex chemical elemental composition and highly diverse1,2, as it contains many con-
stituents like minerals, organic matters, living organisms, fossils, air, and water. It also includes many classes of 
organic compounds spanning a large molecular weight range and including carbohydrates, aromatics, starches, 
nitrogen-containing compounds, and fatty acids1. The physical, biological, and chemical properties of soils could 
change significantly as a result of human activities such as habitation and farming. Considering the diversity of 
soil contents, quality and usability, a systematic scientific study on the soil’s elemental composition and type is 
of great concern2,3. Detection of abundance or deficiency of soil elements and identification of soil types are the 
key points of information acquirement tools in precision agriculture4, and it also provides a theoretical basis for 
prevention of soil polluted by heavy metal and sustainable development of agriculture.

Conventionally, discrimination of soil types was mainly depended on observation of geomorphic characteris-
tics (color, grain size, appearance and other physical properties) of soil, which would be finished by professional 
staff and effected by human’s subjectivity5. Researchers demonstrated that soil fertility status and crop productiv-
ity could be considered as a basis for crop management and soil variation6. Chemical analysis, including atomic 
absorption spectrometry (AAS), X-ray fluorescence spectroscopy (XRFS), inductively coupled plasma-atomic 
emission spectrometry (ICP-AES), of elemental composition and other substances was an effective method for 
classifying different soil, which was high-cost and time-consuming.

Laser-induced breakdown spectroscopy (LIBS), also named laser induced plasma spectroscopy (LIPS) or laser 
ablation spectroscopy (LAS), a kind of atomic emission spectroscopy, has been considered to be a future “super-
star” for green chemical analysis due to its unique features2,7–11, like fast analysis time, multi-element detection in 
any kind of material (solid, liquid, and gas), high spatial resolution (at the μ m range), and the potential to carry 
out in-situ or stand-off analysis9,12,13. Relying on the unique capability, LIBS technique has witnessed tremendous 
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growth and been widely applied in variety of fields, such as environmental monitoring14,15, archaeological investi-
gations16, geological applications17, biomedical detection18,19, industrial analysis20, agriculture21–23, food24–26, and 
space exploration27,28.

At present, the calibration curve method with single band data mining and calibration free method were 
widely used for concentration measurement in LIBS analysis29. Recently, multivariate chemometrics methods 
combined with LIBS technology showed a sharp growth in the field of soil analysis. Examples of soil analyzing 
based on multivariate chemometrics mainly included predication of element concentrations in soil and clas-
sification of soil variety. For determining the elemental content, multivariate analysis methods, such as partial 
least-squares regression (PLSR), artificial neural network (ANN), support vector machine (SVM), random for-
est regression (RFR), multi-linear regression (MLR), principal component regression (PCR), standard addition 
method (SAM), were widely applied to LIBS data30–36. On the other hand, researchers developed a variety of ways 
to deal with the variety discrimination of material. In general, identification of emission lines of a significant ele-
ment or use of multiple LIBS emission lines (calculating intensity ratios of the selected lines) were the two meth-
ods for classifying the soil samples29. Moreover, multivariate analyses have been already widely applied to LIBS 
data for classification purposes37,38, such as classification of slag sample using partial least squares discriminant 
analysis (PLS-DA)33, discrimination of sedimentary rocks based SVM39, principal component analysis (PCA) 
and PLS-DA for distinguishing characteristics of the geological samples40, PCA on data of polluted soils using a 
mobile LIBS system41, rock identification using three methods of PCA, PLS-DA and soft independent modeling 
of class analogy (SIMCA)42, PCA for plastic classification43, adjusting spectral weightings (ASW) for polymer 
identification44, rock classification by remote LIBS using independent component analysis (ICA)45, hierarchical 
cluster analysis (HCA) for classifying the chicken tissue (brain, lung, spleen, liver, kidney and skeletal muscle)46, 
classification of pharmaceutical tablets based on SIMCA47, classification of toys relying on toxic elements using 
the k-nearest neighbors (KNN)48. However, few studies on variety classification of soil using LIBS coupled with 
multivariate analyses have been reported.

In the current study, LIBS technique was employed to carry out the variety discrimination of soil. Multivariate 
chemometrics method of PCA, SIMCA and LS-SVM were introduced to conduct the characteristic and discrim-
ination analysis, and then the selected characteristic spectral lines and optimal discriminant model were verified.

Results and Discussion
Overview of soil LIBS spectra. The obtained LIBS spectra curves contained more than 17,000 wavelength 
channels in a wavelength range starting at 300 nm in the ultraviolet (UV) and extending into the near-infrared 
(NIR) to 850 nm.

Figure 1 shows the original LIBS spectra of the 6 types of soil samples (GBW07410, GBW0746, GBW07447, 
GBW07454, GBW07455, and GBW07456) in 300–850 nm. It could be observed from Fig. 1 that there were simi-
lar profiles of curves of 6 soils. However, the discrepancy of 6 groups only appeared on the different LIBS spectra 
intensity. In detail, most of the valuable and high-intensity spectral lines were around the region of 300–450 nm. 
Concurrently, LIBS spectra in 450–850 nm exhibited a relatively low-intensity and stable tendency, except several 
obvious peaks around the wavelengths at 590 nm, 655 nm, 770 nm, and 820 nm.

From Fig. 1, 6 types of soil samples with similar LIBS spectra curves were attributed to their homologous 
matrix of chemical and elemental composition11,49. In order to analyze information of the LIBS spectral lines, 
the soil sample numbered GBW07410 was taken as an example to identify those spectral lines according to NIST 
Atomic spectra database and Kurucz database50. Figure 2 illustrated a typical spectrum of soil samples numbered 

Figure 1. Representative LIBS spectra curves of six types of soil samples in 300–850 nm. 
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GBW07410. Most of emission lines standing for different elements were accurately identified and labeled in cor-
responding positions.

In Fig. 2, a number of emission lines (atomic and ionic spectral lines) with different LIBS intensity were 
observed to contain the information of Al, Ca, Si, Fe, Mg, Na, Mn, Li, Ti, N, K, Ba, H, and O element. The spectral 
lines of O and N might be caused by O2 and N2 in the air and the by chemical substances in soil sample.

The identified emission lines of elements Al, Fe, Mg, Ca, Na, K, and Si in the oxide components present in the 
soil sample are listed in Table 1. These emission lines had minimal interference from other emission lines and 
provided enough LIBS intensity.

Principal components analysis (PCA) on LIBS data. Because the soil samples had different matrix 
and experiment conditions (especially the Echelle spectrometer was sensitive to temperature) changed, which 
might bring the discrepancy of LIBS data. Hence, it was necessary to conduct the LIBS data preprocessing. 

Figure 2. The ownership of main emission lines in LIBS spectrum of soil sample numbered GBW07447 in  
(a) 300–400 nm, (b) 400–600 nm, and (c) 600–850 nm (I: atomic spectral lines and II: ionic spectral lines).

Elements Emission lines (nm)

Al I 308.21, I 309.27, II 394.40, II 396.15

Fe I 356.54, I 357.02, I 358.12, I 404.58, 406.36, I 407.17, 
I 427.18, I 430.79, I 432.58, I 438.35, I 440.48

Mg I 382.94, I 383.83, I 517.27, I 518.36

Ca
II 315.89, II 317.93, II 373,69, II 393.37, II 396.85,  
I 422.67, I 443.50, I 445.48, I 588.88, I 610.28,  
I 612.22, I 616.22, I 643.91, I 646.26, I 649.38

Na I 588.99, I 589.59

K I 766.49, I 769.90

Si I 390.55, I 413.09

Table 1.  The emission lines and corresponding spectral regions of the main elements in soil.
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Normalization had a widely application in preprocessing of the LIBS data. Area normalization is a kind of nor-
malization; its purpose is to “scale” samples in order to get all data on approximately the same scale. So, in order 
to compensate for spectral changes caused by matrix effects and variation in experimental conditions, all spectra 
were normalized by using area normalization method, accomplishing an equal area under the curve for each 
spectrum51,52.

In this study, the acquired LIBS spectra included 17,173 wavelength channels in 300–850 nm. Classification 
using all the spectra could enhance the calculation time and increase the requirements of equipment performance 
for LIBS measurements. Hence, removal of highly superfluous variables and selection of few crucial emission 
lines of elements were of significance for multivariate analysis.

First, PCA was employed to transform the full spectra into several principal components (PCs) and the load-
ing plot was executed to select the important emission lines. The first seven PCs explained 96.19% of the varia-
tions of original all spectral information and their loading plot are shown in Fig. 3. It could be observed that most 
emission lines of main elements (Al, Fe, Mg, Ca, Na, K, and Si) offered the relatively large loading coefficients, 
which were in alignment with the labeled lines in Fig. 3.

Finally, the emission lines with high signal-to-noise ratio (SNR) would be selected to conduct the further 
analysis. Based on above, a total of 7 characteristic lines (marked in Fig. 3) at Si I 390.55 nm, Al I 394.40 nm, Fe I 
404.58 nm, Mg I 518.36 nm, Na I 588.99 nm, Ca II 393.36 nm, and K I 766.49 nm, which contained LIBS spectral 
peaks of Si, Al, Fe, Mg, Na, Ca, and K of each soil class, were chosen from the identified emission lines. Then, a 
matrix with 180 ×  7 (LIBS spectra ×  lines) was obtained to implement the next analysis.

Next, another PCA was carried out using the LIBS spectra at the selected characteristic lines to display any 
variation among the 6 types of soil sample. The first 2 PCs explained 94.49% (PC-1: 65.69% and PC-2: 28.80%) 
of the variations among total spectral information, and their score and loading plots are shown in Fig. 4. Each 
point in the scatter plot (score plot) represented one spectrum. Fig. 4(a) showed that an apparent clustering could 
produce with PC-1 and PC-2. The LIBS spectra of soil were distinguished in the side of PC-1, while some spectra 
tended to be on the positive side of PC-2. Meanwhile, there was a slight cross between the classes of GBW07446, 
GBW07447, GBW07454, and GBW07455. It was worth noticing that there was an obvious difference between 6 
groups of soil samples.

Figure 4(b) showed the loading plot of the PCA, which also revealed the importance of the analyzed var-
iables. It could be concluded that Ca and Na elements gave expression to dominating contribution on PC-1 
and PC-2, respectively. For fully explaining the scatter of score plot, loading plot of Fig. 4(b) and Table 4 were 
combined to analyze the scatter distribution of 6 types of soils. The GBW07454 and GBW07447 classes with rel-
atively high concentration of Ca element were located in the positive side of PC-1; and the GBW07410 class with 
relatively low content of Ca was situated in the negative side of PC-1. In addition, the classes of GBW07446 and 
GBW07447 containing relatively high concentration of Na element distributed in the positive side of PC-2; and 
classes (GBW07410, GBW07456, GBW07455, and GBW07454) with similar content of Na were scattered in neg-
ative side of PC-2. The classes of GBW07446, GBW07447, and GBW07455 exhibited some slightly intersections, 
which was attributed to their approximate content of Al and K.

Although some differences could be observed in Figs 1 and 4, chemometrics methods were employed to 
extract and concentrate the connotative information for further discriminating soils53.

Soft independent modeling of class analogy (SIMCA). For SIMCA analysis, SPXY (sample set parti-
tioning based on joint x-y distances) method proposed by Galvao et al.54, was first implemented to divide the data 
matrix (180 ×  7) of LIBS spectra and corresponding labeled classes of each spectrum into a calibration set with 
120 LIBS spectra and a predication set with 60 LIBS spectra. SIMCA was applied to calibration set of the LIBS 
spectra. As mentioned principle of SIMCA, a separate PCA was performed for every class of soil, resulting in 6 
individual PCAs. For the predication of the “unknown” LIBS spectra, these PCA models were applied with 4 PCs 
each, except for the model of class GBW07454, where 3 PCs were used. Then, a SIMCA model was established 
using the LIBS spectra of the calibration set. Putting the data of predication set into the SIMCA model could 
compute the forecast results.

The result of SIMCA classification and predication of unknown class samples is shown in Fig. 5. Nearly all 
the LIBS spectra of soil in the predication set were correctly classified, except 6 ones were misclassified. 3 LIBS 
spectra of GBW07446 and GBW07456 were identified as the class of GBW07447, respectively. This resulted in 

Figure 3. The loading plot of first seven PCs from PCA on full spectra of six soil samples. 
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an overall correct classification accuracy of 90.00% (54 vs. 60), which indicated that those selected emission lines  
(Si I 390.55 nm, Al I 394.40 nm, Fe I 404.58 nm, Mg I 518.36 nm, Na I 588.99 nm, Ca II 393.36 nm, and K I 
766.49 nm) had a reliable discrimination power for distinguishing 6 groups of soils.

Least-squares support vector machine (LS-SVM). Next, LS-SVM methodology was employed to 
establish models based on the calibration set (same to SIMCA model) for discriminating the 6 classes of soils. 
To obtain an excellent classification performance, two factors of regularization parameter γ  and the RBF kernel 
function parameter σ 2 in LS-SVM classifier have to be optimized. The parameter γ  could determine the tradeoff 
between maximizing the model performance and minimizing model complexity, and the σ 2 was the bandwidth 
and implicitly defined the nonlinear mapping from input space to some high-dimensional feature space55–57. 
Based on LS-SVM model, its classified results of predication set (60 spectra) are summarized in a confusion 
matrix presented in Table 2. The numbers of correctly classified samples were listed on the diagonal, and the 
off-diagonal was the misclassification. Meanwhile, the sum of the numbers in each column was the number of 

Figure 4. The score (a) and loading (b) plots of first two PCs from PCA on LIBS spectra at the selected 
emission lines of six soil samples.

Number GBW07410 GBW07446 GBW07447 GBW07454 GBW07455 GBW07456

GBW07410 13 0 0 0 0 0

GBW07446 0 12 0 0 0 0

GBW07447 0 0 4 0 0 0

GBW07454 0 0 0 10 0 0

GBW07455 0 0 0 0 6 0

GBW07456 0 0 0 0 0 15

Table 2.  Results of LS-SVM model for classifying LIBS spectra of soil samples in predication set. Rows: 
actual classification of samples, and columns: classification by LS-SVM model.

Figure 5. Bar plot of SIMCA model for the predication set of 60 predicated LIBS spectra. Predicted 
class IDs were as follows: 1, GBW07410; 2, GBW0746; 3, GBW07447; 4, GBW07454; 5, GBW07455; and 6, 
GBW07456.
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samples examined for each type. From Table 2, all the analytical spectra of soil samples in 6 classes were cor-
rectly discriminated to their own groups, resulting in a correct classification rate of 100%. The results suggested 
that LIBS technology had a potential to discriminate different types of soil combined with proper chemometrics 
method, demonstrating the capability of chemometrics-LIBS in field of spectroanalysis.

Evaluation of discrimination models. The results of 2 models could be concluded that LS-SVM method 
provided more accurate discrimination results compared with the SIMCA model. Then, receiver operating 
characteristics (ROC) curve was employed to evaluate the performance of 2 models. From the ROC curves 
of SIMCA and LS-SVM discriminant models, the parameters of “area” and “std” in SIMCA ROC curve were 
0.93695 and 0.008533, while those factors were 1 and 0 in LS-SVM ROC curve. The results indicated that the 
discrimination capability of LS-SVM was superior to SIMCA model. This might arise from the fact that LS-SVM 
as a nonlinear method has an ability to overcome the variability in LIBS measurements and showed better per-
formance in handling high-dimensional LIBS data sets compared to conventional linear method38, like SIMCA 
in this study.

Verification of the selected emission lines and discrimination model. In order to verify the relia-
bility of the selected emission lines and the accuracy of discrimination model, 8 representative types of soils were 
collected from different places in China. Those soils included: cinnamon soil in Luoyang city of Henan province 
(HN-LY), moisture soil in Taian city of Shandong province (SD-TA), lime concretion black soil in Zhumadian 
city of Henan province (HN-ZMD), terra rossa in Changde city of Hunan province (HN-CD), paddy soil in 
Hanzhong city of Shaanxi province (SX-HZ), cinnamon soil in Jinzhong city of Shanxi province (SX-JZ), red soil 
in Hangzhou city of Zhejiang province (ZJ-HZ), yellow soil in Fuyang city of Zhejiang province (ZJ-FY). After 
removing impurities, all the soil samples were taken to the lab and air-dried (or oven-dried at 60 °C). Then, a 
series of processes of grinding, sieving (100 mesh), weighing, about 3 g soil power was pressured into pellet using 
a presser as mentioned in section of Soil samples in Materials and methods. Based on the same parameters of 
LIBS device and data acquisition mode (detailed in section of experimental device and LIBS data acquisition in 
Materials and Methods), a total of 440 LIBS spectra (8 soil classes, 55 analytical spectra per classes) were recorded 
in the database. Then, the obtained LIBS spectra at 7 characteristic lines (Si I 390.55 nm, Al I 394.40 nm, Fe I 
404.58 nm, Mg I 518.36 nm, Na I 588.99 nm, Ca II 393.36 nm, and K I 766.49 nm) were selected, forming a matrix 
of 440 ×  7 (LIBS spectra ×  lines) to be used for the further analysis.

To explore the discrepancy of 8 soils, PCA was adopted on the obtained matrix of LIBS spectra. PCA had 
compressed most variance of spectra into the first 3 PCs, which explained 99.10% variance of original data. 
Figure 6 shows the score plot of the first 3 PCs. It could be seen that most points of LIBS spectra of each type were 
clustered together and the boundaries of different types were relatively clear. So, it could be concluded that there 
was an obvious differentiation in 8 types of soil and the selected 7 characteristic lines were valid to distinguish 
the different soils.

LS-SVM model was also developed for discriminating the 8 types of soils. The acquired spectral matrix was 
split into a calibration set (290 spectra ×  7 emission lines) and a predication set (150 spectra ×  7 emission lines) 
by the SPXY method with the ratio of 2:1. The sample labels in the database, which were integer varying from  
1 to 8, were considered as the class labels used for producing models. Using the spectra in the calibration set, the 
classification performances approached 100% based on the LS-SVM. To assess the performance of this model, 
ROC curve of the LS-SVM classifiers displayed the parameters “area” and “std” of 1 and 0, respectively. It could 
be seen that the LS-SVM model obtained excellent discriminant performances. The above reliable discrimina-
tion results indicated that it was feasible to discriminate the LIBS spectra of different types of soils by means of 
LS-SVM methodology.

Figure 6. The score plot of first three PCs from PCA on LIBS data of eight types of soil samples in different 
places. 
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Conclusions
This research focused on investigating the characterization of soil utilizing LIBS technology combined with che-
mometrics methods. Based on the features of soil’s LIBS curves and PCA on full spectra, several characteristic 
lines were identified. In order to simplify the discriminant model, 7 emission lines (Si I 390.55 nm, Al I 394.40 nm, 
Fe I 404.58 nm, Mg I 518.36 nm, Na I 588.99 nm, Ca II 393.36 nm, and K I 766.49 nm) with high SNR were 
selected to conduct the further next analysis. PCA was carried out on the LIBS spectra at the 7 selected emis-
sion lines. An obvious cluster was observed and analyzed. Then, SIMCA and LS-SVM discrimination models 
were established, and their performances were evaluated by ROC curve. Results demonstrated that the LS-SVM 
model was the optimal model for discriminating the different types of soils. Moreover, the 7 selected emission 
lines and the LS-SVM model were applied to the other 8 types of soil samples, which also achieved outstanding 
discrimination results. To improve the extendibility of our application, more samples and a diversified analytical 
data set should be taken into account to obtain enough spectrum data in further investigations. It could provide 
a theoretical guidance for establishing agrotype system and farmland management.

Materials and Methods
Experimental device and LIBS data acquisition. A typical LIBS system illustrated in Fig. 7 was 
assembled in our lab using the following main components: a Q-switched Nd: YAG laser (Vilte-200, Beamtech 
Optronics Co. Ltd., Beijing), a high resolution Echelle spectrometer (Mechelle 5000, Andor Technology) coupled 
to an intensifier charge coupled device (ICCD) camera (iStar DH340T-18F-03, Andor Technology), a delay gen-
erator (DG645, Stanford Research Systems, USA), an X-Y-Z moving stage (Zolix Instruments Co. Ltd., Beijing), 
and a personal computer (PC) with the Andor SOLIS software (Version 4.25, Andor Technology).

The experiments were finished in air. Before collecting LIBS data, the system was warmed up for 0.5 h to ensure 
the thermal stability of the instruments. Then, the setup was corrected by a Hg: Ar lamp (Ocean Optical, HG-1, 
Hg-Ar lines 253–922 nm) for wavelength calibration and a Deuterium-Halogen light source (DH-2000-BAL, 
Germany) for intensity calibration.

After that, the Q-switched Nd:YAG laser operating with 1 Hz repetition frequency and 7 ns pulse duration 
emitted a laser pulse with energy of 80 mJ at wavelength of 532 nm. Through the reflection of a mirror, the laser 
beam was focused vertically onto the soil sample surface with a 100 mm focal distance lens. Then, LIBS emis-
sion was collected by the light collector and delivered by optical fiber to the Echelle spectrometer (200–975 nm, 
195 mm focal lengths, F/7, resolution of λ /∆ λ  6000) equipped with a time-gated ICCD camera (1024 ×  1024 pix-
els, 13.6 ×  13.6 μ m2/pixel). The delay generator provided a proper delay time to eliminate the initial continuum 
emission. In order to obtain fresh locations to be ablated, the soil pellets were placed on the sample holder which 
could be moved automatically in X, Y and Z directions by stepper motors. For all measurements, the gate width 
and exposure time of the ICCD were set to 2 μ s and 0.01 s, respectively. A gate delay of 2.5 μ s, which was the gap 
between the laser pulse and the start of gating time, was chosen. In addition, microchannel plate (MCP) gain was 
fixed at 500.

For each spectrum, an accumulation of 20 laser pulses per site was collected to increase the signal-to-noise 
ratio (SNR). To minimize the influence of sample heterogeneity and laser energy fluctuations52, 180 shots were 
performed from 9 sites (9 spectra were obtained) for each sample. Then, the spectra of each 3 sites were aver-
aged into an analytical spectrum, and 3 representative LIBS spectra could be acquired from one soil sample. 
Meanwhile, 30 LIBS spectra were recorded from each class (10 samples per class). According to the preceding 
process, a total of 180 LIBS spectra were gathered from 6 classes of soil samples.

Soil samples. In this research, the certified reference material (CRM) of soil powder sample (grain size 
is less than 0.075 mm) was provided by National Institute of Metrology, P. R. China. The selected soil samples 
included 6 classes: black soil (GBW07410) from Heilongjiang province, sandy soil (GBW07446) and saline-alkali 
soil (GBW0747) from Inner Mongolia Autonomous Region, loess (GBW07454) from Shaanxi province, sedi-
ment (GBW07455) from the Huaihe River in Anhui province, and the other sediment (GBW07456) from the 

Figure 7. A representative LIBS analytical system setup for soil analysis. 
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Changjiang River in Jiangsu province. The certified elemental compositions of the main oxide material (SiO2, 
Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, K2O) in CRM of 6 soils are presented in Table 3 (other elemental compo-
sitions are not listed). The certified elemental compositions were measured by the Institute of Geophysical and 
Geochemical Exploration of the Chinese Academy of Geological Science using X-ray fluorescence (XRF), induc-
tively coupled plasma-mass spectrometry (ICP-MS), atomic absorption spectroscopy (AAS), etc.

Meanwhile, the concentrations of main elements (Si, Al, Fe, Mg, Ca, Na, K) in oxide were calculated and listed 
in Table 4.

To obtain the homogeneous surface of the soil for laser ablating, the soil powder was made into cylindrical 
pellets using a manual pellet presser (FY-24, SCJS Co., LTD, Tianjin, China). In detail, the applied load of the 
presser was 15 Mpa lasting for 4 minutes. Each soil pellet had a weight of 3 g, a diameter of 25 mm, and a thickness 
of 3 mm.

Multivariate chemometrics methods. PCA is an unsupervised technique (classes or composition of the 
samples in the data matrix is not involved) and has a wide application in reducing the dimension of multivariate 
data sets39,58. The principle and application of PCA could be found in the paper reported by the literature of1,59,60. 
Meanwhile, the score plot of PCs is used to reveal the features of variable distribution61, and the loading plot of 
PCs can exhibit the importance of different variables.

Least-squares support vector machine (LS-SVM), an optimized version of the standard SVM, is a powerful 
methodology in pattern recognition and function estimation55,56,62–64. In this research, radial basis function (RBF) 
kernel function was adopted to establish the LS-SVM model, it was convenient to detect the effect of independent 
variable (X) on dependent variable (Y) based on analysis of linear regression coefficient. The details of LS-SVM 
could be found in the literatures of 56,62,63.

Soft independent modeling of class analogy (SIMCA), an application of PCA, is a supervised technique for 
classification30,48,59,65. In this model, the acquired data set is subdivided corresponding to class affiliation, and 
then a separate PCA model is performed independently for each of those classes. Meanwhile, numbers of PCs are 
selected individually for the corresponding classes. Samples with unknown class membership are then assigned 
to a class by projecting them into each subspace. Then, the residual variances of unknown samples are compared 
to judge which categories the sample belongs to66,67.

Lastly, confusion matrix with an advantage to obtain true values and false values from the result68 could be 
used to list the discrimination results. Meanwhile, receiver operating characteristics (ROC) curve, a useful tool 
for organizing classifiers and visualizing their performance69–71, is employed to assess the performance of dis-
crimination models.

Software tools. The processes of statistical calculations and data analyses were carried out by “The 
Unscrambler X10.1” (CAMO PROCESS AS, Oslo, Norway) and MATLAB 7.8 (R2009a) software (The 
MathWorks, Inc., Natick, MA, USA). In addition, Origin Pro 8.0 SR0 (Origin Lab Corporation, Northampton, 
MA, USA) software was used to design graphs. All processes were run on a PC (CPU: Intel Core i3-3220 
@3.30GHz, RAM: 4.00GB) under Windows 7.
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