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Coding accuracy on the 
psychophysical scale
Lubomir Kostal & Petr Lansky

Sensory neurons are often reported to adjust their coding accuracy to the stimulus statistics. The 
observed match is not always perfect and the maximal accuracy does not align with the most frequent 
stimuli. As an alternative to a physiological explanation we show that the match critically depends on 
the chosen stimulus measurement scale. More generally, we argue that if we measure the stimulus 
intensity on the scale which is proportional to the perception intensity, an improved adjustment in the 
coding accuracy is revealed. The unique feature of stimulus units based on the psychophysical scale is 
that the coding accuracy can be meaningfully compared for different stimuli intensities, unlike in the 
standard case of a metric scale.

The efficient coding hypothesis1 states that neuronal responses are adjusted, through evolutionary and adaptive 
processes, to optimally encode such stimulus statistics that matches the sensory environment2–4. The statistics of 
many natural stimuli differs, over short timescales, from the average global distribution, and typically, the limited 
neural coding range does not cover the wide range of possible stimuli values5–7. The efficient coding hypothesis 
therefore predicts that neurons adapt their coding properties to the local stimulus distribution8. In particular, 
the coding accuracy should increase near the most commonly occurring stimuli in order to minimize the overall 
decoding error and to maintain the efficient representation of the environment. Such situation is reported in the 
auditory coding of the sound intensity5,6,9,10, of the interaural level differences11 and time differences12, but also 
in the neural coding in the primary visual cortex7 and primary somatosensory cortex13. The coding accuracy is 
commonly evaluated by means of the stimulus-reconstruction paradigm14, that is, by answering how well may 
the ideal observer determine the stimulus value from the noisy neuronal response. It is assumed that the inverse 
of the Fisher information approximates the minimal mean squared error9,15–21. Higher Fisher information reflects 
higher coding accuracy so that a more precise representation of stimuli is possible.

The goal of this short paper is to point out to a potentially problematic aspect of aligning the maximal coding 
accuracy with the most frequent stimuli. Our reasoning follows from the fact that the stimulus values are quanti-
fied by choosing some convenient, but otherwise arbitrary, system of measurement units. For example, the sound 
intensity is typically expressed as the sound pressure level in decibels (dB SPL). The same stimulus intensity can 
be equivalently expressed in terms of the effective pressure in Pascals (Pa)22. The seemingly arbitrary choice of 
stimulus scale, however, has a non-trivial and significant impact on the coding precision. As demonstrated by 
Kostal and Lansky23, a non-linear relationship between different units (such as between the sound pressure and 
the sound level) may affect the position of maximal coding accuracy. Here we demonstrate the paradoxical conse-
quences of the stimulus scale change on both the coding accuracy and the known stimulus distribution simultane-
ously. We show that the match between high coding accuracy regions and most frequent stimuli regions depends 
on the choice of the measurement unit. Second, we attempt to resolve this problem by arguing that the natural 
system for stimulus quantification is given by the scale linearly proportional to the perception intensity24,25. As an 
illustration, we employ the classical Riesz’s psychophysical scale for the sound intensity26 to reveal the expected 
coding accuracy adaptation even for low pressure levels in the experimental data of Watkins and Barbour9.

Methods
The psychophysical scale describes the perceptual intensity, ψ, as a function of the stimulus intensity I24,25. The 
empirical finding known as Weber’s law27,28 states that the smallest noticeable increment in perception, Δψ, 
remains constant if the relative stimulus increment (also known as Weber’s factor) is also constant,
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As suggested later by Fechner29, Weber’s law effectively sets the scale for the perceived stimulus intensity since 
ΔI/I is proportional to Δψ. By integrating Eq. (1) we obtain the well known Fechner’s law, stating that the per-
ceived intensity varies as28.

ψ = k I
I

log ,
(2)0

where k is a proportionality factor and I0 some reference value.
Subsequent investigations found that Eq. (1) holds neither generally nor exactly24,30 across different sensory 

modalities. In particular, Weber’s factor for human sound intensity discrimination was found to satisfy26,

∆
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Here I is the basal sound intensity in W/m2, ΔI is the minimum perceptible difference, S∞ is the value ΔI/I 
approaches at high intensities, S0 >  S∞ is the value of ΔI/I at the threshold of hearing and r is a parameter, approx-
imately r =  1/2. Weber’s factor in Eq. (3) is no longer constant, but decreases rapidly to a plateau with increasing 
intensity I. Since the sound intensity and the sound pressure are related by the acoustic impedance 
=


Z 400 N.s.m−3 as22
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the following differential equation follows from Eq. (3)
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provided that the derivative dψ/dp is a good approximation to Δψ/Δp. The solution to Eq. (5) is
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which is proportional to log(c +  p). Setting the values26 S∞ =  0.2, S0 =  1 and arbitrary p0 =  20 μPa (the actual ref-
erence level is of little importance here) we obtain

ψ = . + +p c10 log(0 00008 ) , (7)

where = .


c 94 3 so that p =  0 Pa yields ψ =  0 for convenience. Eqution (7) determines Riesz’s scale (in arbitrary 
units) of sound pressure values, correcting the inadequate Fechner’s law in Eq. (2) for small sound intensities 
(pressures). In other words, the value of ψ can be used to measure the sound intensity on the scale which is line-
arly related to the perception intensity. The standard sound pressure level scale L (given in dB SPL) is essentially 
equivalent to Fechner’s law, since due to Eq. (4) it holds22
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p
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The Eqs (7) and (8) are approximately proportional to each other for sufficiently high pressure levels (Fig. 1).

Results
The coding accuracy as a function of the stimulus intensity is significantly affected by the choice of the measure-
ment scale23. The question is whether the coding accuracy adaptation to the stimulus distribution (as observed, 
e.g., in the experiments5,6,9), is preserved under the change of stimulus units.

The Fisher information IF(P) as a function of the sound pressure, and the Fisher information IF(ψ ) for the 
sound intensity measured on Riesz’s scale from Eq. (7), are related as

ψ
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Similarly, one may additionally use Eq. (8) to relate, e.g., IF(ψ) and IF(L). The transformation rule in Eq. (9) is 
well known and can be derived directly from the definition of the Fisher information by using the chain rule for 
derivatives15. Similarly, the stimulus probability density function f(·) satisfies31

ψ
ψ= .f p

p
f( ) d

d
( )

(10)

Therefore it follows that any visual alignment between the values of the coding accuracy and the stimulus 
distribution depends crucially on the choice of units. Even though the square root of the Fisher information 
transforms analogously to Eq. (10), the potential match between the peaks of IF  and f is not preserved under the 
stimulus scale change because IF  and f are often related non-linearly. In fact, it can be shown rigorously that also 
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the global match between the profiles of IF  and f is not preserved under the stimulus scale change32, unless the 
stimulus probability density function is exactly proportional to the square root of the Fisher information (known 
as the Jeffreys prior33).

We illustrate how a specific choice of the stimulus units improves the experimentally observed adaptation 
of the coding accuracy to the stimulus distribution. We argue that the stimulus scale proportional to the actual 
perception intensity (the psychophysical scale) is the natural reference frame under which the coding accuracy 
should be evaluated.

Neurons in the auditory system are reported to adjust their rate-intensity functions in order to improve cod-
ing accuracy over high-probability stimulus regions5,9,10. The match is not perfect for low sound intensities and a 
positive bias of maximal coding accuracy towards higher intensities is reported. For example, in the experiment 
of Watkins and Barbour9, the sound level distribution was set to be uniform over -15 dB SPL to 105 dB SPL, with 
an added 20 dB-wide plateau of high-probability stimulus region (Fig. 2A, filled area). At every 100 ms during the 
experiment a new sample was drawn from the distribution to set the amplitude of a pure tone, with its frequency 
matching the characteristic frequency of the studied neuron (primary auditory cortex of marmoset monkey). 
The dynamic rate-level function was measured and the coding accuracy (the Fisher information) was calculated 
(Fig. 2A, solid line), see Watkins and Barbour9 for more details. The coding accuracy adaptation was determined 
for four different positions of the plateau, centered at 5, 25, 45 and 65 dB SPL respectively (Fig. 2A–D). The peak 
coding accuracy does not align with frequently occurring low sound intensities (Fig. 2A).

The same experimental data evaluated on Riesz’s scale yield far better alignment of coding accuracy with 
stimuli statistics, especially for low intensities (Fig. 2E). On the other hand, the existing match for high levels 
(Fig. 2C,D) is preserved (Fig. 2G,H) due to the similarity of both scales for high intensities (Fig. 1). The match 
between the stimulus statistics and the coding accuracy can be quantified by the ratio of the maximal Fisher 
information in the high-probability region to the global maximum of the Fisher information. For the four exam-
ined cases of the plateau centered at (5, 25, 45, 65) dB SPL we obtain the following values of this ratio: (0.46, 
0.96, 1, 1) on the pressure level scale, and (1, 1, 1, 1) on Riesz’s scale. Note that the non-uniform shape of the 
high-probability regions results from the transformation rule for the probability density function.

Discussion
The described adaptation of neural coding precision to the local stimulus distribution results in a more efficient 
representation of the environment5,9. However, the investigation of coding strategy should also take the actual 
perception intensity into the account11. In all likelihood, coding precision expressed by employing the psycho-
physical scale (such as Riesz’s scale) is more useful and natural than when evaluated in the standard metric system 
(such as dB SPL). The reasoning is that Riesz’s scale is linear in the true perception intensity as described in the 
Methods section. Consequently, the smallest noticeable increment in perception Δψ is proportional to a fixed 
value on Riesz’s scale, and this value is constant for all stimulus intensities. Hence the unique feature of a stimulus 
unit based on the psychophysical scale is that the coding accuracy evaluated in such units can be meaningfully 
compared for different stimuli intensities – unlike the metric scale case. Even if coding precision varies with the 
stimulus intensity on the metric scale substantially, these variations might be immaterial provided that the actual 
difference in sensation falls within the smallest noticeable increment.

Note that if Weber’s law was valid for the sound intensity perception, the dB SPL scale would correspond to 
the exact psychophysical scale. From this point of view the shifted-logarithm in Eq. (7) represents a seemingly 

Figure 1. Relationship between two possible measurement scales for the sound intensity. The 
psychophysical scale by Riesz as a function of the sound pressure level (solid) is significantly non-linear only for 
low sound intensities. The identity function is shown for comparison (dashed).



www.nature.com/scientificreports/

4Scientific RepoRts | 6:23810 | DOI: 10.1038/srep23810

Figure 2. Maximal coding accuracy aligns with stimulus statistics only on the proper stimulus 
measurement scale. Colored area indicates the stimulus probability density function, solid line is the coding 
accuracy (Fisher information). (A–D) Original data reconstructed from Watkins and Barbour9 show weak 
adaptation of the coding accuracy to frequent low-intensity sounds (A) on the sound level scale (dB SPL). The 
alignment improves as the high-probability stimulus region moves towards higher sound intensities (B,C).  
(E–H) The same data plotted on Riesz’s scale of sound intensities (in arbitrary units) reveal that the coding 
accuracy is actually perfectly adjusted for all four stimulus distributions.
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negligible correction. We have shown, however, that the difference between Riesz’s and sound pressure level scales 
affects the coding accuracy adjustment substantially. Ries’z correction, ψ ∝  log(const. +  I), to the purely loga-
rithmic Fechner’s law in Eq. (2) has a long history and is more fundamental and general, going beyond the case 
of the sound intensity perception. See34–36 for a detailed account. For example, the equation for Riesz’s scale as a 
function of the sound pressure in Eq. (7) is formally identical to the psychophysical mel scale37, which describes 
the perception intensity for sound frequency. Both the mel and Riesz’s psychophysical scales thus follow Weber’s 
law for large stimuli values only.

Our message, however, reaches beyond the topic of psychophysical scales and auditory neuroscience. We 
argue that the coding accuracy is generally a relative quantity, with respect to chosen units, a fact whose conse-
quences seem to have been neglected in the experimental research. The expected matching of stimulus statistics 
with the coding accuracy is thus not absolute and does not hold in different unit systems. The coding accuracy 
reflects the spread of estimated stimulus values, which is affected not only by the stochastic nature of neural 
responses but also by the arbitrarily chosen unit system for stimulus quantification. In addition, we believe that 
coding accuracy should generally be evaluated on the scale which is linearly proportional to the internal rep-
resentation of the stimulus, i.e., proportional to the actual perception intensity.

Finally, it is worth noting that different ways to asses the neural coding efficiency were developed over the 
decades. A substantial part of the literature employs Shannon’s measure of information38 to determine the abso-
lute scale on neuronal performance39. By treating the neuronal system as an information channel, and by maxi-
mizing the mutual information between stimuli and responses, one obtains the optimal stimulus distribution, as 
for example in40–44. Under the assumption of vanishing response variability, the optimal stimulus distribution is 
proportional to IF

45–51, which is known to be invariant under coordinate transformations33. Heuristically, one 
may view this result as providing support for the idea of high coding precision matching high probability stimulus 
regions40. Unlike the local method of Fisher information described in this paper, however, the information theory 
determines the complete (global) form of the stimulus distribution.
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