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Weighted Uncertainty Relations
Yunlong Xiao1,2, Naihuan Jing1,3, Xianqing Li-Jost2 & Shao-Ming Fei2,4

Recently, Maccone and Pati have given two stronger uncertainty relations based on the sum of 
variances and one of them is nontrivial when the quantum state is not an eigenstate of the sum of the 
observables. We derive a family of weighted uncertainty relations to provide an optimal lower bound 
for all situations and remove the restriction on the quantum state. Generalization to multi-observable 
cases is also given and an optimal lower bound for the weighted sum of the variances is obtained in 
general quantum situation.

In Kennard’s formulation1 of Heisenberg’s uncertainty principle2, for any single quantum particle, the product of 
the uncertainties of the position and momentum measurements is at least half of the Planck constant (see also 
the work of Weyl3)
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Later Robertson4 derived the uncertainty principle for any pair of observables A and B with bounded 
spectrums:
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where ΔA2 =  〈 A2〉  −  〈 A〉 2 is the variance of operator A over the state |ψ〉 . Eq. (2) can be derived from a slightly 
strengthened inequality, the Schrödinger uncertainty relation5
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where = −Â A A I  and I is the identity operator.
All these inequalities6,7 can be trivial even if A and B are incompatible on the state of the system |ψ〉 , for 

instance, when |ψ〉  is an eigenstate of either A or B. Despite of this, the variance-based uncertainty relations pos-
sess a clear physical meaning and have variety of applications in the theory of quantum information processing 
such as entanglement detection8,9, quantum spin squeezing10–14, and quantum metrology15–17.

Recently Maccone and Pati have presented two stronger uncertainty relations18 based on the sum of variances 
and their inequalities are guaranteed to be nontrivial when |ψ〉  is not a common eigenstate of A and B. Though 
there are many formulations of the uncertainty relation in terms of the sum of entropic quantities19,20, Maccone 
and Pati’s relations capture the notion of incompatibilty except when the state is an eigenstate of the sum of the 
operators. Their first relation for the sum of the variances is

ψ ψ∆ + ∆ ± + ± =⊥⩾A B i A B A iB[ , ] : , (4)MP
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which is valid for any state |ψ⊥〉  orthogonal to the state of the system |ψ〉  while the sign should be chosen so that 
± i〈 [A, B]〉  is positive. Denote the right-hand (RHS) of Eq. (4) by MP1. Their second uncertainty relation also 
provides a nontrivial bound even if |ψ〉  is an eigenstate of A or B:
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where ψ ψ∝ + − ++
⊥ A B A B( ) )A B  is a state orthogonal to |ψ〉 . It is easy to see that the RHS MP2 of 

Eq. (5) is nontrivial unless |ψ〉  is an eigenstate of A +  B. Moreover, based on the same techniques, Maccone and 
Pati also obtained an amended Heisenberg-Robertson inequality:
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which reduces to Heisenberg-Robertson’s uncertainty relation when minimizing the lower bound over |ψ⊥〉 , and 
the equality holds at the maximum. The goal of this paper is to give a new method of measuring the uncertainties 
to remove the restriction on the bounds such as MP2 .

Actually, both the entropic uncertainty relations and the sum form of variance based uncertainty relations 
do not suffer from trivial bounds. Generalizing Deutsch’s entropic uncertainty relation21, Maassen and Uffink22 
used certain weighted entropic uncertainties to derive a tighter bound. Adopting a similar idea to the uncer-
tainty relations based on Rényi entropy, we propose a deformed uncertainty relation to resolve the restriction 
of Maccone-Pati’s variance based uncertainty relation. i.e. the new uncertainty relation will provide a nontriv-
ial bound even when the state is an eigenvector of A +  B. Moreover, we show that the original Maccone-Pati’s 
bound is a singular case in our general uncertainty relation and the usual sum of variances can be extracted from 
weighted sum of uncertainties. Our work indicates that it seems unreasonable to assume a priori that observa-
bles A and B have equal contribution to the variance-based sum uncertainty relation. Our family of uncertainty 
relations are proved to possess an optimal bound in various situations according to the state of the system. In 
particular, all previous important variance-based sum uncertainty relations are special cases of our weighted 
uncertainty relation.

We remark that there is another approach of measurement uncertainty23,24 to the uncertainty principle which 
deals with joint measurability and measurement-disturbance. Our methods can also be used to generalize the 
joint measurability, also known as preparation uncertainty23, and to obtain a tighter bound.

Results
We first consider the weighted uncertainty relations based on the sum of variances of two observables, then gener-
alize it into multi-observable cases. All observables considered in the paper will be assumed to be non-degenerate 
on a finite-dimensional Hilbert space. We will show that our weighted uncertainty relations give optimal lower 
bounds and all previous important variance-based sum uncertainty relations are special cases of the new weighted 
uncertainty relation.

Theorem 1 For arbitrary observables A, B and any positive number λ, we have the following weighted uncertainty 
relation:
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which is valid for all  ψ ⊥1  and  ψ ⊥2  orthogonal to |ψ〉 . If − 2i〈 [A, B]〉  is negative then one changes its sign in Eq. (7) 
to ensure the RHS is positive.

The equality condition for Eq. (7) holds if and only if  ψ ψ∝ +⊥ ˆ ˆA iB( )1  while ψ λ ψ∝ +⊥ ˆ ˆA iB( )2 . 
Denote the RHS of Eq. (7) by 1 . Clearly MP1  as a special case of 1 , as  =λ→lim MP1 1 1. When λ varies, one 
obtains a family of uncertainty relations and the lower bounds 1 provide infinitely many uncertainty relations 
with weighted contributions for measurements A and B. This will be advantageous when the ratio 〈 A〉 /〈 B〉  is not 
close to 1.

See Methods for a proof of Theorem 1.

Theorem 2 For arbitrary observables A, B and any positive λ, we have the following weighted uncertainty relation:

λ λ ψ ψ λ ψ λ ψ+ ∆ + + ∆ + + − =−
+
⊥ − ⊥⩾A B A B A B(1 ) (1 ) ( ) : , (8)A B
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2

where the equality holds if and only if  ψ λ ψ∝ −⊥ ˆ ˆA B( ) .
Denote the RHS of Eq. (8) by 2 . Note that the lower bound 2 is a nontrivial generalization of MP2 , as the 

latter is a proper bound unless |ψ〉  is an eigenstate of A +  B. Even when |ψ〉  is an eigenstate of A +  B, the new 
uncertainty bound 2  is also nonzero except for λ =  − 1 (Equation (8) still holds for any nonzero real λ). This 
means that in almost all cases the lower bound provided by Eq. (8) is better except for λ =  − 1 and it compensates 
for the incompatibility of the observables. Obviously the bound MP2  is a special case of 2 by canceling 
|〈 ψ|(λA −  B)|ψ⊥〉 |2 when λ =  1.

See Methods for a proof of Theorem 2.
Both lower bounds of the weighted uncertainty relations can be combined in a single uncertainty relation for 

the sum of variances:

Theorem 3 For arbitrary observables A, B and any positive number λ , we have the following weighted uncertainty 
relation:

 λ λ+ ∆ + + ∆ .− ⩾A B(1 ) (1 ) max( , ) (9)2 1 2
1 2
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Theorems 1 and 2 provide a strengthened uncertainty relation and remove the limitation of the Maccone-Pati 
bounds. In fact, in the case when |ψ〉  is an eigenstate of A or B, both Heisenberg-Robertson’s and Schrödinger’s 
uncertainty relations are trivial, nevertheless our lower bound remains nonzero unless |ψ〉  is a common eigenstate 
of A and B, but this is essentially equivalent to the classical situation. It is also easy to see that if |ψ〉  is an eigenstate 
of A ±  iB, |〈 ψ|A ±  iB|ψ⊥〉 |2 in MP1 will vanish while the term ψ ψ λ ψ λ ψ− + −⊥ − ⊥A iB A iB( ) ( )1

2 1
2

2 
in 1  is still nonzero unless λ =  1. Moreover, MP2 will become null when |ψ〉  is an eigenstate of A +  B, but at the 
same time 2  is still nontrivial.

Besides having a nontrivial bound in almost all cases, our weighted uncertainty relations can also lead to a 
tighter bound for the sum of variances. We give an algorithm to extract the usual uncertainty relation when one 
of Maccone-Pati’s relations becomes trivial. Choose two λi: λ1 >  1 >  λ2 >  0 and enter our uncertainty relations 
Eq. (7). Denote λ λ= + ∆ + + ∆−b A B(1 ) (1 )i i i

2 1 2, then we have for k =  1, 2
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which always provides a nontrivial lower bound for the sum of variances even when the state is an eigenvector of 
A +  B. This clearly shows that the weighted uncertainty relations can help recover the uncertainties and remove 
the restriction placed in Maccone-Pati’s uncertainty relation. Furthermore, taking the limit of λi →  1 one has that 
for k =  1, 2

λ∆ + ∆ .λ→⩾A B 1
2

lim ( ) (11)k
2 2

1

For simplicity we refer to the RHS of Eq. (10) or the derived bound in Eq. (11) as our lower bound of the sum of 
variances, which usually is a multiple of our bound from the weighted sum (see Fig. 1). In Fig. 1 one will see that 
our bound 1

2 2  derived in Eq. (11) is alwasy tighter than the Maccone-Pati bound MP2. In Eq. (14) we will use 
another method to show that our bound is tighter than Maccone-Pati’s bound.

As an example to show our lower bound is tighter, we consider the spin one system with the pure state 
ψ| 〉 = | 〉 + | 〉θ θcos 0 sin 2

2 2
, θ π<⩽0 2 . Take the angular momentum operators25,26 with ħ =  1:
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Direct calculation gives
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Figure 1. Comparison of our bound 1
2 2  with Maccone-Pati’s bound MP2 for operators Jx and Jy in a spin 

one system. The top solid line is variance sum uncertainty (ΔJx)2 +  (ΔJy)2, the middle dotted line is 1
2 2 , and the 

bottom dashed one is MP2.
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To compare Macconne-Pati’s uncertainty bound MP2 in Eq.  (5) with our bound 1
2 2  in Eq.  (8) (see 

also Equation (11)), setting λ =  1 we get 

∆ + ∆ .⩾J J( ) ( ) 1
2x y

2 2
2

Also we have (ΔJx)2 +  (ΔJy)2 =  1 and ψ ψ= + =+
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2

2 1
2

 . Suppose |ψ⊥〉  =  a|0〉  +  b|1〉  +  c|2〉  with 
|a|2 +  |b|2 +  |c|2 =  1. Using 〈 ψ|ψ⊥〉  =  0 we get
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On the other hand, if we set a =  0, b =  1, c =  0 then  = = ∆ + ∆ >J J1 ( ) ( )x y MP
1
2 2

2 2
2. Clearly our bound  

1
2 2 is tighter than MP2. The comparison is shown in Fig. 1.

We can also consider (ΔJy)2 +  (ΔJz)2, and direct computation shows θ θ∆ + ∆ = + −J J( ) ( ) sin siny z
2 2 1
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 . Choose |ψ⊥〉  =  |1〉  then  θ θ= − +sin sin1
2 2
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2 . Therefore
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Apparently our bound 1
2 2 is better than MP2 . Figure 2 illustrates the comparison.

The bound   λ= ( )2 2  is a function of λ. To analyze when λ( )2  best approximates (1 +  λ)ΔA2 +  (1 +  λ−1)
ΔB2, we define the error function λ λ λ λ= + ∆ + + ∆ −−f A B( ) (1 ) (1 ) ( )2 1 2

2 . At an extremal point λ0, the 
bound λ( )2  is closest to the weighted sum and one of the following two conditions must hold. Either f ′ (λ0) does 
not exist or λ λ λ′ = ∆ − ∆ − ′ =−f A B( ) ( ) 00

2
0

2 2
2 0 . If ′ = ∆ − ∆A B(1)2

2 2, then λ =  1 is the extremal point 
and we call it an equilibrium point of the uncertainty relation. In this case both observables A and B give the same 
contribution to the uncertainty relation. Usually λ =  1 is not an extremal point, so in general observables A and B 
contribute unequally to the uncertainty relation.

To see an example of this phenomenon, let’s consider again the quantum state  ψ| 〉 = | +θcos 0
2

θ π θ π| 〉 < < ≠θsin 2 (0 2 , )
2

 and the angular momentum operators. Choose |ψ⊥〉  =  |1〉 , then

λ λ λ λ λ θ= + ∆ + + ∆ − =− −f J J( ) (1 ) (1 ) ( ) sin , (13)y z
2 1 2

2
1 2

while λ λ θ= − <′ −f ( ) sin 02 2 , hence f(1) >  f(λ), ∀ λ >  1 (for fixed θ). So for this |ψ〉 , Jy and Jz never contribute 
equally to the uncertainty relation, which explains the need for a weighted uncertainty relation. Figure 3 shows 
the error function f(λ) and  λ( )2 . In general f is a function of both λ and θ, finding its extremal points involves a 
PDE equation. For higher dimension quantum states or multi-operator cases, the situation is more complicated.

In general, all variance-based sum uncertainty relations can mix in weights to provide an  
optimal lower bound. To compare the variance-based sum uncertainty relation with weighted  
uncertainty relation, take the lower bound 2  for a more detailed analysis: set λ  =   1 then 

ψ ψ ψ ψ∆ + ∆ |〈 | + | 〉| + |〈 | − | 〉|+
⊥ ⊥⩾A B A B A B( )A B

2 2 1
2

2 1
2

2, it is not only a typical variance-based sum  

Figure 2. Comparison of our bound 1
2 2 with Maccone-Pati’s bound MP2 for operators Jy and Jz in a spin 

one system. The top solid curve is variance sum uncertainty (ΔJy)2 +  (ΔJz)2, the middle dotted curve is 1
2 2 and 

the bottom dashed one is MP2 .
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uncertainty relation, but also provides a better lower bound than Maccone-Pati’s lower bound MP2. Moreover, 
this lower bound can be further improved by a mixture of weights.

Corollary 1 For arbitrary observables A, B and any positive number λ, we have the following weighted uncer-
tainty relation:

ψ
λ λ
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λ λ λ λ
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 is a state orthogonal to |ψ〉 .

Through Eq. (14), it is easy to see ψ ψ ψ ψ|〈 | + | 〉| + |〈 | − | 〉|+
⊥ ⊥A B A B( )A B

1
2

2 1
2

2 is the special case of λ =  1 
and, a fortiori, the lower bound with weights is tighter than the standard one.

See Methods for a proof of Corollary 1.
One can study the general weighted sum of variances xΔA2 +  yΔB2 based on the special weighted sum (1 +  λ)

ΔA2 +  (1 +  λ−1)ΔB2. Theorem 4 details the relationship between the general and special weighted sum uncer-
tainty relations.

Theorem 4 For arbitrary observables A, B and x, y such that xy(x +  y) >  0, the following weighted uncertainty rela-
tion holds.

∆ + ∆
+









.⩾x A y B xy

x y
x
y (15)

2 2
2

See Methods for a proof of Theorem 4.
According to Deutsch21, uncertainty in the result of a measurement of observables A and B should be quanti-

fied as an inequality with certain lower bound. One can seek such a bound in a general form ψA B( , , )  which 
may not simply be a sum or product by weighted uncertainty relations. For instance, we take 
 ψ| 〉 = +

−∆
∆A B e( , , )

A
B1

1 , its bound can be extracted from Theorem 4.
Remark 1 For |ΔA| <  1 and arbitrary observable B, + ∆

−∆
Bexp( )

A
1

1
 has a nonnegative lower bound:
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n
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0

2
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See Methods for a proof of Remark 1.
We now generalize the weighted uncertainty relations to multi-operator cases. To emphasize our point, we 

recall the trivial generalization from Maccone-Pati’s lower bound.

Lemma 1 For arbitrary observables Ai (i =  1, … , n), we have the following variance-based sum uncertainty relation:

Figure 3. Error function Eq. (13) of Uncertainty Relation. The figure shows that the difference between 
uncertainty relation and its bound for fixed form  λ( )2  becomes less when λ increases, which means that better 
estimation may be obtained through larger λ.
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∑ ψ ψ∆ ∆ = |〈 | | 〉|⊥⩾A
n

S
n

S1 1 ,
(17)i

i S
2 2 2

where  ψ ψ∝ −⊥ S S( )S  is a unit state perpendicular to |ψ〉  while = ∑S Ai i. The RHS of Eq. (17) is nonzero 
unless |ψ〉  is an eigenstate of = ∑S Ai i.

See Methods for a proof of Lemma 1.
Notice that |ψ〉  can be an eigenstate of  ∑ Ai i without being that of any Ai, in which case the lower bound is still 

trivial. However, the bound is not optimal and sometimes becomes trivial when the observables are incompatible 
in the general situation. We now introduce generalized weighted uncertainty relations to deal with these 
drawbacks.

Theorem 5 For arbitrary n observables Ai and positive numbers λi, we have following sum uncertainty relation:
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 and  ψ ⊥0  is any unit state ⊥ |ψ〉 .

See Methods for a proof of Theorem 5.
The RHS 0  of (18) depends on the choice of λi. By the same trick and fixing the (i, j)-term of Eq. (18), we 

arrive at

Theorem 6 For arbitrary n observables Ai and positive numbers λi, we have following sum uncertainty relation:
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where  ψ⊥ij  is orthogonal to |ψ〉 , ψ ψ∝ −⊥ S S( )S , and  ψ ψ| 〉 ∝
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Clearly, 0  and all the RHS ij of Eq. (19) comes form Theorem 5. and Theorem 6. respectively can be com-
bined into a single uncertainty relation for variances:

Theorem 7 For arbitrary n observables Ai and any positive numbers λi, we have the following sum uncertainty 
relation:

∑
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λ
∆ .
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When setting λi =  λj, the RHS of Eq.  (20) is still stronger than Eq.  (17), since it keeps all the terms 

ψ∑
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λ

λ< ‖ ˆ ˆ ‖⩽ ⩽ A Ai j n i j1
2i

j

j

i
 appearing in Eq. (18). We remark that a default choice of |ψ⊥〉  in Eq. (19) is 

by Vaidman’s formula27,28: ψ ψ= − ∆⊥ S S S( ) /S . We can select suitable λi such that max( , )ij 0   is non-
trivial. They are zero if and only if |ψ〉  is a common eigenstate of all observables, which happens only when the 
system is equivalent to the classical situation. In this sense our weighted uncertainty relation can handle all pos-
sible quantum situations.

If two or more terms in the RHS of these equality are replaced by the Cauchy-Schwarz’s inequality simultane-
ously, the corresponding lower bound can not be bigger than the one by replacing just one term. In other words, 

 max( , )ij 0  is better than the lower bounds by changing more than one term. The LHS of Eq. (20) has only 
positive coefficients since λi are positive.

Discussions
There are several physical motivations and mathematical considerations behind our method. First, to remove the 
restriction of one of Macconne-Pati’s uncertainty relations (i.e. when ψ is an eigenstate of A +  B) and recover the 
lower bound for Δ2(A) +  Δ2(B), we consider a perturbation of A and B, or rather, λ′ = +A A1 , 

λ′ = + −B B1 1  (λ >  0). Then

λ λ∆ ′ + ∆ ′ = + ∆ + + ∆ .−A B A B( ) ( ) (1 ) ( ) (1 ) ( ) (21)2 2 2 1 2

This means that the lower bound of the sum of variances can be obtained by scaled observables. Actually with 
the given measurement data of the variances, it is easy to compute the lower bound using our new formula. This 
is in line with the general strategy of perturbation method, just as many singular properties can be better studied 
through deformation.
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Secondly, the idea of the weighted sum or average is similar to well-known techniques used in both statistical 
mechanics and mathematical physics. Through the weighted averages one may know better about the whole 
picture in an unbiased way.

Thirdly, the weighted sum is actually a q-deformation of the original sum of variances. In fact, the sum 
2Δ2(A) +  2Δ2(B) is deformed to

λ λ∆ + ∆−A B[2] ( ) [2] ( ),1/2 2 1/2 2

where [2] =  λ1/2 +  λ−1/2 is the quantum integer of 2 used widely in quantum groups, Yang-Baxter equations, and 
quantum integrable systems or statistical mechanics. The opposite phase factors λ±1/2 in front of the variances 
reflect a balance of the weighted distribution.

Last but not the least, the usual sum of variances can be solved from our weighted sums (see Eqs (10–11)), and 
the derived bound is proved to be tighter than the original bound of Maccone-Pati’s bound.

Conclusions
The Heisenberg-Robertson and Schrödinger uncertainty relations have been skillfully generalized by Maccone 
and Pati in order to capture the concept of incompatibility of the observables A and B on the quantum system |ψ〉 . 
Although other generalizations of Maccone-Pati’s relations have been considered29 by refining the RHS, our gen-
eralization provides a non-trivial lower bound in all quantum situations. One of Maccone-Pati’s relations becomes 
trivial when |ψ〉  is an eigenstate of A +  B. To remove the restriction of their relation, we have proposed a weighted 
uncertainty relation to obtain a better lower bound for the sum of the variances. The parametric uncertainty rela-
tions form a family of Bohr-type inequalities and take into account of individual contribution from the observa-
bles so that they are nontrivial in almost all cases except when |ψ〉  is a common eigenstate of all observables. In 
particular, Maccone-Pati’s uncertainty relations are special cases of our deformed weighted uncertainty relations. 
Furthermore, we have shown that the sum of variances can be extracted from our weighted sums and our derived 
bound is always tighter than Maccone-Pati bound MP2 (see discussion before Equation (11)). We have also 
derived weighted uncertainty relations for multi-observables and the lower bound has been proved to be optimal 
in all quantum cases.

Methods
Proof of Theorem 1 We start by recalling the parallelogram law in Hilbert space. Let A and B be two observables 
and |ψ〉  a fixed quantum state. One has that

α ψ α ψ∆ + ∆ = + + −ˆ ˆ ˆ ˆA B A B A B2 2 ( ) ( ) , (22)2 2 2 2

for any |α| =  1. Since ψ∆ + = +ˆ ˆA B A B( ) ( ) , ψ∆ − = −ˆ ˆA B A B( ) ( ) , we can obtain Eq. (4) when 
α =  ± i and Eq. (5) when α =  1. Note that MP2 may be zero even if A and B are incompatible. For example this 
happens if |ψ〉  is an eigenstate of A +  B. Our idea is to consider a perturbation of A +  B, or A and B to fix this. We 
consider the generalized parallelogram law in Hilbert space in the following form:

λ λ α ψ λ λ α ψ+ ∆ + + ∆ = − + +− −ˆ ˆ ˆ ˆA B A B A B(1 ) (1 ) ( ) ( ) , (23)2 1 2 2 1 2

where λ is a nonzero real number and α ∈  with modulus one. In fact, the identity can be easily verified by 
expanding Δ(A −  αB)2 and λ−1Δ(λA +  αB)2 using ψ ψ∆ = 〈 | | 〉ˆA A( )2 2

.
We now derive the weighted uncertainty relation in the form (1 +  λ)ΔA2 +  (1 +  λ−1)ΔB2. Since 

ψ ψ− | = − 〈 〉 + + | 〉ˆ ˆ ˆ ˆA iB i A B A iB( ) 2 [ , ] ( )
2 2

, combine with Cauchy-Schwarz inequality completes the 
proof.

Proof of Theorem 2 If we set α =  − 1 in Eq. (23), then we get the result directly.
Proof of Corollary 1 For λ >  0, set λ λ′ = + ′ = + −A A B B1 , 1 1  (see Equation (21)), so

 λ ψ
λ λ

ψ

λ ψ
λ
λ λ

ψ

= 〈 |
+

′ +
+

′| 〉

+ 〈 |




 +
′ −

+
′





| 〉

− +
⊥

−
−

⊥

A B

A B

( ) 1
1

1

1

1
1

1
,

(24)

A B2 1

2

1
1

2

where the RHS λ ′ ′A B( , , )2  satisfies that  λ ′ ′ ′ ′λ ⩾A B A Bsup ( , , ) (1, , )2 2  which implies that the weighted 
uncertainty relation is better than the ordinary sum: λ∆ ′ + ∆ ′ ′ ′ ′ ′λ⩾ ⩾A B A B A B( ) ( ) sup ( , , ) (1, , )2 2

2 2  . 
Followed by parameter transformation, we get Eq. (14).

Proof of Theorem 4 For arbitrary weighted uncertainty relation xΔA2 +  yΔB2, denote = >+f x y( , ) 0x y
xy

, then

∆ + ∆ = ∆ + ∆ .x A y B
f x y

f x y x A f x y y B1
( , )

[ ( , ) ( , ) ]
(25)

2 2 2 2
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Set λ = − =f x y x( , ) 1 x
y
, then λ−1 =  f(x, y)y −  1. Thus

λ λ∆ + ∆ = + ∆ + + ∆ .− ⩾x A y B
f x y

A B
f x y

x y1
( , )

[(1 ) (1 ) ] 1
( , )

( / )
(26)

2 2 2 1 2
2

Proof of Remark 1 Since

∑ ∑
− ∆

+ =





∆ +






∆














∆ + ∆






∆

=

∞

=

∞
⩾

A
e A

n
B A

n
B1

1
( ) 1

!
1
2

1
!

,
(27)

B

n

n
n

n
n

n

0 0
n n

with x =  1, =y
n
1

!n
, λ = n!n  and = +f x y( , ) x y

xy
, we get

λ λ∆ + ∆ = + ∆ + + ∆ +− −
⩾A

n
B

f x y
A B n n1

!
1

( , )
[(1 ) (1 ) ] ( ! 1) ( ! ),

(28)
1 1

2n
n n

thus

∑
− ∆

+




 +





 .

∆

=

∞
⩾

A
e n

n
1

1
( ! )

2( ! 1) (29)
B

n

n

0

2
n

n



The right-hand is a positive lower bound of uncertainty relation + ∆
−∆

Bexp( )
A

1
1

.

Proof of Lemma 1 We recall Maccone-Pati’s lower bound MP2 using a different method.
Note that ∆ ∆ ∆ + ∆⩽A B A B2 2 2 and ∆ + ∆ + ∆⩽A B A B( ) , therefore ∆ + ∆ ∆ +⩾A B A B( )2 2 1

2
2. The 

physical meaning is that the total ignorance of an ensemble of quantum states is less than or equal to the sum of 
individual ignorance. This means that the sum of uncertainties obeys the convexity property30:

∑ ∑∆










∆ .
= =

⩽A A
(30)i

n

i
i

n

i
1 1

Let = ∑S Ai i. It follows from Eq. (30) that

∑ ψ ψ∆ ∆ = |〈 | | 〉|⊥⩾A
n

S
n

S1 1 ,
(31)i

i S
2 2 2

where ψ ψ∝ −⊥ S S( )S  is a unit state perpendicular to |ψ〉 .

Proof of Theorem 5 Using the generalized parallelogram law and Bohr’s inequality31–36, we obtain the following 
relation:

∑ ∑
λ
λ

ψ
λ
λ

λ

λ
ψ∆ = | +






−






| 〉

= <

ˆ ‖ ˆ ˆ
⩽ ⩽

A S A A ,
(32)i j

n
i

j
i

i j n

i

j
i

j

i
j

, 1

2 2

1

2

where  = ∑S Ai
n

i, = −Ŝ S S  and λ1, … ,λn are positive real numbers. Combining with Cauchy-Schwarz ine-
quality, we derive Eq. (18).
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