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Synchronization of phase 
oscillators with frequency-
weighted coupling
Can Xu1,2,3, Yuting Sun2,3, Jian Gao2,3, Tian Qiu4, Zhigang Zheng1 & Shuguang Guan4

Recently, the first-order synchronization transition has been studied in systems of coupled phase 
oscillators. In this paper, we propose a framework to investigate the synchronization in the frequency-
weighted Kuramoto model with all-to-all couplings. A rigorous mean-field analysis is implemented 
to predict the possible steady states. Furthermore, a detailed linear stability analysis proves that 
the incoherent state is only neutrally stable below the synchronization threshold. Nevertheless, 
interestingly, the amplitude of the order parameter decays exponentially (at least for short time) in this 
regime, resembling the Landau damping effect in plasma physics. Moreover, the explicit expression 
for the critical coupling strength is determined by both the mean-field method and linear operator 
theory. The mechanism of bifurcation for the incoherent state near the critical point is further revealed 
by the amplitude expansion theory, which shows that the oscillating standing wave state could also 
occur in this model for certain frequency distributions. Our theoretical analysis and numerical results 
are consistent with each other, which can help us understand the synchronization transition in general 
networks with heterogenous couplings.

Synchronization in dynamical systems of coupled oscillators is one important issue in the frontier of nonlinear 
dynamics and complex systems. This study provides insights for understanding the collective behaviors in many 
fields, such as the power grids, the flashing of fireflies, the rhythm of pacemaker cells of the heart, and even some 
social phenomena1–4. Theoretically, the classical Kuramoto model with its generalizations turn out to be para-
digms for synchronization problem, which have inspired a wealth of works because of both their simplicity for 
mathematical treatment and their relevance to practice5,6. A latest review of Kuramoto model in complex network 
is presented in7.

Recently, the first-order synchronization transition in networked Kuramoto-like oscillators has attracted 
much attention. For instance, it has been shown that the positive correlation of frequency-degree in the scale-free 
network, or a particular realization of frequency distribution of oscillators in an all-to-all network, or certain 
special couplings among oscillators, etc, would cause a discontinuous phase transition to synchronization8–26. In 
particular, our recent work27 analytically investigated the mechanism of the first-order phase transition on star 
network. We revealed that the structural relationship between the incoherent state and the synchronous state 
leads to different routes to the transition of synchronization. Furthermore, it has been shown that the general-
ized Kuramoto model with frequency-weighted coupling can generate first-order synchronization transition in 
general networks28,29. In ref. 30, the critical coupling strength for both forward and backward transitions, as well 
as the stability of the two-cluster coherent state, have been further determined analytically for typical frequency 
distributions.

In this paper, we present a complete framework to investigate the synchronization in the frequency-weighted 
Kuramoto model with all-to-all couplings. It includes three separate analyses from different angles, which together 
presents a global picture for our understanding of the synchronization in the model. First, a rigorous mean-field 
analysis is implemented where the possible steady states of the model are predicted, such as the incoherent state, 
the two-cluster synchronous state, and the traveling wave state. It is shown that in this model the mean-field 
frequency is not necessarily equal to 0. Instead, the non-vanishing mean-field frequency plays a crucial role in 
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determining the critical coupling strength. Second, a detailed linear stability analysis of the incoherent state is 
performed. Also, the exact expression for the critical coupling strength is obtained, which is consistent with the 
results of the mean-field analysis, and keeps the same form for general heterogenous couplings31,32. Furthermore, 
it has been proved that the linearized operator has no discrete spectrum when the coupling strength is below a 
threshold. This implies that in this model the incoherent state is only neutrally stable below the synchronization 
threshold. Interestingly, numerical simulations demonstrate that in this neutrally stable regime predicted by the 
linear theory, the perturbed order parameter decays to zero and its decaying envelope follows exponential form 
for short time. Finally, a nonlinear center-manifold reduction (see the recent development of this theory in33) to 
the model is conducted, which reveals the local bifurcation mechanism of the incoherent state near the critical 
point34. As expected, the non-stationary standing wave state could also exist in this model with certain frequency 
distributions. Extensive numerical simulations have been carried out to verify our theoretical analyses. In the 
following, we report our main results, both theoretically and numerically.

Results
The mean-field theory. We start by considering the frequency-weighted Kuramoto model28,30, in which the 
dynamics of phase oscillators are governed by the following equations
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where K denotes the coupling strength, and ωi is the natural frequency of the ith oscillator. Without loss of gen-
erality, the natural frequencies {ωi} satisfy certain density function g(ω) that is assumed to be symmetric and 
centered at 0 throughout the paper. The most important characteristic of this generalized Kuramoto model 
is to introduce a frequency weight to the coupling, which leads to heterogeneous interactions in networks. 
Equation (1) exhibits a transition to synchronization as the coupling strength K increases above a critical thresh-
old Kc. Typically, the collective behavior in Eq. (1) can be characterized by the order parameter
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Here, η is the average complex amplitude of all oscillators on the unit circle. R is the magnitude of complex ampli-
tude characterizing the level of synchronization, and Θ  is the phase of the mean-field corresponding to the peak 
of the distribution of phases. When K is small enough, R(t) ≈  0 characterizing the incoherent state in which the 
phases of oscillators are almost randomly distributed. As K increases, usually a cluster of phase-locked oscillators 
appear, characterized by an order parameter 0 <  R(t) <  1. Then the system is in the synchronous (coherent) state 
where the phase-locked oscillators coexist with the phase-drifting ones.

One central issue in the study of synchronization is to identify all the possible asymptotic coherent states of the 
system as the coupling strength K increases. To this end, the self-consistence method turns out to be effective. In 
the following, we conduct theoretical analysis to Eq. (1) based on this method.

Substituting Eq. (2) into Eq. (1), we obtain the dynamical equation of the mean-field form

θ ω ω θ= + (Θ − ). ( ) K R sin 3i i i i

We assume that the mean-field phase Θ  rotates uniformly with frequency Ω , i.e., Θ (t) =  Ω t +  Θ (0). Without 
loss of generality, Θ (0) =  0 after an appropriate time shift. In the rotating frame with frequency Ω , we introduce 
the phase difference

ϕ θ= − Θ, ( )4i i

and Eq. (3) can be transformed into

ϕ ω ω ϕ= − Ω − ( )
KR sin 5i i i i

in the rotating frame. It should be pointed out that Ω  =  0 when the coupling form is uniform and g(ω) is even and 
unimodal. However, for more general cases, any asymmetry of the system, such as asymmetric frequency distri-
bution, or asymmetric coupling function (phase lag or time delay), or asymmetric coupling strength (heterogene-
ous coupling or time varying coupling), etc, will cause Ω  ≠ 0. Therefore, there is no guarantee that Ω  in Eq. (5) is 
necessarily equal to 0. Actually, there are several macroscopic characteristic frequencies for all oscillators, for 
example, the average frequency of oscillators ∫ω ω ω ω= ( )

−∞

∞ g d , the mean-field frequency Ω , and the 

mean-ensemble frequency (or effective frequency) θ= ∑ =
f ens N i

N
i

1
1

35,36.
Since we are interested in the steady coherent states of the system, Eq. (5) should be discussed in two situations 

corresponding to the phase-locked oscillators and the drifting ones, respectively. On the one hand, when 
ω ω− Ω ≤KRi i , Eq. (5) has solution of fixed point, i.e., ϕ =


0i , which leads to

ϕ
ω
ω

=
− Ω

,
( )KR
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i

i

corresponding to the phase-locked oscillators entrained by the mean-field. On the other hand, for those drifting 
oscillators, ω ω− Ω >KRi i . Taking into account both the phase-locked and the drifting oscillators, the order 
parameter in Eq. (2) can be rewritten as
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where H(x) is the Heaviside function. In the thermodynamical limit N →  ∞, the summation over the frequency 
should be replaced by the integration. As a result, the contribution of the phase-looked oscillators to the order 
parameter R reads
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In contrast to the phase-locked oscillators, the drifting oscillators could not be entrained by the mean-field. In 
the thermodynamic limit N →  ∞, Eq. (1) is equivalent to the following continuity equation as a consequence of 
the conservation of the number of oscillators, i.e.,

ρ
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0 9

Here ρ θ ω θ( , , )t d  gives the fraction of oscillators of natural frequency ω which lie between θ and (θ +  dθ) at 
time t with the appropriate normalization condition
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and 2π period in θ. Then the stationary distribution of the drifting oscillators in the rotating frame could be 
obtained explicitly as (∂ρ/∂t =  0).
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is a normalization constant. It is easy to obtain that for drifting oscillators
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Equation (13) shows that the drifting oscillators have no contributions to the real part of R. However, their 
contributions to the imaginary part of R should not be neglected. Substituting Eqs (8–14) into Eq. (7), the closed 
form of self-consistence equations take the following form. For the real part of R,
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and for the imaginary part of it
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Equation (16) is called as the phase balance equation35,36. Equations (15 and 16) together provide a closed equa-
tion for the dependence of the magnitude R and the frequency Ω  of the mean field on K.

We notice that Ω  =  0 is always a trivial solution of Eq. (16), but it may not be the only solution. There may be 
more than one value for Ω  that satisfies the phase balance equation. Considering g(ω) =  g(− ω), a pair of Ω  with 
opposite sign might emerge. Define α =  KR ≥  0 and x =  (ω −  Ω )/ω, Ω  ≠ 0, Eq. (15) can be expressed as
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For the case of α >  1, to avoid divergency of Eq. (17), the only choice is Ω  =  0, and Eq. (15) is reduced as
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which exactly corresponds to the two-cluster synchronous state in ref. 30. For the case of α <  1, the solution of 
Eqs (16) and (17) can be solved numerically, which corresponds to the traveling wave state. In such a state, the 
mean-field amplitude R keeps stationary, whereas the mean-field frequency Ω  differs from the mean of the nat-
ural frequencies. In particular, in the limit case α →  0+, the critical coupling Kc for the onset of synchronization 
reads

π
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Ω (Ω )
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where Ω c is the critical mean-field frequency. Thus, following the analysis of Eq. (19), we can conclude that Ω c =  0 
means Kc →  ∞, which is not supported by numerical simulation. By Taylor expansion of Eq. (16), we find that Ω c 
satisfies the following balance equation
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where the symbol P means the principal-value integration within the real line. As an example, Table 1 shows 
the balance eq. (20), the critical mean-field frequency Ω c, and the critical coupling strength Kc with respect to 
different frequency distributions where the θ is the Heaviside function,  a and g equals to 1 respectively. All these 
analytical results were supported by the previous numerical simulations30.

The linear stability analysis. The analysis of the mean-field theory above reveals four macroscopic steady 
states, including the incoherent state (R =  0), the traveling wave state (Ω  ≠ 0, 0 <  α <  1), and the two-cluster syn-
chronous states (Ω  =  0, α >  1), respectively. However, a thorough stability analysis to every possible solution has 
not been performed due to the limitation of the mean-field method. In the following, we conduct a detailed linear 
stability analysis to the incoherent state because its instability usually signals the onset of synchronization. In 
particular, we will show that the critical coupling strength for synchronization can be alternatively obtained via 
the linear operator theory.

The continuum limit of the order parameter, i.e., Eq. (2), is rewritten as
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where “*” denotes the complex conjugate of η(t). Let
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be the nth Fourier coefficient of ρ θ ω( , , )t , then Z0(t, ω) =  1 and Zn satisfies the following differential equations
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Table 1.  Summary of the frequency distributions, the balance equations, the critical mean-field 
frequencies Ωc, and the critical coupling strength Kc. From top to bottom: the uniform distribution, the 
triangle distribution, the parabolic distribution, and the Lorentzian distribution.
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From Eq. (21), it is easy to verify that the order parameter η(t) is the integral of Z1(t, ω) with the frequency density 
function g(ω), and the higher Fourier harmonics have no contribution to the order parameter. Since the incoher-
ent state corresponds to the trivial solution ≡Z 0n  for = , , n 1 2 , to study its stability we can consider the 
evolution of a perturbation away from the incoherent state. In this spirit, Eq. (24) can be linearized around the 
origin as
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Here   is the operator defined as
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Where q(ω) is a function in the weighted Lebesgue space, and   is defined as
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From Eq. (26), it is obvious that the higher Fourier harmonics are neutrally stable to perturbation. Hence, the 
key is to study the spectrum of Eq. (25). Following ref. 37, Eq. (25) has continuous spectrum on the whole imag-
inary axis. For the discrete spectrum, we assume that the perturbation of the first Fourier coefficient has the form 

ω( , ) ∝ λZ t e t
1 . Then the self-consistent eigenvalue equation Eq. (25) for the operator   takes the form
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where λ is the complex eigenvalue of   except for those points iω. Notice that Eq. (29) relates implicitly the cou-
pling strength K with the eigenvalue λ. Since the real part of the eigenvalue λ determines the stability of the 
incoherent state, we rewrite Eq. (29) into two equations by letting λ =  x +  iy, i.e.,
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From Eq. (30), we see that x, i.e., the real part of λ, can never be negative, otherwise K <  0, which makes no phys-
ical sense. Hence, the incoherent state in model (1) cannot be linearly stable. In fact, it is neutrally stable due to 
the existence of continuous spectrum on the imaginary axis37. Furthermore, if the coupling strength K >  0 but 
sufficiently small, we have proved that the eigenvalue λ does not exist (the details are included in the supplemen-
tary material).

The analysis above reveals that the linearized operator   has continuous spectrum iω lying on the whole imag-
inary axis (with real part equals to 0) for all K, and it may also have discrete spectrum (eigenvalues) depending on 
K. When K is small (K <  Kc) the discrete spectrum is empty, but as K increases, discrete eigenvalues emerge with 
real part x >  0 for K >  Kc. Imposing the critical condition x →  0+ for Eq. (30), once again we obtain the critical 
coupling strength as

π
=

| | ( )
,

( )
K

y g y
2

sup 32
c

j j j

where yj are determined by the Eq. (31) with the limit x →  0+. Evidently, Ω c is the imaginary part of the eigenval-
ues of operator   at the boundary of stability. Generally Eq. (31) may have more than one root with x →  0+. supj 
means that we choose the jth root yj which makes the product ( )y g y  is maximal, so that Kc corresponds to the 
foremost critical point for the onset of synchronization.

According to the above linear stability analysis, the incoherent state of model (1) is only neutrally stable below 
the synchronization threshold. However, interestingly, we find that in this regime the perturbed order parame-
ter η(t) actually decays to zero in the long time limit (t →  ∞). This phenomenon was first found in the classical 
Kuramoto model, and was revealed to be analogous to the famous Landau damping in plasma physics38. To inves-
tigate the Landau damping effect in our model, we rewrite Eq. (25) as
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Substituting Eq. (34) into the expression of η(t), we obtain the perturbed order parameter as

∫ ∫ ∫η ω ω ω ω ω η τ τ( ) = ( ) + ( ) ( − ) . ( )
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2 35p
i t t i
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Here C0 is a constant related to the initial value and it is convenient to set C0 =  1. Equation (35) represents a 
closed form for the dependence of ηp(t) on the coupling strength K. Unfortunately, it is difficult to get the expres-
sion of ηp(t) analytically for the present model. However, we still can obtain useful information via direct numer-
ical simulations. In Fig. 1, the numerical solutions of Eq. (35) are illustrated for different values of K and typical 
frequency distributions g(ω). Generally, we observe the decay of R(t), i.e, η| ( )|tp . Depending on g(ω) and K, the 
scenarios turn out to be different. We notice that when the coupling constant is absent, Eq. (35) can be solved 
analytically. Specifically, for example, when K =  0, R(t) =  sin t/t for the uniform distribution [Fig. 1(a)], 

( ) = ( − )/R t t t2 1 cos 2 for the triangle distribution [Fig. 1(d)], and R(t) =  e−t for the Lorentzian distribution 
[Fig. 1(g)]. In these cases, the decay phenomena strongly depend on the form of g(ω). However, with the increas-
ing of K the situation changes. It is observed that the order parameter decays in a way with significant oscillation. 
Nevertheless, its envelope follows the form of exponential decay, namely, ( ) ∝ δR t e t for a short time, where δ is 
the decay exponent. While the general dynamical mechanism of this decay is still an open issue, ref. 39 pointed 
out that this exponential decay of order parameter in the neutrally stable regime is closely related to the resonance 
pole on the left-half complex plane, and the decaying rate δ is the real part of it.

For the two-cluster synchronous states Eq. (18), previous analysis has shown that = + − /R K1 1 42
2

2  

is linearly stable, and = − − /R K1 1 42
2

2  is linearly unstable30. For the traveling wave state in the range 
(0 <  α <  1), its stability can only be studied through numerical simulations. We have conducted extensive simu-
lations by choosing different initial conditions for phase oscillators. We even specially choose a proper initial 
condition to make the system artificially locate onto the traveling wave state. It is found that in all these cases the 
system evolves to the two-cluster synchronous state as long as K >  Kb =  2 (the subscript b denotes the backward 

Figure 1. Different scenarios of the decay of R(t) with different frequency distributions and coupling 
strength below the critical threshold (K < Kc). (a–c) Uniform distribution ω( ) =g 1

2
, ω ∈ (− , )1 1 . 

K =  0, 1.6, 1.78, respectively. (d–f) Triangle distribution ω ω( ) = −g 1 , ω ∈ (− , )1 1 . K =  0, 2.2, 2.6, 
respectively. (g–i) Lorentzian distribution ω( ) =

π ω+
g 1 1

1 2 , ω ∈ (−∞, ∞). K =  0, 3.7, 3.9, respectively. The red 
solid lines denote the fitted curves of the envelopes which all satisfy the exponential form eδt.
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transition point). Thus the numerical results give evidence that the traveling wave state predicted by the 
mean-field theory turns out to be unstable in the current model.

The bifurcation analysis. The above stability analysis leads to the conclusion that near the finite critical 
coupling Kc, the incoherent state becomes unstable with the emergence of a pair of complex conjugated eigenval-
ues λc =  ± iΩ c; meanwhile the traveling wave solution is unstable. Moreover, due to the absolute coupling, Eq. (1) 
always has the two-cluster synchronous solution [Eq. (18)] when K >  2. This is independent of the specific form 
of g(ω) as long as g(ω) is symmetric and centered at 030. Thus, if Kc >  2, the first-order synchronization transition 
would take place. However, the mechanism underlying the instability of the incoherent state is still unclear, for 
example, the bifurcation type and the local stability of the traveling wave solution near Kc. These information is 
crucial for us to get a global picture of the synchronization transition in the dynamical system. Generally, the 
dynamic behavior near the critical point can be investigated through the local bifurcation theory. For this pur-
pose, we refer to the framework of nonlinear analysis developed in ref. 34 to reveal the local bifurcation type for 
the incoherent state of model (1).

The main idea of the theory34 is that when the perturbed equation of the incoherent state satisfies O(2) sym-
metry, the center manifold reduction could be applied to obtain the amplitude equations for both steady state and 
limit cycle. Moreover, in order to avoid dealing with the continuous spectrum, the Gaussian white noise is added 
and eventually the noise magnitude is extended to zero for all calculations. Following this treatment, now the 
evolution of the density function ρ θ ω( , , )t  obeys the Fokker-Planck equation

ρ
θ
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θ
∂
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+
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, ( )t
D 36

2

2

where D is the strength of noise. Similarly, imposing the small perturbation to the incoherent state, i.e., 
ρ µ θ ω= + ( , , )

π
t1

2
, we obtain the following perturbed equation
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and  µ( ) is the nonlinear term, i.e.,
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where ∫ ∫θ µ θ ω ω ω= ′ ( ′, ′, ) ( ′) ′
π θ′

−∞

∞Z e d t g di
0

2 . Then we can derive the normal form of amplitude equation for 
both the steady state and the Hopf bifurcation in the frequency-weighted model based on the center manifold 
assumption. Since the complete calculation is tedious, we put the details into the Supplementary Material for 
interested readers. In the following we only report the main results.

It is found that for the frequency-weighted model, the system undergoes Hopf bifurcation near the critical 
coupling Kc. As a result, a traveling wave solution and a standing wave solution emerge above Kc. The stand-
ard standing wave solution consists of two counter-rotating clusters of phase-locked oscillators. Thus the 
order parameter η(t) plots a limit cycle on the complex plane. Previously, such state has been found in the clas-
sical Kuramoto model with symmetric bimodal frequency distribution40–42. It should be pointed out that the 
mean-field theory fails to predict such state due to the fact that neither the distribution function nor R(t) are 
stationary in any rotating frame for such a state.

As an example to illustrate our results, we focus on the case of uniform distribution g(ω) =  1/2. The exact 
expression for critical coupling strength is π= / <K 4 2 2c . The nonlinear analysis shows that the bifurcation 
for the traveling wave solution is supercritical and unstable (which is consistent with the mean-field theory). In 
addition, the standing wave solution is subcritical. This implies that a hysteresis would occur by taking the high 
order terms of the amplitude equation into account. Numerical evidence suggests that above Kc the incoherent 
state loses its stability. Meanwhile, non-stationary R(t) emerges with a hysteresis near Kc [branch 3 in Fig. 2]. As 
the coupling strength increases, and it eventually vanishes at K =  2 via a discontinuous transition (with very small 
hysteresis loop) to the two-cluster synchronous state. We have also conducted calculations for other typical fre-
quency distributions, such as the triangle, the Lorentzian, and the parabolic. The results show that the bifurcations 
for the standing wave solution are all subcritical and the traveling wave solution are all unstable locally. Moreover, 
the direction of bifurcation for the traveling wave state supports the numerical solution of the mean-field equa-
tion. It should be pointed out that the stable branch of subcritical bifurcation for both states are not observed 
numerically. One possible reason for this is that their basins of attraction might be so small in such a 
high-dimensional phase space that most of the initial conditions eventually lead to the stable two-cluster synchro-
nous state as long as K >  2.

Discussion
To summarize, we investigated the synchronization transition in the frequency-weighted Kuramoto model with 
all-to-all couplings. Theoretically, mean-field analysis, linear stability analysis, and bifurcation analysis have been 
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carried out to obtain insights. Together with the numerical simulations, our study presented the following main 
results. First, we predicted the possible steady states in this model, including the incoherent state, the two-cluster 
synchronous state, the traveling wave state, and the standing wave state. Second, the critical coupling strength 
for synchronization transition has been obtained analytically. Third, we proved that in this model the incoher-
ent state is only neutrally stable below the synchronization threshold. However, in this regime, the perturbed 
order parameter decays exponentially to zero for short time. Finally, the amplitude equations near the bifurca-
tion point have been derived based on the center-manifold reduction, which predicted that the non-stationary 
standing wave state could also exist in this model. This work provided a complete framework to deal with the 
frequency-weighted Kuramoto model, and the obtained results will enhance our understandings of the first-order 
synchronization transition in networks.
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