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Sparse cliques trump scale-free 
networks in coordination and 
competition
David A. Gianetto1,2 & Babak Heydari1

Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced 
by networks. Many studies have shown how global network characteristics affect cooperation; 
however, it is difficult to understand how this occurs based on global factors alone, low-level network 
building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free 
and clique networks and show, through a stochastic evolutionary game theory model, that cooperation 
on cliques increases linearly with community motif count. We further show that, for reactive stochastic 
strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the 
Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative 
effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique 
graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph 
increases cooperation when multiple games are considered; however, cycles have the opposite effect on 
how forgiving agents are when playing the Prisoner’s Dilemma game.

The puzzling existence of cooperation in the face of the seemingly selfish process of natural selection has occupied 
researchers across many disciplines for over 30 years1,2. This interest extends beyond the most common biological 
and social contexts2,3 to a wide array of literature including, the theory of the firm in business where coordination 
of functions and competition with external entities are key considerations4, coordination during preparation for 
natural disasters in emergency management literature5, how cooperation influences morality emergence6, in the 
psychology literature, and the physical mechanisms that give rise to human cooperation provided by neurosci-
ence7,8, to name a few. A common way to model cooperation is by evolving an interacting population of social 
dilemma game players; a canonical game is the Prisoner’s Dilemma9,10.

This line of research has revealed a host of factors that contribute to the survival of cooperation11 including, 
remarkably, the interaction structure itself (see12 for a review). Evolving organisms often reproduce locally which 
in turn causes feedback between locally distributed traits and genetic relatedness between traits, this leads to 
interaction assortment and population viscosity13,14 that sustains cooperative behavior; however, what properties 
of structure drive what characteristics of cooperation and how? One way to tackle this problem that has proven 
useful is to consider evolving players of social dilemma games within a network, where the games provide a 
framework for understanding the simplest local interactions and the network frames community-level and global 
interaction12. This general approach has shown that relatively sparse connectivity15 or less frequent interaction16 
helps encourage cooperation. More modular structures also encourages cooperation relative to networks with 
less separable communities17. It has also been commonly shown that heterogeneous networks, such as scale-free 
graphs with a power-law degree distribution dependence18, encourage cooperation18–20. Even so, it turns out that 
the advantage of cooperators disappears in scale-free networks when payoffs are averaged over neighbors rather 
than summed, because hubs are easily invaded by defectors even if cooperators favor hub locations21,22. Cycle 
length within a network is also a key characteristic and the strongest evolutionary dynamics tend to occur within 
cycles23. Short and long cycle effects compete with one another; short cycles pull cooperation lower while long 
cycles drive cooperation higher in the Prisoner’s Dilemma game24 and Ref. 25 shows that short cycles similarly 
limit cooperation.

In the present investigation into how the properties of structure drive cooperation we consider cooperation 
over four two-person, symmetric, stylized games common in the literature (i.e., Stag Hunt (SH), Snowdrift (SD), 
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Harmony Game (HG), and Prisoner’s Dilemma (PD)), rather than compare the effects of one or two games, 
which is most common. In a social context any individual game may prove relevant for a given situation at a 
certain point in time and so the representative game is subject to change over time26,27; however, altering network 
structure to adapt to changing circumstances is costly28. In fact, network structure has been shown to actually 
inhibit cooperation when costs are high relative to benefits in the Snowdrift game29 and the common assumption 
of heterogeneous degree distribution encouraging cooperation is negated by participation costs30 and payoff aver-
aging21,22. Therefore, in order to design enduring structures that influence behaviors either towards or away from 
cooperation we need to consider a wide range of social situations that the population may encounter.

How networks affect cooperation is usually considered as relative to average global structural properties, but 
this approach cannot give an accurate picture of local network characteristics nor their influence on evolving pro-
cesses or functions, this is the purview of network motifs31. Motifs are common, repeating, statistically significant, 
subgraph building blocks, that lie below both the global and community level32–34 and just above the lowest node 
and link level of a network. The notion of network motifs applies to biological, social, and information network 
contexts; where, for example, motifs found in the world wide web are distinct from genetic networks35. Motifs, 
which can be efficiently detected in real-world networks36,37, are functionally separable modules which interact 
dynamically within an organism and between an organism and its environment to both provide core functionality 
and adapt to the environment38. Since the environment is not static, but changes over time, evolutionary goals 
also vary, therefore, modular structure and network motifs must emerge to improve survival in this dynamic 
environment39. Certain motifs may be indicators of social status in networks40 and influence network dynamics 
as well41. Finally, if a range, or spectrum of motifs is considered a network hierarchy may be determined, when the 
network is directed42.

In the present work we use network motifs to help us understand the consequences of subtle changes in net-
work structure which have very little effect on average global network characteristics but influence cooperation 
emergence.

Here forward, we introduce the evolutionary model we have developed for this work, highlight the effect of 
varying structures on cooperation across multiple games and delve into two example structures which show the 
lowest average cooperation across games (a scale-free graph) and highest average cooperation across games (a 
clique-type graph), relative to the fully-connected case. Our results show that networks which lack either suffi-
cient cyclic structures or contain densely connected cliques suffer significantly reduced cooperation, particularly 
in coordination situations, adding cycles helps here but when the social environment becomes more competi-
tive this can be counterproductive. On the flip side, connecting highly cooperative clique communities together 
improves cooperation linearly with the frequency of local community motif structures, which extend interfaces 
to neighboring communities and give a cohesive structure for coordination and cooperation locally. Cycles can 
either help (coordination) or hinder (competition) depending on the social environment that is encouraged by a 
particular network which spread prevailing community behavioral norms to other communities.

Results
Model.  The model we have developed for this work operates on four levels: pair-wise games, strategy space, 
the learning model, and the interaction structure or network. Game play occurs between agents who play two-
player repeated games with each of their nearest neighbors and receive payoffs according to the moves of each 
player, commensurate with the payoff structure of the game, equation (4). We consider four games, including the 
Prisoner’s Dilemma, or PD (the strongest social dilemma), Stag Hunt (SH), Snow Drift (SD), and the Harmony 
Game, or HG (the weakest dilemma). During game play, agents, with memory of their opponent’s last move 
within a repeated game, determine their next move according to their stochastic reactive strategy, which is based 
on the three-component, Markovian, mixed-strategy framework from43,44, where y is the probability to trust on 
the first move, p is the probability to reciprocate a cooperative move and q is the probability to forgive defection. 
Since y acts in a single round within a repeated game and the other strategies repeat throughout y is plagued by 
noise, indeed it can be problematic to collect enough samples to show the meaningful evolution of y (trust)17. 
Therefore, we treat y as a discrete rather than a continuous variable in this work; this treatment decreases y noise 
considerably and improves run convergence. Learning, or strategy updating, is done asynchronously via the 
Fermi rule, equation (1), from relatively weak to strong selection, β ∈ . , ,{0 001 1 10}. We also employ a social 
interpretation (which we refer to as SOC, see equation (2)) of the Fermi rule where β is inversely proportional to 
the payoff noise across each agent’s nearest neighbors; we describe the model in greater detail in the Methods 
section.

In our quest to increase the model’s sensitivity and performance we abandoned the synchronous updating 
rule, replicator equation, and stochastic y methods from prior work17 in favor of asynchronous updating, the 
Fermi rule, and a discrete y variable. These changes also allowed us to verify cooperation improvement (shown 
in Fig. 1) with modularity, studied by17, under different updating and evolutionary rules. In addition, we tested 
more modular structures up to a maximum modularity Q32 of nearly 0.9. A graph generator was required to test 
the modularity range from 0.6 to 0.9 in nearly equal increments; we developed the generator based on45.

For payoffs, we use the average performance of a node over its neighborhood (see equation (3)) rather than a 
the neighborhood sum used by46. We chose this approach both to associate results of this study with prior mod-
ularity work17 and to increase the generality of our results since the averaging rule produces dynamics invariant 
to payoff matrix translations22. Averaging payoffs may negate the benefit of the scale-free network21 but sparse 
cliques still enjoy broad cooperation improvement, which we shall discuss in the next section.

Cooperation and modularity.  Broadly considering the results in Fig. 1, the network with the lowest over-
all change in cooperation relative to the full graph, across all games, is the Barabási-Albert (BA) graph47,48 in 
Fig. 1 (graph index 27). Cooperation change relative to each game is shown in Fig. 2 where significant drops in 
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cooperation occur along the spectrum from low to high modularity. The most prominent dropouts in Fig. 2 fall 
into three categories, those with highly connected cliques (index 12, 13, 16, 19, 34, 35 in Fig. 2) whose modules 
approximate a full graph and so are less cooperative, the BA graph (index 27 in Fig. 2) which has reduced cooper-
ation due to frequent invasion of hubs by defectors21,22, and approximately acyclic graphs (index 20, 26 in Fig. 2). 

Figure 1.  Cooperation change with structure. The figure shows difference in average cooperation ( , , )y p q  
across a set of the four most common two player symmetric games (i.e., Harmony Game, Stag Hunt, Snow Drift, 
and Prisoner’s Dilemma) between a set of networks in modularity order. The point symbol is the corresponding 
graph index from the networks figure in the Methods section. The network modularity (Q in32) is shown along 
the horizontal axis; sample graphs are shown above the plot. Graph node color represents community 
membership, which we determined using the random-walk method described by60. The most significant 
outliers are the Barabási-Albert (BA) graph47,48 (graph index 27) which experiences the least improvement 
(negative) in cooperation and the clique graph (graph index 37) which evolves much higher cooperation (both 
compared to the full graph). Both of these cases are noted in the figure with a blue arrow.

Figure 2.  Effect of modularity on cooperation. The figure shows Cooperation p (reciprocity) as relative to 
Modularity (Q) conditioned by game, one curve for each game. Significant cooperation changes (e.g., dropouts) 
are indicated by vertical lines with the corresponding network attached, along with the corresponding graph 
index from the network figure in the Methods section. Index 12, 13, 16, 19, 27, 34 and 35 correspond to local 
cooperation depressions (dropouts), network 37 from Fig. 1 is also shown. Approximately acyclic graphs are 
highlighted on the graph (20, 26) for each game; networks are shown for each on the plot.
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The dropouts are the largest in the BA graph, especially in the Snowdrift and Stag Hunt games, loss of cooperation 
in the later is significant enough to reduce average cooperation across all games below the full graph (Fig. 1).

From the ST-plane results in Fig. 3, forgiveness is affected the least by changes in network structure. The sim-
ple 5 ×  5 lattice structure (see SI1 for lattice details) improves cooperation significantly across the plane but the 
Snowdrift game shows the most improvement, but cooperation dominates the majority of the ST plane for the 
clique graph (rightmost column in Fig. 3). Since payoffs are averaged based on a node’s performance against each 
of its neighbors (confirming21,22 for reactive stochastic strategies), cooperation in the BA graph (27 in Fig. 3) is 
reduced across all games, even compared with the fully connected graph (leftmost column in Fig. 3).

Beyond the payoff structure effect reported by21,22, we hypothesize that some of the cooperation erosion in 
the BA graph is due to its acyclic nature rather than its preferential attachment property or heterogeneous degree 
distribution per se. The evolutionary dynamics of games on cycles can favor cooperation, especially for more 
competitive games like the Prisoner’s Dilemma23, and analytical work has shown that a combination of relatively 
large girth and fewer short cycles should improve cooperation24, so an undefined girth (acyclic) may limit coop-
eration likewise. To test this, we developed an experiment in the next section that attempts to increase scale-free 
graph competition through adding cycles from single-edge changes to the network.

Scale-free graph edge experiment.  To provide evidence for the effect of cycles on cooperation we con-
structed a simple illustrative example by systematically adding cycles of different lengths to the BA graph, thus 
gradually increasing its girth. From Fig. 4(A), when girth rises average cooperation across all games increases 
proportionally. However, girth fails to tell the complete story. If higher degree hubs are included in the cycle 

Figure 3.  ST Plane versus structure. The figure shows cooperation across the ST-plane for y (top row), p, and 
q (bottom row) for the full graph (left column), the BA graph (index 27), the 5 ×  5 square lattice (index 17), 
and the clique graph (right column, index 37). Coordinates within each ST-plane represent the payoffs of the 
Harmony Game (HG), Snowdrift (SD), Stag Hunt (SH), and Prisoner’s Dilemma (PD) games; divisions between 
each game are shown as white dashed lines and the game region is noted in the bottom of the figure. See SI1 for 
detailed plots comparing each network with the the full graph by game.
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(Fig. 4(A) point d), cooperation is higher than the same length cycle that connects through a lower degree node 
(Fig. 4(A) point e). Cooperation does not continually improve as cycle length increases, a limit is reached where 
new cycles must be added to achieve further improvement. If we add another cycle (Fig. 4(A) point h) coopera-
tion improves but if a new cycle is added by splitting a large cycle (Fig. 4(A) point i), thus decreasing girth, coop-
eration decreases relative to the two-cycle case (point h). These effects are similar in nature from strong to weak 
selection, including the SOC β rule, equation (2).

Since our model separates behaviors into three factors, trust (y), reciprocity (p), and forgiveness (q), we can 
see some of the inner workings of the effect cycles have on cooperation, shown in Fig. 4(B). First we see that in 
all respects BA-graph cooperation in the PD game is higher than the full graph; however, the coordination games 
(SH and HG) lose ground and are less cooperative and the anti-coordination game, SD, decreases in cooperation 
likewise but is able to remain slightly more cooperative than the full graph due to its modularity. The dearth of 
cycles does also tend to make cooperation more difficult in coordination situations, though the effect is modest. 
Moreover, there is a marked difference between games; the positive effect of girth on y and p strengthens in the 
SH and SD games but then reverses in the PD game where y and q reduce with girth, see Table 1 for a summary 
of these effects. Long cycles help trust and reciprocity evolve in the anti-coordination game (Snowdrift) but when 
the game shifts to a more competitive situation (PD) longer cycles actually reduce trust and forgiveness; reciproc-
ity is unaffected. The difference lies in the evolutionary dynamics where long cycles provide more opportunities to 

Figure 4.  Effect of cycles on cooperation. Panel (A) shows the change in reciprocity p across all games by 
single-edge additions to the BA graph (Fig. 1 index 27). Each point is represented by a square with length 
(width) proportional to the girth of the graph, or the length of the shortest cycle. The girth value is shown within 
each data point square for the β ∈ . , SOC{0 001 }. The graph corresponding to each data point is shown above; 
the shortest cycle is shown in orange. The vertical axis represents the average reciprocal cooperation (p) level 
across games (PD, SD, HG, SH) relative to the full graph (Fig. 1 index 1). The four selection strength β curves 
are shown (0.001, 1, 10 and the SOC adaptive method, equation (2)). Panel (B) conditions the cooperation 
results by game relative to the full graph, for β = 1. The full graph is indicated by the horizontal red line. Point 
symbols are for each respective point index in panel (A). A summary of the effects in panel (B) is shown in 
Table 1.

Factor HG SH SD PD Level Description Fig.

degree ypq ypq ypq ypq global sparse conn. / >b c k15 2

mod. — — yp yp global 17, if not dense 2

long c. — ↑yp ↑ ↑yp ↓ ↓ ↓yq local girth24, boundary23 4

short c. ↓ypq ↓ypq ↓ ↓p ↑ ↑q local opposite long cycle24 4

motifs — ↑ypq ↑ ↑yp ↑ ↑ ↑p local helps reciprocity 5

Table 1.   Summary of network effects. The table shows each of the key effects in this paper,  and  are the 
most significant effects, which act at the global level, local effects are shown by ↑  and ↓ . Games with no clear 
effect are shown with a ‘–’. Multiple arrows indicate the effect (i.e., slope) relative to other games. The y, p, q 
parameters that participate in the effect are indicated beside the arrows. The short cycle effect is determined by 
comparing the points h (two-cycle) versus i (split cycle) in Fig. 4(A).
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dampen defection through forgiveness than short cycles. Further, when a cycle is lengthened a higher proportion 
of nodes in the network are within the cycle, which are known to favor cooperators over defectors due to the sup-
porting effect of cooperators just behind the boundary between communities; defectors fail to support in kind23. 
In the more competitive PD game the ability of forgivers in the cycle to support boundary nodes that experience 
defection is compromised, this causes the strategy boundary to move in favor of defectors as cycles lengthen.

Cycles do seem to play a key role in cooperation emergence; however, acheiving highly cooperative structures 
through adding cycles is difficult, in-fact, doing so by splitting cycles is an ineffective way to increase cooperation. 
Even though cooperation increases by adding cycles to the BA graph we were not able to meet the cooperation 
levels of the full graph in our eight edge addition experiment though the social (SOC) rule came close to achiev-
ing parity (Fig. 4 point h). To create the most cooperative structures, we must start with more modular structures 
that are initially much more cooperative than the full graph, demonstrated by17 for the Prisoner’s Dilemma game.

Clique graph edge experiment.  To synthesize a more cooperative environment we start with a network 
that has the highest average payoff across games (a clique graph in Fig. 1, index 37) and add edges that join 
communities such that short cycles (e.g., triangular motifs) are not affected. From Fig. 5, average cooperation 
increases as edges are added. We continue to add edges to create another complete cycle between cliques and 
cooperation increases likewise. Because the motif changes are controlled only one cyclic motif is affected by these 
edge additions, namely the community motif in Fig. 6, all other changing motifs are acyclic. Since we expect acy-
clic structures to be less cooperative (Fig. 2) and adding edges between communities decreases modularity (9% 
total decrease for index 11 versus index 1 in Fig. 5(A)) it follows that the community motif is largely responsible 
for the cooperation improvement in this clique experiment in spite of the opposing effect from lower modularity; 
in this example cooperation improved by 1% relative to the full graph for each edge added. We found this effect 
to be robust to selection strength as well as the social (SOC) selection rule and confirmed the magnitude of the 
effect with the replicator equation utilized in17.

The motif results are separated by game and y, p, q component in Fig.5(B). There is a considerable difference 
in the SD (strong T) versus SH (weak T) games; forgiveness does not evolve in the former (strong) case versus the 
later (weak) and HG remains unaffected by the community motif increase. In contrast with the girth study (Fig. 4), 
p increases with the community motif in all games except HG and no reversal occurs in any game, compared to 
the PD reversal (Fig. 4) when cycles are added to the BA graph. Since the clique graph provides a highly cooper-
ative environment defection is largely contained, demonstrated by the unchanging forgiveness (q) as interfaces 
with other communities are added.

Figure 5.  Motif effect on cooperation. Panel (A) shows the average change in reciprocity p across all games by 
single-edge additions to the cooperation outlier graph shown in Fig. 1 (graph index 37). The horizontal axis is 
the quantity of type community motifs (i.e., triangle with an extended link). One edge is added (shown in red) 
between adjacent cliques until all cliques are joined to their neighbors. The network for each point in the plot is 
shown by an index that corresponds to the point symbol on the plot. Cooperation increases as edges are added 
to the clique and motif counts increase. A linear model is shown for four β cases; a table of linear model P-values 
is shown on the plot, in all cases the F-test two-sided p-value is less than 3E-6. Across selection strength 
cooperation improves by 1% relative to the full graph for each edge added (10% improvement after adding 10 
edges). Panel (B) consists of four sub-panels that condition the cooperation results by game relative to the full 
graph, for β = 1. The horizontal axis for each sup-panel is the quantity of community motifs. The full graph is 
indicated by the horizontal red line. A summary of the effects in panel (B) is shown in Table 1.
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Discussion
To summarize, there are four main structural factors that affect cooperation in these settings, some positive and 
others negative, each act at either the local or global level of the network (see Table 1). These structural fac-
tors include connection degree15, modularity17, and as we have shown in this work, cycles23,24,25 and community 
motifs.

There are differences, however, in how networks affect cooperation between pure strategy evolution and sto-
chastic strategy evolution. For pure strategies in the PD game25, showed that triangles limit cooperation under 
high noise conditions, but we show that even a single triangle can increase average cooperation across games 
when stochastic strategies are used across noise levels. This results in a different ideally-cooperative structure 
for stochastic reactive strategies across games, many long cycles are desired. This contrasts with pure strategies 
in the PD, where acyclic networks are desired under high noise conditions and randomly connected triangular 
structures are desired under low noise conditions25.

Further, we do confirm the result from25, that even a single triangle decreases cooperation in the PD game, but 
limit this effect to the forgiveness q part of cooperation (see Fig. 4(B), PD panel, point b).

Modularity may be essential for improving cooperation globally17 but the modules themselves must be con-
nected sparsely (see Fig. 2), as15 suggests with the b/c >  k rule, to sustain cooperation. Indeed some of the most 
modular structures we tested, including graph index 42 in Fig. 1, were significantly less cooperative than the 
structures in our clique experiment (Fig. 5) due to dense connections within their modules, and cooperation 
dropouts (i.e., low cooperation though the network is modular) occurred commonly in networks with highly 
connected modules (see graphs 12, 13, 16, 19, 34, 35 in Fig. 2). Further improvement in already cooperative clique 
networks requires community-to-community connections but in a controlled way without increasing short cycles 
that reduce support for cooperators at the boundary of communities. This community motif both joins together 
agents in cohesive groups and extends an interface to other groups as well.

The social environment is far different between the clique network model and the Barabási-Albert47,48 (BA) 
scale-free model. BA-graph cooperation is high relative to the fully connected graph in competitive situations, 
modeled by the Prisoner’s Dilemma; however, in the Stag Hunt and Snowdrift games cooperation is compar-
atively low but can hang on and even improve modestly as communities are connected better but this same 
connectivity becomes a liability under competition (Fig. 4) by allowing defection to invade through the same 
pathways. Taken as a whole, though, cooperation improvement is lower in scale-free graphs than well mixed or 
fully connected graphs, but we do find that cooperation is higher on lattices than scale free, contrary to human 
cooperation experiments50 that show both lattice and scale free networks behave the same, but aligns with the 
theoretical literature that shows improvements in the lattice over well mixed populations17,49,51.

In the clique case (Fig. 5), cooperation is robust therefore adding links between communities gives addi-
tional opportunities for reciprocal action. These same paths allow defectors to invade scale-free network hubs 
and this cycle of invasion erodes forgiveness and trust. Acyclic structures are an asset in competitive situations, 
represented by the Prisoner’s Dilemma game, because they limit the spread of defection to otherwise cooperative 
communities; however, when cycles are absent and coordination is needed, where agents attempt to predict52 
future moves of their partners, acyclic communities lack sufficient support at external boundaries that cycles can 
provide23, and so are unable to efficiently coordinate which reduces fitness of the global population.

We have also developed a socially adaptive rule SOC in which the noise is proportional to the local envi-
ronment noise in payoffs and show that these results are similar to that of strong selection (β >  10) and this 

Figure 6.  Motif changes between cliques. The figure shows each of the graph motifs35 of size 3 and 4 that are 
found within the graphs. In our clique edge-addition experiment we added edges in a way that did not increase 
short cycles and this is demonstrated by unchanging quantities of triangle, square, and dual triangle motifs. The 
largest changing motif with a cycle is the community motif. Long interface motifs increase linearly throughout 
the experiment (interface B motif) and at the highest rate that indicates an increase in long cycles.
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constrains the usefulness of this rule to relatively strong selection found in microbial cooperation53, rather than 
human cooperation in which the moves of players have a more significant impact than payoffs54.

In this work, we have studied cooperation emergence in both the BA and clique structures through subtle 
single-edge network changes. We are unaware of any comparable study that delves into single-edge effects, nor 
the effect of network motifs on cooperation emergence, which we show to be linear in our clique example (Fig. 5). 
We also confirm, for reactive strategies, that scale-free network cooperation is significantly reduced, as reported 
by21,22, and confirm the robustness of these results from weak to strong selection, including a socially adaptive 
rule (SOC).

Research that extends the present work includes investigating the size and connectivity of graph clique mod-
ules and extending the strategy space to a four-part framework that includes the Pavlov strategy, for example 
extending55 and the present work.

Methods
We evolve our population of social dilemma game players in a network environment (see Fig. 7) where nodes 
represent players and links the interactions where games are played. A prior modularity study17 used an updating 
rule from18; however, this rule gives up the ability to adjust selection strength. In this work we apply the more 
conventional Fermi rule, equation (1), in order to take advantage selection adjustment. Additionally,17 performed 
synchronous updating whereas in the present work we employ asynchronous updating. Finally, we modified 
the y, p, q stochastic strategy framework, from43,44, slightly by making y a discrete rather than continuous vari-
able. These changes were largely motivated by the need to decrease simulation convergence time and we found 
that these rules, especially asynchronous updating, decreased convergence time considerably. These changes also 
allowed us to confirm the modularity effect on cooperation17, with asynchronous updating and the Fermi rule, 
from weak to strong selection.
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← Π −Π
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1

1 1
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In the Fermi equation (1), ω ←o n is the probability that node o will adopt the strategy of neighbor n, Πi, and Πn 
are the payoffs of o and neighbor n respectively, β is the evolutionary selection strength and Δ  is the difference 
between the maximum and minimum payoff achievable in a given game. The later Δ  parameter allows us to vary 
payoffs across a wide range of games and yet evolve the population in a common way54. As β → ∞ a small payoff 
advantage results in a high probability of switching strategies conversely when β = 0 the probability of switching 
strategies becomes 1/2 irrespective of payoff.

Besides the fixed notion of β we define a dynamic value, equation (2), that adapts to the local noise of a node’s 
neighborhood; 1/β is proportional to noise56–58. The rationale for this is based on a social context where 
decision-making confidence is not fixed but relative to the situation or local environment that a player experi-
ences. If I see a variety of payoffs in my neighborhood I am less confident with simply imitating the most success-
ful since the environmental uncertainty adds doubt to the observed payoff values that may change. Conversely, I 
am more likely to take a risk if the environment is certain. We refer to this social rule as SOC in this work. In 
equation (2), σnei

2  is the neighborhood variance of node o, and Πnei is the mean payoff of the same neighborhood.

β
σ

=
Π
.

( )3 2o
nei

nei
2

The SOC rule has the added advantage of reducing early imitation errors in our simulations since initial strat-
egies ( , , )y p q  are picked from a uniform distribution for each run, a static β results in volatile early generations 
where it is common for nodes to cycle through several strategies before becoming satisfied.

The payoff Πo, equation (3) from17, for each node o is determined by averaging the sum of its repeated game 
payoff over all of its nearest neighbors. The number of neighbors (degree) of node o is ko, the repeated game dis-
count factor w is drawn from a uniform distribution between 0.8 and 0.9, and the number of games =g 50.
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Our asynchronous updating scheme follows the coevolution method described by46 with the exception that we 
do not evolve structure but rather evolve the population to convergence before starting anew with a different 
network. In this scheme, one node is picked at random from the network and then one of its neighbors is chosen 
at random. Each of the chosen nodes (players) plays a repeated game versus their immediate neighbors and 
record their average payoff. Strategies of the chosen nodes update according to the Fermi function, equation (1). 
Updates continue to take place until convergence is achieved. We define convergence as n2  asynchronous updates 
with no strategy switching (n is the number of nodes in the network). If a run does not converge within n2500  
updates then the last 100 updates are averaged together; this occurs in approximately 10% of cases in the Snow 
Drift game but rarely in other games (the problem with Snow Drift convergence was also reported by46). We also 
averaged 1000 updates for non-converging cases and found no significant difference compared to an average of 
100 updates.

All runs were executed on a 256-core, CrayXE6 computer. In total, 1024 runs were collected for each network 
structure, game, and β value in order to sample the ST payoff plane sufficiently. More samples were needed to 
improve the clarity of the ST-planes in Fig. 1, thus a total of 10240 samples were collected, per game, for the full, 
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BA, and clique graphs. For the payoff matrix, similar to17, we adopt a simplified symmetric two-player repeated 
game, shown in equation (4) from2,59, where the defecting player receives T (temptation to defect) if their oppo-
nent cooperates but receives P =  0 if their opponent defects, (the punishment for mutual defection). Here we 
extend the PD game ( < <T1 2 and − < < )S1 0  from17 to the Stag Hunt ( < <T0 1 and − < < )S1 0 , Snow Drift 
( < <T1 2 and < < )S0 1 , and Harmony games ( < <T0 1 and < < )S0 1 . For each run, new T and S values are 
drawn from a uniform distribution within each respective game region.

( )=
= ( )

c
d

R
T

S
P

1
0 4

c d

The modularity index was calculated based on community structure measurement Q developed by32, where 
Q =  1 is a maximum, or the strongest community structure. Community detection was done by a random-walk60 
method.
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