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3 parafermionic chain emerging 

from Yang-Baxter equation
Li-Wei Yu & Mo-Lin Ge

We construct the 1D 3 parafermionic model based on the solution of Yang-Baxter equation and express 
the model by three types of fermions. It is shown that the 3 parafermionic chain possesses both triple 
degenerate ground states and non-trivial topological winding number. Hence, the 3 parafermionic 
model is a direct generalization of 1D 2 Kitaev model. Both the 2 and 3 model can be obtained from 
Yang-Baxter equation. On the other hand, to show the algebra of parafermionic tripling intuitively, we 
define a new 3-body Hamiltonian Ĥ123 based on Yang-Baxter equation. Different from the Majorana 
doubling, the Ĥ123 holds triple degeneracy at each of energy levels. The triple degeneracy is protected by 
two symmetry operators of the system, ω-parity P ω e( = )i π2

3  and emergent parafermionic operator Γ, 
which are the generalizations of parity PM and emergent Majorana operator in Lee-Wilczek model, 
respectively. Both the 3 parafermionic model and Ĥ123 can be viewed as SU(3) models in color space. In 
comparison with the Majorana models for SU(2), it turns out that the SU(3) models are truly the 
generalization of Majorana models resultant from Yang-Baxter equation.

The double degeneracy of a pair of Majorana zero modes in condensed matter system has attracted much atten-
tions due to its potential applications in quantum computation and quantum information1–6. It is well known that 
this topologically protected doubling is immune to local perturbations. Taking 1D p-wave Kitaev model1 as an 
example, the Majorana mode appears in the topological phase where the two free Majorana fermions γ1 and γ2N 
can be excited without cost of energy at the two ends of the chain model and compose a non-local complex fer-
mion, hence the ground state possesses double degeneracy. The two degenerate states can be differentiated by the 
electron number parity operator = (− )P 1 N

M
e, i.e., one state possesses parity − 1 with odd electron occupation 

number, while the other possesses parity + 1 with even electron occupation number. On the other hand, to give 
an intuitive analysis about the Majorana doubling, Lee and Wilczek7 proposed a 3-body Hamiltonian 

αγ γ βγ γ κγ γ= ( + + )Ĥ iM 1 2 2 3 1 3 , where the symmetry operators PM and emergent Majorana operator Γ M lead 
to the doubling at any energy level.

In our previous paper, we have shown that both the Kitaev model and the Lee-Wilczek model can be derived 
from the 4 ×  4 matrix representation of Yang-Baxter equation(YBE)8. The applications of YBE9–14 in constructing 
many body Hamiltonian had been discussed in various papers15–18. Specifically, based on the Majorana rep-
resentation of Yang-Baxter equation θ( ) = θγ γ +R̆ ei i i 1, we take the time derivative of θ in θ( )R̆i  to obtain the 1D 
Kitaev model8. To self-contain, we first recall some results related to θ( ) = θγ γ +R̆ ei i i 1 which emerges from the 
4 ×  4 matrix representation of YBE, which reads
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In our previous paper8, we have shown that the Majorana representation relates to the 4 ×  4 matrix representation 
of YBE θ′( ) = θσ σ⊗ +

R̆ eii
y x
i i 1

 in tensor product space through Jordan-Wigner(J-W) transformation, here σx and σy 
are Pauli matrices, i and i +  1 signify lattice sites. The J-W transformation transforms spin-1

2
 operators at lattice 

sites into spinless fermions through
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where σ±
n  are spin ladder operators, †an  and an are spinless fermions. Define the Majorana fermion1

( )γ γ γ γ δ= + , = − , , = . ( )−
† †a a i a a { } 2 4j j j j j j i j ij2 1 2

Substituting equation (3) and (4) into equation (1), we can express equation (1) as next nearest neighbor interac-
tion of Majorana operators,

θ′( ) = , ( )θγ γ− +R̆ e 5i 2i 1 2i 1

where γ2i−1 satisfy Clifford algebra {γ2i−1, γ2j−1} =  2δij. Based on the Clifford algebra, the θ′( )R̆i  can be rewritten as

θ( ) = . ( )θγ γ +R̆ e 6i i i 1

It is easy to check that the θ( )R̆i  satisfies YBE. Hence the matrix representation of solution of YBE and Majorana 
representation of braid operators are well related.

A question is raised naturally. One spin site corresponds to 2 subcells of Majorana fermions that are related 
to 4 ×  4 YBE in the tensor space due to the 4-d representation of Temperley-Lieb algebra. On the other hand, the 
9 ×  9 form of solution of YBE has been known, then could we extend the above discussion to the new type of 
“Majorana fermions” with 3 subcells on one spin site? The answer is yes. Instead of SU(2), the SU(3) operators 
should naturally be introduced. For the convenience, we call the space color space.

Since the Majorana models hold 2-fold degeneracy, for SU(3), how can we extend the Majorana double degen-
eracy to triple degeneracy? In other words, can we construct the extended 1D Kitaev model holding triple degen-
erate ground state? Indeed, similar to those in constructing Majorana models via 4 ×  4 matrix solution of YBE, we 
can find the triple degenerate models based on the 9 ×  9 matrix representation of YBE20.

In this paper, we make the following progress: 1) Based on the 9 ×  9 matrix representation of YBE and the 
3 ×  3 3-cyclic representation of SU(3) generators (see Supplementary), we make the decomposition of the 9 ×  9 
matrix by tensor products of 3-dimensional matrices. By defining generalized SU(3) J-W transformation, we 
transform the SU(3) sites into non-local operators and obtain the new representation of YBE. 2) We obtain the 3 
parafermionic chain with triple degenerate ground states in color space and express the chain with three types of 
fermions, besides that, the N  case is discussed; 3) In 3 parafermionic model, the topological phase transition is 
signified by the triple degeneracy of ground states and the topological winding number; 4) To give an intuitive 
explanation of the triple degeneracy and analyse the algebraic structure in it, we construct a 3-body Hamiltonian 
and find its symmetry operators that lead to the tripling.

Results
Review of two Majorana models. To preserve the self-consistency of this paper, firstly, let us give a brief 
introduction to the construction of Majorana models based on YBE. The intrinsic connection between the solu-
tion θ( ) = θγ γ +R̆ ei i i 1 of YBE and Kitaev model is that both of them possess 2 symmetry. Next we review the 
Kitaev model derived from YBE.

We imagine that a unitary evolution is governed by θ( )R̆i . If only θ (tan θ is the velocity u of a particle) in uni-
tary operator θ( )R̆i  is time-dependent, we can express a state ψ ( )t  as ψ θ ψ( ) = ( ( )) ( )̆t R t 0i . Taking the 
Schrödinger equation  ψ ψ( ) = ( ) ( )∂

∂
ˆt H t ti

t
 into account, one obtains:

ψ ψ∂
∂

( ) = ( ) ( ) . ( )
̆ ˆ ̆

t
R H t Ri [ 0 ] 0 7i i

Then the Hamiltonian ( )Ĥ ti  related to the unitary operator θ( )R̆i  is given by:

( ) =
∂
∂

. ( )
−ˆ ̆ ̆H t R

t
Ri 8i

i
i
1



Substituting θ( ) = θγ γ +R̆ ei i i 1 into equation (8), we have

θγ γ( ) = . ( )+
Ĥ t i 9i ii 1

If we only consider the nearest-neighbour interactions between two Majorana fermions(MFs) and extend equa-
tion (9) to an inhomogeneous chain with 2N sites, the derived chain model is expressed as8:

∑ θ γ γ θ γ γ= ( + ),
( )=

− +
 Ĥ i

10k
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k k k kK
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1 2 1 2 2 2 2 1
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with θ1 and θ 2 describing odd-even and even-odd pairs, respectively. This is exactly the Kitaev model derived from 
YBE.

The properties of 1D Kitaev model are well known:

1. In the case θ > 01 , θ = 02 , the Hamiltonian reads:

∑θ γ γ= .
( )−

Ĥ i
11k

N

k ktriv 1 2 1 2

As defined in equation (4), the Majorana operators γ2k−1 and γ2k come from the same ordinary fermion site 
k, γ γ = −−

†i a a2 1k k k k2 1 2  ( †ak  and ak are spinless ordinary fermion operators). Ĥ1 simply means the total 
occupancy of ordinary fermions in the chain and has U(1) symmetry, aj →  eiφaj. The ground state represents 
the ordinary fermion occupation number 0. This Hamiltonian corresponds to the trivial case of Kitaev’s.

2. In the case θ = 01 , θ > 02 , the Hamiltonian reads:

∑θ γ γ= .
( )+

Ĥ i
12k

N

k ktopo 2 2 2 1

This Hamiltonian corresponds to the topological phase of 1D Kitaev model and has 2 symmetry, aj →  − aj. 
Here the operators γ1 and γ2N are absent in Ĥ2. The Hamiltonian has two degenerate ground state, 0  and 

= †d1 0 , d† =  (γ1 −  iγ2N)/2. This mode is the so-called Majorana mode in 1D Kitaev model.

On the other hand, as pointed out by Lee and Wilczek in ref. 7, the double degeneracy of Majorana models ĤM 
is due to two symmetry operators, the parity operator PM and emergent Majorana operator Γ M. For instance, in 
3-body Majorana model with the Hamiltonian

αγ γ βγ γ κγ γ= ( + + ), ( )Ĥ i 13M 1 2 2 3 1 3

the symmetry operators and commutation relations are

γ γ γ= (− ) , Γ = − ( )P 1 i ; 14N
M M 1 2 3

e

, = , , Γ = , Γ , = . ( )ˆ ˆH P H P[ ] 0 [ ] 0 { } 0 15M M M M M M

Clearly, in the basis of both ĤM and PM are diagonal, Γ M transforms the states with PM =  ± 1 into the states with 
= P 1M . Therefore the Hamiltonian possesses Majorana doubling.

Yang-Baxter equation and 3-cyclic SU(3) generators. Since the YBE is properly applied in construct-
ing 2 Kitaev model, we try to extend the result to 3-symmetric model. Fortunately, the known 9 ×  9 matrix 
representation of the solution to YBE is a proper unitary operator for constructing the desired model with 3 
symmetry. Now we give a brief introduction to the 9 ×  9 matrix representation of the solution to YBE which is 
associated with this paper. Firstly, let us introduce the braid matrix20 for ω =

π
ei

2
3 :

ω ω
ω ω ω
ω ω

ω ω ω
ω ω

ω ω
ω ω

ω ω
ω ω ω

=





































,

( )

B i
3

0 0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 1 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 16

2 2

2 2

2 2

which satisfies the braid relation

= , ( )+ + +B B B B B B 17i i 1 i i 1 i i 1

where Bi =  I ⊗  ... I ⊗  Bi,i+1 ⊗  I ... (I is 3 ×  3 identity matrix).
The solution θ( )R̆i  of Yang-Baxter equation can be viewed as the parametrization of braid operators,

θ θ θ( ) = = + ,

= − , = ,
( )

θR̆ e M

M T M

cos i sin
2
3

1 1
18

i M
i

i
2

where = ( + )
π

T e I Bi
i

i6  satisfies the Temperley-Lieb algebraic (TLA) relation21
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Then the YBE22 means that a 3-body S-matrix can be expressed in terms of three 2-body S-matrices, i.e.:

θ θ θ θ θ θ( ) ( ) ( ) = ( ) ( ) ( ). ( )+ + +
̆ ̆ ̆ ̆ ̆ ̆R R R R R R 20i 1 i 1 2 i 3 i 1 3 i 2 i 1 1

Substituting equation (18) into equation (20), we have the constraint for three parameters θ1, θ2 and θ3 :

θ
θ θ

θ θ
=
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+
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( )
tan tan tan

1 tan tan 21
2
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1
3 1 3

When θ θ θ= = = π
1 2 3 3

, the YBE turns into the braid relation with π ω( / ) =R̆ B3i i. Note that due to the different 
d in TLA for 4 ×  4 and 9 ×  9 solutions of YBE ( =d 2 for 4 ×  4), the angular relation in equation (21) for 9 ×  9 
is different from the angular relation for 4 ×  4 in equation (1),

θ
θ θ
θ θ

′ =
′ + ′

+ ′ ′
.

( )
tan tan tan

1 tan tan 222
1 3

1 3

It is well known that the physical meaning of tan θI (or θ ′tan i ) for i =  1, 2, 3 is the velocity of a particle. The angu-
lar relation for 4 ×  4 solution means the Lorentz addition of the velocity.

By introducing the 3-cyclic SU(3) generators ( )T j
i  based on the principal representation of V. Kac23 (see 

Supplementary), TLA generator can be expressed as the tensor product of nearest SU(3)-lattice sites,

ω ω= ( + ⊗ + ⊗ ) .
( )

⊗ ( ) ( ) ( ) ( )
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3 23i
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Hence at each lattice site there is one SU(3) operator which can be identified with the colors blue, red and green25. 
In the following sections, we will make use of equation (23) to generate the topological non-trivial models and 
triple degeneracy.

Ladder operators of SU(3) spin and extended Jordan-Wigner transformation. In this section, we 
present the ladder operators of SU(3) spin and introduce the extended Jordan-Wigner transformation for SU(3) 
spin sites.

For spin-1
2

 at lattice sites expressed by SU(2) Pauli matrices, the ladder operators are

σ σ= 





, = 






.

+ −0 1
0 0

0 0
1 0

Similarly, we introduce the cyclic ladder operators of SU(3) spin
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The above operators act on the color space to transform the three colors into each other obeying the algebraic 
relations

= = = ,
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Unlike SU(2) spin, the SU(3) spin has 3 independent ladder operators u+, s+ and d+ to make the transition 
between three different colors. u, s and d can be expressed by u+, s+ and d+.

To introduce the extended Jordan-Wigner transformation for SU(3), let us review the original SU(2) J-W 
transformation firstly. J-W transformation transforms sited spin-1

2
 operators onto spinless fermions

∏ ∏σ σ σ σ=
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( )=
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where †am and am satisfy the fermionic commutation relations

δ, = , , = , = . ( )† † †a a a a a a{ } { } { } 0 28m n mn m n m n

From the above transformation, it turns out that the anti commuting relations of fermions result from 
σ σ σ σ, = , =+ −{ } { } 0z z
i i i i .

Similarly, the extended J-W transformation for SU(3) can be defined as26
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in which it follows

ω= ( , ∈ , , < ) ( )X Y Y X X Y U S D{ } { }; i j ; 30i j j i

= , = , = , ( )† † †S U D D S U U D S 31i i i i i i i i i

that can be checked straightforwardly. Different from the anti commuting of spinless fermions, in the exchange 
between the above operators there appear extra ω (or ω2) phase factor. The physical meaning is obvious, when 
making exchange between two particles on i-th and j-th sites (i <  j), the system gains an extra ω phase factor. 
Exchanging the two particles again, the system returns to the initial state.

By introducing the linear combination of sited SU(3) operators

ω ω= + + , = + + ( )† † † † † † † †F U S D G U S D ; 32i i
2

i i i i i i

ω ω= + + , = + + , ( )F U S D G U S D 33i i i
2

i i i i i

= , = , = = ( )† †F F G G F G 1; 34i i
2

i i
2

i
3

i
3

ω= ( , ∈ , < ), ( )X Y Y X X Y F G i j{ } { }; 35i j j i

the TLA generator Ti in equation (23) can be rewritten as

ω= + + .
( )+ +

† †T F G F G1
3
[1 ] 36i i i 1 i i 1

Here †Fi  and †Gi  are non-local operators. Indeed, they are the generalizations of Clifford algebra which corre-
sponds to Majorana fermions. Redefining

= , = ( )− −
† †C F C F ; 372i 1 i 2i 1 i

ω ω= , = . ( )† †C G C G 382i i 2i
2

i

Thus the extended generator of TLA shown in equation (36) can be written in terms of the form

ω ω′ = + + ,
( )+ +

† †T C C C C1
3
[1 ] 39i

2
i i 1

2
i i 1
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with

ω= , ( < ), ( )C C C C i j 40i j j i

= , = = . ( )† †C C C C[ ] [ ] [ ] 1 41i i
2

i
3

i
3

For convenience we call the commutation relation shown in equation (40) ω-commutation relation. This commu-
tation relation can be regarded as the generalization of Majorana fermions’ anti-commuting, which is also pro-
posed in27. Note that ′Ti  does not equal to Ti, but it also satisfies =d 3  TLA in equation (19) and can be 
substituted into equation (18). In 1D Kitaev model, two real Majorana operators corresponds to one complex 
fermion site as well as one SU(2) spin site. Similarly, the two ω-commuting operators C2i−1 and C2i correspond to 
the i-th SU(3) spin. Obviously, equation (40) looks q-commutation relation for q3 =  1 in quantum algebra28.

Generating 3 parafermionic model from YBE. From equation (18) and equation (39), we obtain the 
unitary solution θ( )R̆i  of YBE in the form

θ θ ω ω( ) = + + + . ( )
θ−

+ +
̆ † †R e C C C Ci 2

3
sin [1 ] 42i

i 2
i i 1

2
i i 1

Now let us construct the 3 parafermionic chain based on equation (42). Substituting equation (42) into equation 
(8), we get

θ ω ω( ) = −


 + −



.

( )+ +


ˆ † †H t C C C C2
3

1
2 43i

2
i i 1

2
i i 1

Similarly, we consider the nearest-neighbour interactions of Ci’s and extend equation (43) to an 2N-chain and 
ignore the constant term, the derived chain model can be expressed as:

 ∑ ∑ω θ θ= −




 ( + ) + ( + )





. ( )=

− −
=

−

+ +
 

ˆ † † † †H C C C C C C C C2
3 44

N N
2

i 1
1 2i 1 2i 2i 1 2i

i 1

1

2 2i 2i 1 2i 2i 1

Here we emphasize that the chain possesses open boundary condition. This model is the 1D 3 parafermionic 
model26, which originates from the three-state Potts model29–31. Instead of the 2 parity symmetry of Kitaev 
model, the model in equation (44) possesses 3 symmetry. The symmetry operator is

∏= ( ), = .
( )=

−
†P C C P 1

45i 1

N

2i 1 2i
3

Hence P is a 3 symmetry of the model and the eigenvalues of P is 1, ω and ω2. Next we analyse the obtained 
model in two cases.

1. θ > 01 , θ = 02 .
In this case the Hamiltonian becomes:





∑

∑

θ ω

θ

= − ( + )

= − .
( )

=
− −

=





ˆ † †

†

H C C C C

d d

2
3

2
3

[ 2]
46

i

N

i

N

1 1
2

1
2i 1 2i 2i 1 2i

1
1

i i

Here we note that C2i−1 and C2i correspond to i-th SU(3) spin, ω ω= − = ( − )−
† † † †d C C U1i 2i 1 2i

2
i , 

ω ω+( − ) †D2
i  and the vacuum state 0  is defined as =d 0 0i . The Hamiltonian is diagonalised and the 

ground state is unique. This is a trivial case.

2. θ = 01 , θ > . 02
In this case the Hamiltonian is:

 ∑θ ω= − ( + )
( )=

−

+ +


ˆ † †H C C C C2
3 47k

N

2 2
2

1

1

2i 2i 1 2i 2i 1

∑θ= − .
( )=

−
� � �†d d2

3
[ 2]

48i

N

2
1

1

i i


Here the quasiparticle at lattice can be defined as ω= − +
d C Ci 2i

2
2i 1. The ground states satisfy the condi-

tion ψ =d 0i  for i =  1, ..., N −  1. Under the open boundary condition, it shows that the absent operators 
C1, †C1 , C2N and †C2N in Ĥ2 remain unpaired and are the symmetry operators of the Hamiltonian Ĥ2. 
Together with the ω-parity operator P, C1, †C1 , C2N and †C2N lead to the triple degeneracy of ground states 
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which can be categorized according to P. The Hamiltonian has three degenerate ground states: ψ0 , 
ψ ψ= †d1 0  and ψ ψ= †d[ ]2

2
0 , where ω= −† † †d C C1 2N. The three ground states ψ0 , ψ1  and ψ2  

possess the parity 1, ω and ω2, respectively.
From the above discussion we see that the 3 parafermionic chain is natural generalization of the 2 Kitaev 

model. Next let us construct the topological invariant for the parafermionic chain and discuss its phase transition. 
In terms of Fourier transformation,

∑ ∑

∑ ∑

∑ ∑
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S
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e S S
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D
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e D D
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1 1 ;

1 1 ;

1 1
49

mk mk

mk
N

mk

mk mk

k
m 1

N
i

m k
m 1

N
i

m

k
m 1

N
i

m k
m 1

i
m

k
m 1

N
i

m k
m 1

N
i

m

The parafermionic operators in momentum space can be written in the following form

∑ ∑= , =
( ),

=

−
− ,

=
−

 

† †C
N

e C C
N

e C1 1 ;
50A k

mk
A k
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m 1

N
i

2m 1
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N
i

2m 1

∑ ∑= , = .
( ),

=

−
,

=

 

† †C
N

e C C
N

e C1 1
51B k

mk
B k
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m 1

N
i

2m
m 1

N
i

2m

Then the equation (44) can be expressed in momentum space as

∑= − , , ,
( )π=−

π

, , , ,
   

ˆ † †H C C M C C2
3

[ ] [ ]
52A k B k A k B k

T

k



where M is 2 ×  2 matrix,

θ ω θ σ θ ω θ σ

σ σ

= ( + ) + ( + )

= 





, = 






. ( )

− + −

+ −

   M e e ;
0 1
0 0

0 0
1 0 53

k k
1

2
2

i
1 2

i

Here we note that ,, ,
 

† †C C[ ]A k B k  is analogous to the Majorana operators in momentum space in 1D Kitaev model. If 
one define [σx, σy, σz] as a SU(2) space, M can be regarded as a vector in XY-plane of SU(2) space with the basis σx 
and σy (k ∈  [− π, π]), namely,

σ= ⋅ , ( )
��� ��M M 54

σ σ σ σ σ σ σ σ σ σ σ= + , = − + , = − , ( )+ − + − + − − +i i 55x y z

θ θ π θ θ π
=




− +



 +



, −



 +



,





,

( )

��� � � � �M k k1
2

cos 2
3

3
2

sin 2
3

0
561 2 1 2

= .
( )

���
���M̂ M
M 57

Now the topological invariant for vector 
���
M can be defined32,

∫ π
=

∂

∂
. ( )π

π

αβ α
β

−

−ˆ
ˆ

W dk M
M
k4 58

1


Indeed, the topological invariant W means the winding number of the vector 
→
M  winding around the 

original point in the first Brillouin zone. In ref. 26, the author emphasized that the energy spectrum of 
parafermionic model can not be obtained simply by Fourier transformation due to the relation in equation 
(40). Here we do not expect to obtain the energy spectrum, but in the momentum basis of  ,



†CA k and  ,


†CB k, the 
topological winding number of 3 parafermionic chain shows the analogous characteristic as the 2 Kitaev 
chain. When θ θ> 

2 1 , the winding number W =  − 1 corresponds to the topological non-trivial phase. 
When θ θ> 

2 1 , the winding number W =  0 corresponds to the topological trivial phase. In this sense, 
θ θ> 

2 1  is the phase transition point. By calculating the eigenvalues of M, we can find that the “bulk gap” 
closes at θ θ> 

2 1  where the “bulk gap” closes, the phase transition occurs. Thus we see from the above 
definition that the critical point of the phase transition θ θ= 

2 1  coincides with the 3 conformal field 
theory(CFT)33–35. Obviously, the above properties in our derived 3 parafermionic chain are very similar to 
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1D Kitaev model. However, there are still some differences between 2 and 3 models. The critical point of 
2 Kitaev model can be described by Ising CFT. When Kitaev model is in topological phase, it appears 
Majorana zero mode with quantum dimension 2 . While the critical point of 3 parafermion model is also 
described by 3 parafermion CFT, but the non-abelian primary fields are not 3 parafermion field. There 
are totally six different quasiparticles in 3 parafermion model, three of which possess abelian fields, the 
vacuum , parafermion field ψ and ψ†. Besides, there exist three types of non-abelian fields, σ, σ†, , where 
σ is the spin field and σψ=  is the Fibonacci anyon with quantum qimension +1 5

2
. For example, the 3 

Read-Rezayi quantum Hall phase supports Fibonacci anyons, which are applicable to universal quantum 
computation35–37.

Now let us discuss the generalization of the cyclic chain model from 3 to N . To start with, let us introduce 
the irreducible cyclic representation of SU(N) generators. Under the N-dimensional orthonormal basis 
λ λ = , , ... N{ 1 2 }, akin to SU(3), the ket-bra representation of N2 −  1 SU(N) generators are

∑= 〈 + − |, ( , = , , ... )
( )

( )

=
( )T a a m i m N1 1 2

59a

N

i
m

1
mod N

ω= , ( )
( ) ( ) ( − )( − )

+ +
( + − )

( )

( )T T T 60
n m j

i j
m n

i
m

j
1 1

1
1

Nmod
mod N

with ω root of unity ωN =  1 and ( )T1
1  identity operator. Then the representation of Temperley-Lieb algebra Ti on (i, 

i +  1)-th sites under the cyclic SU (N) operators is expressed as

∑= 


⊗ 


,
( )=

( ) ( )

, +
T

N
T T1

61i
k

N
m m

i i

k

1
x y

1

with x, y, m, n arbitrary certain integer given from 2 to N. Based on the algebraic relation in equation (60), it is 
easy to check that Ti in equation (61) satisfies TLA with quantum dimension =d N ,

= , = ,
= ,

= , − > . ( )
±

T dT d N
T T T T
T T T T i j 1 62

i
2

i

i i 1 i i

i j j i

From the view point of rational Yang-Baxterization of Temperley-Lieb algebra, when d ≤  2, i.e. N ≤  4, the 
parameter in the solution of YBE is real and the corresponding R̆-matrix is unitary and can be viewed as unitary 
evolution operator of a quantum system. That is, we can obtain 4 parafermion chain from YBE in an similar way 
as 3. While d >  2, the parameter in the solution of YBE is imaginary(see Supplementary), hence the R̆ is not 
unitary and cannot be viewed as an ideal evolution operator. One can still construct  >N 4 parafermion chain, but 
the chain does not come from the rational Yang-Baxterization.

Fermionic representation of 3 parafermionic model. In this section we express the 3 parafermionic 
chain in terms of fermions. For the 3 ×  3 matrices in equation (25), we choose three orthonormal basis, 

= †r r vac , = †g g vac  and = †b b vac . Here vac  represents the vacuum state, r†, g† and b† are three types 
of fermions and satisfy the fermionic commutation conditions

δ, = , , = , = , ( , = , , ), ( )
† † †x y x y x y x y r g b{ } { } { } 0 63xy

with the constraint of the occupation number of the fermions on each site

+ + = . ( )† † †r r g g b b 1 64

Then equation (64) means the only one occupied fermion on the site for either r† or g† or b†. Considering equation 
(25) the SU(3) ladder operators can be written as

ω ω

ω ω

= , = , = ,

= , = , = . ( )

+ + +

− − −

† † †

† † †
u r g s g b d b r
u g r s b g d r b 65

2

2

In the basis of  r , g  and  b , we have the relation

δ δ= − = . ( , , , , ∈ , , ) ( )
† † † † † †w xy z n w z n w z xy n w z n w x y z n r g b{ } 66xy xy

It can be proved that the operators in equation (65) satisfy the same relations as for those in equation (26) (see 
Supplementary). In other words, the fermionic representation of the SU(3) operators also satisfy the matrix mul-
tiplication. Similarly, the nonlocal operators U†, S† and D† can be expressed as
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∏ ∏

∏ ∏

∏ ∏

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

=




 + +





 , =





 + +







=




 + +





 , =





 + +







=




 + +





 , =





 + +





 .

( )

=

−

=

−

=

−

=

−

=

−

=

−

† † † † † † † † †

† † † † † † † † †

† † † † † † † † †

U r r g g b b r g U r r g g b b g r

S r r g g b b g b S r r g g b b b g

D r r g g b b b r D r r g g b b r b

[ ] [ ] ;

[ ] [ ] ;

[ ] [ ]
67i

n

n
i 1

n 1

i i i i
2

i i n n n
i 1

n 1

i i
2

i i i i n n

n
i 1

n 1

i i i i
2

i i n n n
i 1

n 1

i i
2

i i i i
2

n n

n
i 1

n 1

i i i i
2

i i
2

n n n
1

1

i i
2

i i i i n n

Here we do not need to require whether the commutation relation between two operators on different sites is 
fermionic or bosonic, since the non local operators U, S and D are always even power of the fermionic operators.

Making use of the fermionic representation of U†, S† and D† we find that ′Ti  given by equation (39) also satisfies 
T-L algebraic relation. Then the 3 parafermionic chain is rewritten as





∑

∑

ω θ θ

θ θ

= − ( + ) + ( + )

= − 

 ( − ) + (− + )


,

( )

=
− − + +

=

� �

� � � �

ˆ † † † †

† †

H C C C C C C C C

g g d d

2
3

[ ]

2
3

3 1 2
68

i

N

i

N

2

1
1 2i 1 2i 2i 1 2i 2 2i 2i 1 2i 2i 1

1
1 i i 2 i i

where ω= + + − ( + + )+ + + + + +


† † † † † † †d r g g b b r r g g b b ri i ii i i i i i i 1 i 1 1 i 1 1 i 1 . For the topological non-trivial case θ = 01 , 
θ > 02 , 

†
di  in equation (68) shows the rotation symmetry of r†, g† and b† for each sited SU(3) spin. For the topolog-

ical trivial case θ > 01 , θ = 02 , equation (68) shows that the ground state corresponds to the full occupation of 
fermion †gi  on each site. Unlike the topological non-trivial case, there is no cyclic permutation symmetry of r†, g† 
and b† on each SU(3) spin site. There are totally three types of parafermions on the i-th SU(3) spin site, †Fi , †Gi  and 
ωFiGi (see equation (32)), but we only choose two of the three types of parafermions to represent Temperley-Lieb 
algebra in equation (36). Hence there are three different ways to choose the representation of TLA as well as the 
3 parafermionic model. Each way corresponds to one type of ground state occupation (r† or g† or b†).

Algebra of triple degenerate model. In previous sections, we have discussed the 3 parafermionic model 
and the physical consequences. There appears the triple degeneracy in ground state and the emergence of tripling 
corresponds to the topological phase of the Hamiltonian. It can be regarded as the extension of the algebra of 
Majorana doubling pointed out in ref. 7. In this section, we shall show the algebra of triple degeneracy at each 
energy level due to the 3-cyclic and give its intuitive explanation.

Firstly let us construct 3-body Hamiltonian based on the 3-body S-matrix constrained by YBE. It is well 
known that the physical meaning of θ( )R̆i  is 2-body S-matrix. YBE means that a 3-body S-matrix can be decom-
posed into three 2-body S-matrices in the following way

θ θ θ θ θ θ

θ θ θ

( , , ) = ( ) ( ) ( )

= ( ) ( ) ( ). ( )

̆ ̆ ̆ ̆
̆ ̆ ̆

R R R R

R R R 69
123 1 2 3 12 1 23 2 12 3

23 3 12 2 23 1

Here we note that due to the constraint of equation (21), only two of the three parameters θ1, θ2 and θ3 are free. 
Suppose θ1 and θ2 are time dependent, then the 3-body Hamiltonian can be obtained from equation (8) (see 
Supplementary)

ω α β γ

κ

= ( + ) + ( + ) + ( + )

+ ( + ), ( )

ˆ † † † † † †

† † †

H C C C C C C C C C C C C
C C C C C C

[ ]

70
123

2
1 2 1 2 1 3 1 3 2 3 2 3

1 2 3 1 2 3

where α, β, γ and κ are real parameters depending on θ1 and θ2. By making inverse Jordan-Wigner transforma-
tion for SU(3) to transform Ci’s back into SU(3) spin sites, one can show that there are only two independent 
symmetry operators (see Supplementary)

= , ( )† †P C C C C 711 2 3 4

ωΓ = . ( )† †C C C 721 2 3

Then the complete set of the algebra for the Hamiltonian is

, = , , Γ = ( )ˆ ˆH P H[ ] 0 [ ] 0; 73123 123

ωΓ = Γ, = , Γ = . ( )P P P 1 1 743 3

Here P represents the ω-parity operator. Now we turn to the analysis of the degeneracy of the Hamiltonian. From 
equation (74), Γ  transforms the common eigenstates ψ  of Ĥ123 and P to the following form:
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ψ ψ ω ω= , ( = , , ) ( )P a a 1 ; 752

ψ ω ψ ω ψΓ = Γ = Γ ( )P P a[ ] ; 762 2

ψ ω ψ ω ψΓ = Γ = Γ . ( )P P a[ ] 772 2 2

Because Γ  commutes with the Hamiltonian Ĥ123, the above three states have the same energy with different 
ω-parity. As a consequence the Hamiltonian possesses triple degeneracy on all energy levels. In this sense, we 
conclude that 2 parity leads to Majorana doubling, whereas the 3 ω-parity leads to the tripling.

Discussion
Before ending the paper, we would like to make some comments and discussions.

1. In our SU(3) models, only the three operators U†, S† and D† are basic operators that are extention of the spin-
less fermion a† and a in SU(2) Majorana models. U, S and D can be expressed by U†, S† and D† (see equation 
(31)).

2. Our results can be regarded as the direct generalization of 2 Majorana models. The comparison between 2 
Majorana fermion and 3 parafermion is shown in the Table 1. In 2 case, the eigenvalues of the symmetry 
operators are ± 1 whereas the eigenvalues turn into 1, ω and ω2 for 3 symmetry operators. We see from the 
Table 1 that the exchange of 3 quasiparticles Ci emerges an extra ω or ω2 phase factor instead of − 1.

3. The topological case of 3 parafermionic model has been obtained, which corresponds to the triple degener-
ate ground states and the non-trivial topological winding number. Although the 3 parafermionic model 
consists of SU(3) spin, the matrix M of the Hamiltonian in momentum space still forms SU(2)(see equation 
(53)). Hence we can follow the original Kitaev model to define the topological winding number for the 3 
parafermionic model. The 3 parafermionic model is formed by three types of fermions r†, g† and b†. For 
topological trivial case, the ground state corresponds to the full occupation of g-fermion. For topological 
non-trivial case, the ground state shows the cyclic rotational symmetry of r, g and b-fermions. This may be 
helpful to realize the 3 parafermionic model experimentally.

4. To give an intuitive explanation about the triple degeneracy, we construct the 3-body Hamiltonian Ĥ123 based 
on YBE. This model is the generalization of the 3-MF model pointed by Lee and Wilczek. Two independent 
symmetry operators Γ  and P of the Hamiltonian have been found and we show that all the energy level of 
Ĥ123 possesses triple degeneracy. In the process of constructing triple degeneracy, the 3-cyclic property of the 
3 symmetry operators plays the crucial role.

5. Both of the two derived models are based on the 9 ×  9 braid matrix Bi as well as the solution θ( )R̆i  of YBE. 
Regarding θ( )R̆i  as the time dependent unitary evolution of 2-body interaction, one can construct the local 
2-body interacting Hamiltonian. The 2-body Hamiltonian is then extended to the desired 3 parafermionic 
chain. To obtain the 3-body Hamiltonian, we suppose that 3-body S-matrix can be decomposed into three 
2-body S-matrices via YBE that is acceptable in low-energy physics. The advantage is in that the 3-body Ham-
iltonian inherits the ω-parity symmetry from 2-body Hamiltonian. In other words, the ω-parity symmetry of 
θ( )R̆  preserves the symmetry properties of 3 parafermionic model and 3-body Hamiltonian. This is the 

important role of YBE plays in obtaining the desired models.

To summarize, we extend the 2 Kitaev model to 3 parafermionic model. Due to the 3-fold 3-cyclic, 3 
model possesses triple degeneracy. But both 2 and 3 models have the similar topological phase transition 
scheme obtained from YBE. In this sense, YBE is a powerful tool for generating new models. How to make full use 
of YBE to generate more meaningful models is still a challenge problem.

Type of spin sites SU(2) SU(3)

Ladder operators σ σ, .+ −
k k , , .+ + +u s dk k k

After J-W transform. , .†a ak k , , .† † †U S Dk k k

Quasiparticle
γ = +−

†a a ;2k 1 k k  
γ = ( − ).†a ai2k k k  

(Majorana fermions)

ω ω= + +−
† † † †C U S D ;2k 1 k

2
k k  

ω ω ω= + + .† † † †C U S D2k k k k

Commutation relation γiγj =  − γjγi; 
γ γ γ= , = .†1i
2

i i

ω= , ( > )† † † †C C C C j i ;i j j i  
= , = .† †C C C[ ] 1 [ ]i

3
i
2

i

Braid operator γ γ′ = ( + )+B 1 ;i
1
2 i i 1  
′ = .B[ ] 1i
8

ω= ( + + )+ +
† †B C C C C1 ;i

i 3
2

i i 1 i i 1  
= .B[ ] 1i

6 .

Cyclic operation

γ γ′ ′ = +
†B B ;i i i i 1  
γ γ′ ′ = −+

†B B ;i i 1 i i  
γ γ′ (− ) ′ = − +

†B B ;i i i i 1  
γ γ′ (− ) ′ = .+

†B B ii i 1 i

= +
† † †B C B C ;i i i i 1  ω=+ +

† †B C B C C ;i i 1 i
2

i 1 i  
ω( ) = .+

† †B C C B Ci
2

i 1 i i i

Table 1.  Comparison between SU(2) and SU(3) pictures.
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