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Consortium
Greg Finak1,*, Marc Langweiler2,*, Maria Jaimes3, Mehrnoush Malek4, Jafar Taghiyar4, 
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Florian Kern12, Yu Qian13, Rick Stanton13, Kui Wang14, Aaron Brandes15, John Ramey1, 
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& J Philip McCoy21,†

Standardization of immunophenotyping requires careful attention to reagents, sample handling, 
instrument setup, and data analysis, and is essential for successful cross-study and cross-center 
comparison of data. Experts developed five standardized, eight-color panels for identification of major 
immune cell subsets in peripheral blood. These were produced as pre-configured, lyophilized, reagents 
in 96-well plates. We present the results of a coordinated analysis of samples across nine laboratories 
using these panels with standardized operating procedures (SOPs). Manual gating was performed 
by each site and by a central site. Automated gating algorithms were developed and tested by the 
FlowCAP consortium. Centralized manual gating can reduce cross-center variability, and we sought 
to determine whether automated methods could streamline and standardize the analysis. Within-site 
variability was low in all experiments, but cross-site variability was lower when central analysis was 
performed in comparison with site-specific analysis. It was also lower for clearly defined cell subsets 
than those based on dim markers and for rare populations. Automated gating was able to match the 
performance of central manual analysis for all tested panels, exhibiting little to no bias and comparable 
variability. Standardized staining, data collection, and automated gating can increase power, reduce 
variability, and streamline analysis for immunophenotyping.
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Flow cytometry is one of the most powerful tools for single-cell analysis of the immune system at a cellular 
level; yet it suffers from a lack of standardization beyond the simplest clinical assays that count major subsets. 
In research settings, each study tends to use its own combination of markers and fluorochromes, even when 
purportedly analyzing similar cell subsets. Sample handling, instrument type and setup, gating and analysis strat-
egies, and ways in which the data are reported can all vary1,2. Unfortunately, these differences can all affect the 
results and how they are interpreted3–9.

The Human Immune Phenotyping Consortium (HIPC) was developed by the Federation of Clinical 
Immunology Societies (FOCIS) to address these issues by promoting standardization of flow cytometry immu-
nophenotyping in clinical studies, so that data could be compared across sites and studies. As part of these efforts, 
the HIPC immunophenotyping panel was developed2. The HIPC panels consist of five eight-color antibody cock-
tails, designed to phenotype major immune cell subsets in peripheral blood mononuclear cells (T cells, Treg, 
Th1/2/17, B cells, and NK/dendritic cells/monocytes). These panels were designed to standardize routine immu-
nophenotyping in humans while still being compatible with widely available clinical flow cytometers. Although 
they were not designed to represent the full complexity of cutting-edge research, the cocktails were designed to 
be easily expanded with additional colors to serve that purpose. The Euroflow consortium7,10–12 and the ONE 
Study13 have successfully developed standardized immunophenotyping panels and procedures for Leukemia and 
Lymphoma diagnostics and whole blood immunophenotyping, respectively13.

Here we demonstrate that an automated data analysis strategy can be integrated into a workflow utilizing a 
standardized staining panel.

Following development and testing of the HIPC panels, lyophilized reagent cocktails in 96-well plates were 
developed (BD Lyoplate, BD Biosciences, San Diego, CA). The use of lyophilized reagent cocktails is a proven 
method for improving standardization3,14,15, in that it protects against errors of reagent addition or mis-titration, 
provides improved reagent stability, and simplifies assay setup.

In addition to antibodies and reagent differences, analysis strategies for flow cytometry data remain highly 
non-standardized making results difficult to reproduce and compare across experiments. Traditionally, the 
majority of flow cytometry experiments have been analyzed visually, either by serial manual inspection of one 
or two dimensions at a time (a process termed “gating”, with boundaries or “gates” defining cell populations of 
interest). However, these visual approaches are labor intensive and highly subjective, and they neglect informa-
tion present in the data that are not visible to the human eye, thus representing a major obstacle to the automation 
and reproducibility of research. For example, in a study of Intracellular Cytokine Staining (ICS) standardization 
involving 15 institutions, the mean inter-laboratory coefficient of variation ranged from 17 to 44%, even though 
the cell preparation was standardized and the testing was performed by using the same samples and reagents at 
each site3. Most of the variation observed was attributed to gating, even though experts in the field had conducted 
the analyses. It was concluded that the analysis, particularly gating, was a significant source of variability, and it 
was suggested that analysis strategies should be standardized.

Over the past eight years, there has been a surge in the development and application of computational meth-
ods for flow cytometry data analysis in an effort to overcome limitations in manual analysis16 and the importance 
of automated, high-dimensional analysis was highlighted in a recent position paper17. Pedreira et al. showed 
significant correlation between automated gating and manual data analysis of PBMC subsets and could dis-
criminate between normal and reactive samples and B-cell chronic lymphoproliferative disorders18,19. Fiser et al.  
showed how hierarchical clustering with a Mahalanobis distance metric could be used to classify PBMCs into 
different phenotypic subsets with good agreement to manual analysis20. Although their approach was limited to 
relatively small numbers of events due to computational limitations, it demonstrated the utility of an unsuper-
vised approach that takes into account the information in the full multidimensional data. Recently, the FlowCAP 
(Flow Cytometry: Critical Assessment of Population Identification Methods) consortium provided an objective 
approach to compare computational methods with both manual gating and external variables using statistical 
performance measures21. Based on the results of these study, Aghaeepour et al. concluded that computational 
methods had reached a sufficient level of maturity and accuracy for reliable use in flow cytometry data analysis.

Based on these encouraging results, we hypothesized that computational algorithms could be used to improve 
the standardization of flow cytometry results beyond what can be accomplished by the standardization of the wet 
lab component alone. In order to select the best computational methods for this task, we leveraged the FlowCAP 
project to compare and select the best performing algorithms based on a pilot dataset. The best-performing 
algorithms were combined using the OpenCyto framework22 to leverage the best features of each, and compared 
to a central manual analysis in terms of variability and bias on four staining panels using both lyophilized and 
cryopreserved control cells.

Materials and Methods
Cells. Lyophilized control PBMC (CytoTrol, Beckman Coulter, Miami, FL) were reconstituted and used 
according to the vendor’s instructions. Cryopreserved PBMC from three donors were frozen in replicate vials of 
107 cells per vial and obtained from Precision R&D (Frederick, MD).

Staining cocktails and lyophilized reagent plates. The HIPC Immunophenotyping panels are listed 
in Table 1. These staining panels were designed to identify the major subsets of B cells, T cells, T-helper cells, and 
dendritic cells, monocytes, and NK cells2. All reagents were first tested and optimal titers determined among three 
of the nine participating HIPC laboratories.

The lyophilized reagent plates, along with a consensus staining protocol, were distributed to nine international 
laboratories for cross-site testing. The protocol included fluorescence target channels for use with pre-stained 
single-color control beads included in the reagent plates. Two experiments were performed: one with lyophilized 
control cells (CytoTrol, Beckman Coulter, Miami, FL), and the other with replicate vials of cryopreserved PBMC 
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from three healthy subjects (Precision R&D). Data collected included manual analysis for the specified cell sub-
sets, as performed at each site, FCS files, from which central analyses (manual and automated) were performed, 
and instrument setup parameters. The cell subsets pre-specified for evaluation in the study are shown in Table 2. 
The number of cell events per FCS file for each staining panel varied widely across centers. They are summarized 
here by their median (min, max): T-cell: 125,900 (44,680, 483,300), DC/Mono/NK: 108,300 (49,330, 474,600), 
B-cell: 141,600 (38,900, 449,200), T-regulatory: 135,500 (54,340, 458,400).

Design of inter-laboratory experiments. In the initial cross-site experiment, nine sites stained four rep-
licates of lyophilized control cells (CytoTrol) in lyophilized reagent plates. Lyophilized control cells were chosen 
in order to eliminate variability, as cryopreservation and thawing of PBMC were expected to introduce consid-
erable staining variability. However, lyophilization was also found to alter the staining profile of certain markers, 
compromising the assessment of some populations (e.g., those involving IgD). All sites used either a Fortessa or 
LSR cytometer (Becton Dickinson, San Jose, CA).

In the second cross-site experiment, nine sites stained three replicates of each of three cryopreserved PBMC 
samples, to assess variability in the context of real-life samples (cryopreserved and thawed PBMC). The same 
lot of lyophilized reagent plates was used for both experiments. Sites provided results of gating for defined cell 
subsets using their own gating schema based on general instructions for the experiment from lyophilized samples 
(provided in Supplementary Material), as well as FCS files for a centralized analysis from both experiments. Only 
eight sites returned data for the second experiment, and one of the eight was excluded since they did not collect 
one of the required markers/channels in each of the panels.

Central manual analysis. FCS files submitted by each participating site consisted of triplicates of each of 
three samples stained with the five cocktails included in the lyoplate.

These were accompanied by FCS files of the single-stained compensation bead samples in the lyoplate, To 
optimize compensation for centralized analysis, post-acquisition data analyses were performed using FlowJo 
(Tree Star Inc., version 9.6.3). Tube-specific matrices were constructed for each site, necessitated by the tandem 
(APC-H7, PE-Cy7) conjugates associated with each of the five cocktails.

Initial filtering of data from each cocktail delineated lymphoid or mononuclear populations using FSC-A/
SSC-A profiles and excluded doublets using FSC-A/FSC-H profiles and dead cells using FSC-A/fixable green 
live-dead profiles. Subsequent gating was designed to identify major lymphocyte and monocyte cell populations 
specified previously (2). The design of the lyoplate did not offer the opportunity to establish gate placement using 
Fluorescence-Minus-One (FMO) controls. Therefore, guidance for gate placement was accomplished by setting 
up FMO controls using the same liquid reagents that were used in lyophilized form in the lyoplate.

In two instances (B-cell, Treg) Boolean gates were constructed to aid in identifying several populations. Gating 
schemes for all panels can be found in Supplementary Figures 1–4, and live visualization of the manual (and auto-
mated) gates for each sample can be found online at the ImmuneSpace portal.

The flowWorkspace (v 3.15.17) package20 was used to import the manually gated data into R for further anal-
ysis19. Manual gate import scripts can be found online at ImmuneSpace23. Of the nine centers, one center failed 
to submit results, and one center was excluded from the analysis because markers in the FCS file were mislabeled 
and could not be matched to the expected panels.

Automated analysis algorithms. The two top performing gating algorithms - OpenCyto (v. 1.7.4)22, 
flowDensity (v. 1.4.0)24 - in a study run by the FlowCAP consortium aimed at selecting the best performing algo-
rithms for this larger study were chosen for the analysis presented in this paper. (See Supplementary Figures 5–6). 
Gating was performed using OpenCyto plug-in algorithms22,24, enabling different gating algorithms to be selected 
for different steps of the gating pipeline for each panel, depending on their strengths.

OpenCyto is a BioConductor framework for constructing robust and reproducible end-to-end flow data anal-
ysis pipelines. The framework can handle large data sets in a memory efficient manner and allows the incorpo-
ration of domain-specific knowledge by encoding hierarchical relationships between cell populations as part of 
the pipeline, making it ideal for reproducing hierarchical manual analysis. Pipeline templates are defined through 
a text-based csv file, promoting reusability and eliminating the need to write data-set specific code. OpenCyto 
supports several general purpose data-driven gating approaches natively, as well as user-defined methods via a 
plug-in framework.

T cell Treg B cell DC/mono/NK Th1/2/17

FITC dead dead dead dead dead

PE CCR7 (150503) CD25 (2A3) CD24 (ML5) CD56 (B159) CXCR3 (1C6/CXCR3)

PerCP-Cy5.5 CD4 (SK3) CD4 (SK3) CD19 (SJ25C1) CD123 (7G3) CD4 (SK3)

PE-Cy7 CD45RA (L48) CCR4 (1G1) CD27 (M-T271) CD11c (B-LY6) CCR6 (11A9)

APC CD38 (HIT2) CD127 (HIL-7R-M21) CD38 (HIT2) CD16 (B73.1) CD38 (HIT2)

APC-H7 CD8 (SK1) CD45RO (UCHL1) CD20 (2H7) CD3+ 19+ 20  
(SK7, SJ25C1, 2H7) CD8 (SK1)

V450 CD3 (UCHT1) CD3 (UCHT1) CD3 (UCHT1) CD14 (MPHIP9) CD3 (UCHT1)

V500 HLA-DR (G46-6) HLA-DR (G46-6) IgD (IA6-2) HLA-DR (G46-6) HLA-DR (G46-6)

Table 1.  The HIPC antibody panel, specificities and clones.
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flowDensity is based on a supervised sequential bi-variate clustering approach that generates a set of 
pre-defined cell populations. It chooses the best cut-off for individual markers using characteristics of the density 
distribution and takes just seconds to run per file. flowDensity is available as R/BioConductor package, and is 
integrated into OpenCyto as a plug-in.

The Thelper panel was excluded in preliminary analysis as too variable to be usable. OpenCyto gating tem-
plates for four of the lyoplate panels (B-cell, T-cell, T-regulatory, and DC/Mono/NK)), as well as R code used to 
perform the automated gating, import manually gated data, data cleaning, statistical analysis and plotting are 
available through the ImmuneSpace portal (https://www.immunespace.org/project/HIPC/Lyoplate/begin.view). 
The gating of the FCS files from templates takes approximately 45 minutes, although setting up the initial tem-
plates is an iterative process requiring substantially more time. Automated and manual gates can be visualized 
across samples and centers through an interactive web application built within the ImmuneSpace database. In 

Panel Population Name Reliability Corresponding Markers

T-cell CD8 Activated − CD3+ /CD8+ /CD4−  /CD38+ /HLADR+ 

T-cell CD4 Activated + CD3+ /CD8− /CD4+ /CD38+ /HLADR+ 

T-cell CD4 Central Memory − CD3+ /CD8− /CD4+ /CCR7+ /CD45RA− 

T-cell CD8 Central Memory − CD3+ /CD8+ /CD4− /CCR7+ /CD45RA− 

T-cell CD4 Effector + CD3+ /CD8− /CD4+ /CCR7− /CD45RA+ 

T-cell CD8 Effector + CD3+ /CD8+ /CD4− /CCR7− /CD45RA+ 

T-cell CD4 Effector Memory + CD3+ /CD8− /CD4+ /CCR7− /CD45RA− 

T-cell CD8 Effector Memory − CD3+ /CD8+ /CD4− /CCR7− /CD45RA− 

T-cell CD4 Naïve + CD3+ /CD8− /CD4+ /CCR7+ /CD45RA+ 

CD8 Naïve + CD3+ /CD8+ /CD4− /CCR7+ /CD45RA+ 

B-cell IgD− /CD27− − CD3− /CD19+ /CD20+ /IgD− /CD27− 

B-cell Transitional + CD3− /CD19+ /CD20+ 

B-cell Plasmablasts − CD3− /CD19+ /CD20− /Cd24high/CD38high

B-cell Naïve B + CD3− /CD19+ /CD20+ /CD27− /IgD+ 

B-cell Memory IgD+ + CD3− /CD19+ /CD20+ /IgD+ /CD27+ /IgD+ 

B-cell CD19 + CD3− /CD19+ 

B-cell CD20 + CD3− /CD20+ 

B-cell Memory IgD- + CD3− /CD19+ /CD20+ /CD27+ /IgD− 

T-regulatory Total T-regulatory + CD3+ /CD4+ /CD8-/LoCD127/HiCD25/CCR4+  (as % of CD4)

T-regulatory Memory T-regulatory + CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4+ /CD45RO+  (as % of total Treg)

T-regulatory Naïve T-regulatory + CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4+ /CD45RO−  (as % of total Treg)

T-regulatory CCR4-/CD45RO− − CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4− /CD45RO−  (as % of parent)

T-regulatory CCR4-CD45RO+ − CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4− CD45RO+  (as % of parent)

T-regulatory CCR4-HLADR− + CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4− HLADR−  (as % of parent)

T-regulatory CCR4-/HLADR+ − CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4− /HLADR+  (as % of parent)

T-regulatory CCR4+ /CD45RO− − CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4+ /CD45RO−  (as % of parent)

T-regulatory CCR4+ /HLADR+ + CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4+ /HLADR+  (as % of parent)

T-regulatory Total CD4 + CD3+ /CD4+ /CD8−  (as % of parent)

T-regulatory LoCD127/HiCD25 + CD3+ /CD4+ /CD8− /LoCD127/HiCD25 (as % of parent)

T-regulatory Activated + CD3+ /CD4+ /CD8− /LoCD127/HiCD25/CCR4+ /HLADR+  (as % of total Treg)

DC/Mono/NK CD11c-/CD123- − CD11c− /CD123− 

DC/Mono/NK CD11c-/CD123+ + CD11c− /CD123+ 

DC/Mono/NK CD11c+ /CD123− + CD11c+ /CD123− 

DC/Mono/NK CD11c+ /CD123+ – CD11c+ /CD123+ 

DC/Mono/NK CD14+ /CD16+ − CD14+ /CD16+ 

DC/Mono/NK CD16-/CD56+ + CD16− /CD56+ 

DC/Mono/NK CD16+ /CD56- − CD16+ /CD56− 

DC/Mono/NK CD16+ /CD56+ + CD16+ /CD56+ 

DC/Mono/NK HLADR+ − HLADR+ 

DC/Mono/NK Lin-CD14− + Lin-CD14− 

DC/Mono/NK Lin− /CD14+ + Lin− /CD14+ 

DC/Mono/NK CD16− /CD56− − CD16− /CD56− 

Table 2.  Cell populations evaluated by the HIPC panels. evaluated in the study, showing their common 
names and phenotypes (live, lymphocye, and singlet gates are not listed). Cell populations which could be 
reliably detected by automated gating in a panel are marked with a “+ ” in the “reliable” column, while those that 
were unreliable are marked with a “− ”. We did not evalute the Th1/Th2/Th17 panel as it was determined early 
on in preliminary analysis that the panel was too variable to be reliable.

https://www.immunespace.org/project/HIPC/Lyoplate/begin.view
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addition, all analyses performed here are provided as R reports that can be rerun by any users on the web-server 
providing complete transparency of code and results including gating and statistical modeling of gated population 
statistics. Raw and processed data can also be easily downloaded, which can be used to reproduce the analyses 
locally or perform novel analyses. Automated and manual gate definition can also be exported in Gating-ML25, an 
open standard extensible markup language for describing flow cytometry gating, as well as CLR format .

Statistical Analysis. Cell population statistics were extracted from the manual and automated gating 
approaches using R’s flow cytometry tools and analyzed as described below.

Different sources of variability (center, sample, and residual) were assessed by fitting a linear mixed effects 
model to the proportion of cells identified in each cell population in each staining panel. For a fixed staining 
panel, cell subset, and gating method, we let prij represent the proportion of cells in replicate r from sample i, and 
center j. We transformed the proportion, (1): yrij=logit(prij), and model (2):

µ α β= + + +Yrij i j rij

where μi are the intercepts, αi are the sample-level random effects, βj are the center-level random effects, and ∈rij 
are the residual technical errors, with σ α σ β σ∼ ( , ), ∼ ( , ), ∼ ( , )N N N0 0 0rij r i sample j center

2 2 2 . The estimates 
of the σ2 ’s from the model are the components of variance due to the different sources of variability (Fig. 4). 
Sample-level estimates were obtained by replacing the sample-level random effects, αi , in the above model, with 
fixed effects for which we obtained confidence intervals in Fig. 5.

We defined bias as the difference between sample-level estimates of population proportions for automated 
gating and sample-level estimates of population proportions for manual gating, after adjusting for center-to-center 
variability, and taking into account the 95% confidence intervals on those estimates. For a given population and 
sample i , bias is defined as µ µ σ+ − − ± .a a 1 96manual

i
manual

i
automated

i
automated

se.

Results
Individual versus central manual analysis. Central manual analysis significantly reduced the variability 
in comparison with individual site analysis (Fig. 1A). This was not unexpected based on previous studies3, and 
given that the individual site analysis was done without a shared gating template and with only general instruc-
tions as to how each particular cell subset (e.g., CD3+ CD4+  lymphocytes) was to be gated2. We further com-
pared the two experiments using only the data from central manual analysis (Fig. 1B). In general, except for those 
subsets that could not be effectively identified using lyophilized cells, the CV’s were similar or slightly lower for 
the lyophilized cells compared to the cryopreserved PBMC (Fig. 1B).

Findings from central manual analysis. The within-site replicates for both experiments were very good, 
for essentially all cell subsets. In general, consistency between sites was more variable than within sites (repre-
sentative examples of inter and intra-site variability from the T-cell panel are shown in Fig. 2A,B, respectively). 
The within-site coefficients of variability for the different cell populations and panels were reduced by between 
94% and 43% (mean 73%, IQR 18%) compared to the between-site CVs for the same panels and populations. 
While larger, more easily identified subsets (e.g., CD3+  and CD4+  T cells) tended to have CV’s of < 10% across 
sites, subsets that were difficult to identify due to dim staining, and/or that required multiple successive gates, had 
higher CV’s. While these results are not surprising, they do highlight the challenges of cross-site flow cytometry 
data analysis and the need for more standardized and objective data analysis approaches.

Automated analysis of cryopreserved PBMCs reduces technical (center-to-center) variabil-
ity for some subsets. We assessed which experimental factors had the largest impact on the variability 
of estimated population statistics from the three gating methods using a linear mixed model. In the T, B and 
T-regulatory panels, the majority of measured cell populations exhibited biological variation that was larger than 
technical variation. In contrast, for the DC panel, technical variability was the primary source of variation in the 
data for the majority of measured cell populations (Fig. 3, and Supplementary Figures 7–9). The residual variation 
captures variability due to other sources not explicitly captured by the model. We examined the performance of 
individual panels more closely.

In the T-cell and B-cell panels, the OpenCyto and flowDensity methods generated cell population estimates 
with lower variability compared to manual gating for some cell populations. Specifically the transitional B-cell 
and plasmablast populations, and the CD4 effector, CD4 effector memory, CD8 central memory and CD8 effector 
populations were improved (Fig. 3 and Supplementary Figure 7).

The CD8 activated and effector memory cell subsets were problematic for automated methods, as seen in 
scatterplots of manual vs. automated cell population estimates (Supplementary Figure 10). Both cell populations 
exhibited poor concordance between automated and manual gating across multiple centers, and larger total vari-
ation than manual gating. Likewise in the B-cell panel, naive and IgD-containing cell subsets (memory IgD+  and 
IgD− ) had larger total variability for automated versus manual gating and poor concordance across centers for 
low abundance (low proportion) cell subsets.

Automated algorithms recapitulate manual analyses with low bias. In addition to variability as 
a metric of performance, we are also interested in evaluating the bias (i.e. whether the point estimates differ 
significantly between manual and automated gating). Figure 4 shows population proportion estimates and 95% 
confidence intervals for each subset, method, and donor in the cryopreserved PBMC B-cell panel. In general, the 
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Figure 2. Example of inter- and intra-site variability from experiment 1 (lyophilized cells). (A) Examples of 
T-cell panel gating from two sites. (2 files analyzed) (B) Two replicates of the T cell panel from one site. (2 files 
analyzed).
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Figure 1. Individual and central manual analysis of B-cell, T-reg, T-cell subsets. (A) CV’s between sites 
are shown for each subset from the lyophilized cell (Cyto-trol) experiments. Centralized gating decreases the 
coefficient of variability for nearly all cell populations (Memory IgD+  cells in the B-cell panel are an exception) 
across all staining panels. Site-specific gating strategies for the DC/Mono/NK panel were non-comparable (no 
CVs shown). (B) Comparison of inter-site CVs for cryopreserved and lyophilized cells. CVs for cryopreserved 
cells are generally larger than for lyophilized cells (with the exception of IgD+  cell populations in the B-cell 
panel). For the lyophilized cell protocol, 68 files were analyzed and for the cryopreserved cell protocol, 60 files 
were analyzed for each panel.
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estimates are comparable manual and automated gating as evidenced by the overlapping confidence intervals 
across methods, indicating that any differences between point estimates are not significant.

Cell subsets that did show differences were investigated further (memory IgD+ /−  and transitional B cells). 
The increased variability in the cell populations defined by the IgD can be explained by the poor resolution 
of IgD in some centers where there is little information in the data to delineate positive and negative cells 
(Supplementary Figure 11). An example is center G, where the naive and IgD-CD27- cell population estimates 
are outliers compared to the other centers (Supplementary Figures 12, 13). In other instances the upstream man-
ual gating could be identified as sub-optimal in some samples, impacting downstream population estimates (e.g., 
Plasmablasts, Supplementary Figure 14).

Low abundance cell populations were not always problematic for automated gating. In the T-regulatory cell 
panel, automated gating performed surprisingly well relative to central manual gating (Supplementary Figures 
15,16). The cell population estimates showed little to no bias (Supplementary Figure 17). While the T-regulatory 
cell populations were amongst the cell subsets with the lowest proportions considered, automated methods per-
formed well, indicating that the success of automated gating depends on the ability of a panel to resolve cell sub-
populations, perhaps more so than the prevalence of the cell subsets within the panel.

Despite large technical variability, the DC/Mono/NK panel was entirely consistent with manual gating and 
the population estimates were relatively unbiased (Supplementary Figures 18,19 and 20). Unfortunately, the sub-
stantial technical variation overwhelmed the biological variation, rendering the panel impractical for detecting 
changes in cell frequency due to biological effects.

The T-cell panel performance was consistent with the T-regulatory and B-cell panels. Most cell population 
estimates were comparable to manual gating with little bias (Supplementary Figures 21, 22). Problematic popu-
lations included the CD8 activated cell subset, which was based on poorly resolved markers and had low abun-
dance, making it difficult to identify in a data-driven manner (Supplementary Figure 10), as well as CD8 effector 
and CD4 effector memory T cells. These cell populations showed some bias compared to manual gates, but exam-
ination of the automated gates demonstrated that their placement was, nonetheless, reasonable and the observed 
bias is due to an accumulation of subtle differences in the upstream gating.

Reagent and analysis standardization won’t replace good laboratory practices. By examining 
the cell population statistics from centralized manual gating and comparing them to automated analysis, we 
identified centers that were outliers for certain cell populations in certain staining panels. One such example is 
the previously mentioned B-cell subsets in center G.
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gating methods. The IgD marker is poorly resolved as evidenced by the higher variability in automated analysis. 
Y-axis is the standard deviation of the center, sample and residual components estimated from the random 
effects model. (n =  63 files).
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A number of other centers had outlier populations in the T-cell panel, including Center F for CD4 effector 
cells from sample 12828, Center B for CD8 effector memory cells from sample 1369, and Center C for CD8 naive 
cells from sample 12828. Closer examination of pairwise event plots for the relevant samples from these centers 
identified data quality issues possibly related to protocol adherence.

Center B failed to collect the scatter channels that allowed for gating of singlets for the T-cell panel, thus 
none of the samples from Center B had a singlet gate for the centralized manual gating scheme (Supplementary 
Figure 23). Inspection of the dot plots did not immediately reveal the cause of the difference, but samples from 
Center B did exhibit poor resolution in the CCR7 dimension (Supplementary Figure 24). Samples from Center 
C appeared to have problematic compensation in the CD45RA and CD197 (CCR7) dimensions (Supplementary 
Figure 25), leading to drastically different cell population distributions for the CD8 effector / memory T-cell sub-
sets from other centers. One of the replicates from Center B sample 12828 exhibited a trimodal CD3 distribution 
(Supplementary Figure 26), accounting for the outlier nature of this sample. While standardization of reagents 
(via lyoplates) and harmonization of analysis pipelines can sometimes address data quality issues caused by dif-
ferences in protocol adherence between centers or inadequate quality control and compensation issues), such 
problems are still best addressed through detailed SOPs, quality control, and proficiency testing.

Power analysis indicates centralized gating can help control for technical effects. In order to 
assess the relative importance of different sources of variability and their impact on statistical power, we per-
formed a power analysis for each staining panel. We calculated the minimum detectable effect size at 80% power 
(the probability of detecting a difference in the cell population proportion due to treatment if one truly exists) for 
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Figure 4. Estimated cell proportions from each population and gating method in the B-cell panel. 
Estimated proportions and 95% confidence intervals are shown for each sample, gating method, and cell 
population in the B-cell panel. There is little bias in automated gating compared to central manual gating, with 
the exception of small differences in automated gating for rare populations based on poorly resolved markers 
such as Memory IgD+ . Data for other panels is shown in the Supplementary Material. (n =  63 files).
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varying sample sizes with different assumptions about the observed sources of variability (i.e., assuming the data 
are gated locally, gated centrally, or data are generated from a single center). We evaluated the minimum effect size 
for each cell subset in each panel, using an average estimate of the variability from the different centralized (man-
ual and automated) gating approaches, rather than any specific gating method. Variance estimates due to techni-
cal effects (center-to-center), biological effects (sample-to-sample) and differences in local vs. central gating,were 
drawn from mixed effects model fits. Our results demonstrate that most of the benefit in increased power comes 
from centralized and standardized gating (Fig. 5 and Supplementary Figures 27,28), and that additional benefits 
from eliminating center-specific effects are relatively minor, but can be moderated by increasing sample size. 
These results also show which cell subsets in each panel exhibit significant technical variability.

Discussion
The HIPC created a set of lyophilized standard 8-color immunophenotyping cocktails that allow for standardized 
cell subsetting. Since the data were acquired on high-end instruments, differences in laser power and filters can 
contribute to site-to-site variability. A standard protocol for use of these plates was developed. Together with 
detailed target values for setting PMT voltages, we hypothesized that this approach would provide the ability 
for highly reproducible immunophenotyping across sites. While this was achieved for most basic cell subsets, it 
is clear that optimal reagent and instrument performance is needed for consistent results with minor and “dim” 
subsets. It is not entirely clear in advance which fluorochromes/antibodies will work well in a dried down cocktail. 
In case of IgD the liquid format was not giving optimal resolution and consequently the staining of the lyophilized 
reagent was also poor. The poor resolution of IgD has a trigger effect on all its children populations. Replacement 
of this reagent with one that yields more distinct staining would improve reproducibility. Additional checks on 
instrument performance and adherence to staining and acquisition protocols would also likely increase the repro-
ducibility for these more difficult to analyze cell subsets. More detailed gating instructions to centers could help 
reduce the impact of local gating on reproducibility, but would likely not achieve the precision of central gating 
since one analysts would have to observe samples gated at other centers.

Our analysis of these multi-site data indicates that central analysis is more reproducible than individual site 
analysis, as evidenced by significantly lower coefficients of variability (Fig. 1), and that automated algorithms can 
reproduce manual central analysis with comparable reproducibility and little to no bias. In most cases (e.g. B-cell 
and T-cell panels), automated analysis provided matched or lowered variability compared to manual analysis (e.g. 
plasmablasts, transitional B-cells, CD8 central memory, CD8 effector, CD4 effector memory), demonstrating that 
automated analysis can improve upon existing manual methods.

When manual and automated methods showed significant disagreement, this appeared to be associated with 
rare cell subsets (e.g. CD8 activated cells in the T-cell panel), or poorly resolved populations (e.g. IgD+  cells in the 
B-cell panel). In some cases, variability decrease appeared to be due to improved performance of the automated 
gating approach. For example, in the B-cell panel plasmablast cell subset, visual inspection of the event-level data 
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showed that the automated gates for the upstream CD20- parent populations were more reasonable than the man-
ual ones (Supplementary Figure 14). In other cases, disagreement could be traced back to centers not adhering 
to experimental protocols, resulting in problematic data quality (e.g. problems with compensation, or potential 
problems with staining or marker resolution. Such issues can sometimes be resolved by automated analysis, but 
highlight the important role of careful adherence to experimental protocol, quality control, detailed SOPs, and 
proficiency testing in cross-center studies.

The bias observed in some cell subsets in automated vs. manual gating could be traced back to an accumu-
lation of subtle differences in the upstream gating. Importantly, none of these upstream gates were problematic. 
This raises an important issue with hierarchical gating. The dependencies between cell population definitions 
enable differences in upstream gates to propagate through to downstream populations. Data-driven automated 
gating can mitigate this issue through consistency and reproducibility.

Using the standardized lyoplates combined with a unified gating strategy utilizing automated methods it was 
possible to resolve biological variation between samples for the T-cell, B-cell, and T-regulatory panels, while the 
technical variability in the DC/Mono/NK panel was too large to reliably resolve biological differences between 
samples. Particular care is needed if utilizing this panel in a cross-center setting. It is important to note that the 
automated gating strategy proposed for these standardized panels could likely be replaced by an alternate gating 
strategy to define the same cell populations with comparable results. We stress that the important factor for 
success is consistency in the gating strategy and consistency in the application of experimental protocols. While 
considerable effort is required to perform a centralized manual analysis of large cross-center data sets, this work 
shows that manual analysis efforts can be reduced as automated gating analysis can be applied with confidence 
using the methods profiled here.

In addition to being automated, and thus less time-consuming, computational methods lead to analyses that 
are objective, reproducible, and reusable across data sets that utilize common staining panels. These tools coupled 
with standardized experimental standard operating procedures should make it possible to more easily compare 
and integrate data across multiple sites, which will open the door to novel cross-center studies that would not be 
possible otherwise.

This study follows the “open science” trend by providing complete transparency of data and results, ensuring 
that reproducibility can be verified21,22,26. All materials, including primary data files, processed data, workspaces 
and analysis code, are made freely available using existing data standards and providing a valuable resource to the 
experimental and computational communities.
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