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On spatial pattern of concentration 
distribution for Taylor dispersion 
process
Zi Wu1,2, Xudong Fu1 & Guangqian Wang1

Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of 
the complete spatial concentration distribution for laminar tube flow; the obtained simple description 
is shown to represent the nature of Taylor dispersion. Importantly, we find that during the approach 
to the longitudinal normality of the transverse mean concentration at the time scale of R2/D (R is the 
tube radius and D is the molecular diffusivity), the solute concentration becomes uniformly distributed 
across a family of invariant curved transverse surfaces instead of the flat cross-sections in the traditional 
view. The family of curved surfaces is analytically determined, and a transformation is devised for the 
previously obtained analytical solution to discuss the decay of the concentration difference across the 
curved surfaces. The approach to a uniform concentration across the flat cross-sections to the same 
degree (~3% by concentration difference percentage), achieved at a time-scale of 100 R2/D, is shown to 
be the natural consequence of the longitudinal separation of the concentration contours on the curved 
surfaces.

Studies of Taylor dispersion1 were originally aimed to understand the transport of a soluble salt in blood flows and 
to develop a means for measuring molecular diffusivity, which remains a standard method even nowadays2. 
Taylor dispersion is of fundamental importance and has been widely applied in the fields of environmental sci-
ence and engineering, biomedical engineering, chemical engineering, and so on3–13. In the study of scalar trans-
port in laminar tube flows of G. I. Taylor1, in a dimensionless form, Taylor dispersion describes the transverse 
mean concentration C  governed by a diffusion equation in a constantly moving coordinate system:
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Here, the angle brackets  define the transverse average for any quantity f:
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where t is the time, R is the radius of the tube, D is the molecular diffusivity, x is the longitudinal coordinate, r is 
the radial coordinate, and Pe is the Peclet number:
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where u is the flow velocity in the tube and is a function of the radial coordinate r. In Eq. (1), the Taylor dispersiv-
ity DT is an effective diffusion coefficient and has been analytically determined to be ( + / )1 Pe 482 1,14.
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Taylor dispersion is primarily a theory for the transverse mean concentration, as reflected by Eq. (1). 
Because of Taylor’s initiative, numerous efforts have been made to explore the evolution of the mean concen-
tration3,9,15–27. Based on many studies, fundamental issues were raised, for example, one of the most important 
issues is the question of the validity of the Taylor dispersion model. Chatwin18 systematically addressed the 
issue and provided a well-known estimation for the time scale. However, the mean concentration distribution 
provides only some of the information that is needed to understand the physical process of concentration 
transport, and less effort has been made with regard to study the transverse concentration distribution and 
evolution9,28. This situation is the exact starting point of the previous work of Wu and Chen9, who addressed 
the approach to uniformity of the concentration distribution referring to the flat cross-sections, which belongs 
to another fundamental issue.

Despite having been studied for over sixty years with fruitful progress, some fundamental issue about the 
physical process of scalar transport in Taylor dispersion regime remains unclear. The pattern of the complete spa-
tial concentration distribution has not been suitably characterized yet, although different methods have been pro-
posed that can be applied for the transverse distribution9,18,29,30. Until very recently, some researchers believed that 
when Eq. (1) becomes valid for the mean concentration, the concentration difference should be small over the 
cross-section of the tube1,17,19,31. It was believed that the transitions, for the mean concentration to approach nor-
mality18 and for the transverse concentration to approach uniformity9, should be regarded as one basic process17 
and can be described by the time scale of ∼⁎t 1. This statement has turned out to be not true9: the transverse 
concentration difference remains significant for a very long period of time, which is characterized by the time 
scale of ∼⁎t 10. However, using only observations with reference to the flat cross-sections in the tube, by the 
acquired information it is too complicated to draw any sound conclusion for the transverse concentration of 
distribution patterns9. Most importantly, the interrelations between the proposed two time scales, corresponding 
to the two basic physical processes mentioned above, are still unknown.

This paper is organized as follows to properly describe the complicated spatial pattern of the concentration 
distribution during Taylor dispersion. We first present a family of invariant curved transverse surfaces, across 
which the solute concentration will be uniformly distributed. Next, we show how the surfaces can be analytically 
determined by a first estimation. Subsequently, the physical insight of this finding is discussed as a sign of the 
transition to Taylor dispersion regime, with a transformation defined for evaluating the degree of uniformity 
across the surfaces. In part 3, we verify our findings using some analytical and numerical results. Conclusions are 
provided in the last section.

Analytical Considerations
A family of invariant curved transverse surfaces.  The key contribution of this paper is the characteri-
zation of the multi-dimensional concentration distribution pattern during Taylor dispersion process. Specifically, 
we find that after the establishment of Taylor dispersion at the time scale of ∼⁎t 1, the solute concentration will be 
uniformly distributed across a family of invariant curved transverse surfaces, given as

η θ ζ= ( ) + , ( )c 5

where θ ζ( ) can be called the shape function and c is an arbitrary constant. This means that if we bend the originally 
straight transverse coordinate according to the shape of the curved surfaces by choosing a new longitudinal variable:

η θ ζΘ = + ( ) + ′, ( )c 6

then Taylor dispersion becomes a real one-dimensional process:
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This equation can be compared with Eq. (1) which governs only the transverse mean concentration: there is 
not any restriction (as the mathematical operation of cross-sectional average) required for the concentration C in 
Eq. (7). In Eq. (6), the constant ′c  is related to the initial condition of the problem and ensures that the centroid of 
the solute cloud remains at the position of Θ = 0, as revealed by Eq. (7). The fact that the initial condition only 
affects the process in such a way, actually illustrates the independence of the spatial pattern on the initial condi-
tion of the transport.

Determination of the shape function θ.  The fundamental solution of Eq. (7) is well-known:
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Mathematically, in this paper we refer to Taylor dispersion with reference to flat cross-sections by the {η ζ, , ⁎t }
system, while we refer to the curved transverse surfaces by the { ζΘ, , ⁎t } system. We can transform Eq. (8) back 
into the {η ζ, , ⁎t } system to obtain the multi-dimensional concentration distribution:
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Since the transverse pattern of concentration distribution is not affected by initial condition, here we can set 
′ =c 0 , corresponding to the instantaneous and uniform initial release of solute at η = 0 for the laminar tube 

flow, which is identical to the case considered by Wu and Chen9:

η ζ
π
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where Q is the released mass, and δ () is Dirac delta function.
Expanding Eq. (9) into a Taylor series results in
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It has been shown29 that for a solute transport process governed by the convection-diffusion equation:
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and with boundary condition
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an asymptotic solution for the concentration can be expressed as29
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where the mean concentration is approximated as
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In Eq. (12), the velocity deviation
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Considering Eq. (14), the cross-sectional average of Eq. (12) can be expressed as
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After substituting Eq. (14) into Eq. (12), and then eliminating ∂
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Substituting Eq. (14) into Eq. (13) results in a boundary condition for F1
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and by applying a cross-sectional average to Eq. (14) we get
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Results for F1 as presented in Eqs (19–21) had been deduced by different methods in previous studies9,18,29,32.
Consider n =  1, Eq. (14) becomes
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Finally, by comparing Eqs (11) and (22), the shape function θ can be determined as

θ ζ ζ( ) = − ( ), ( )FPe 231

From Eqs (19–21) and (23), the shape function θ (or the transverse pattern of the spatial concentration distri-
bution) is found to be directly related to a balance between the two key elements of Taylor dispersion: the shear 
effect and the effect of transverse diffusion. For the present case, solving Eqs (19–21) gives

ζ ζ
= − − . ( )F

4 8
1
12 241

2 4

In fact, the existence of the constant − /1 12 at the right hand side of the above equation will not contribute to 
the transverse pattern of the concentration distribution because, in Eq. (8), an arbitrary constant in Θ will only 
affect the longitudinal displacement of the solute cloud. As the transverse pattern of the distribution is deter-
mined by the terms containing ζ  at the right hand side of Eq. (24), according to Eq. (23), the shape function θ can 
be defined for laminar tube flow as
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In Fig. 1 we illustrate the family of curved transverse surfaces with different values of the constant c. Here, the 
special value of ( / )1 12 Pe  indicates that the curved transverse surface is located at the centroid of the solute cloud.

To date, we have only considered a first estimation for the spatial pattern of the concentration distribution. 
However, there are still effects of the higher-order terms (as appeared in Eq. (14), or the higher-order concentra-
tion modifications in our previously performed two-scale perturbation analysis9) that must be taken into account. 
The key issue on how the transverse concentration will become uniform across the family of the curved surfaces 
during its characteristic time-scale remains to be determined. In this paper, these concerns are addressed by 
resorting to the previously obtained analytical solution for the multi-dimensional concentration distribution and 
using numerical simulation.

Transition to Taylor dispersion: uniform concentration across the curved surfaces.  The approach 
to the longitudinal normality of the mean concentration18 has been traditionally recognized as a sign of the tran-
sition to Taylor dispersion regime. Here, we chose a new angle based on the approach to uniform concentration 
across the family of curved transverse surfaces.

As is known, the cause of Taylor dispersion is attributed to the combined action of flow shear and transverse 
diffusion1: in the Taylor dispersion regime, there is a balance between the shear effect (the right hand side of the 
Eq. (19)) and the effect of transverse diffusion (the left hand side of the Eq. (19)), which results in an invariant 
transverse concentration pattern, as characterized by the shape function θ and expressed by Eq. (23). Compared 
with the existing indicator for establishing Taylor dispersion based on the formation of the longitudinal Gaussian 
distribution, the advantages for the presently considered indicator are that: 1) the uniform concentration across 
the curved surfaces can be evaluated much easier and 2) it reveals the nature of Taylor dispersion.

In the previous paper9, the analytical solution for the complete spatial concentration distribution with modi-
fications on the zeroth-order concentration up to the third-order was deduced to be

Figure 1.  The family of curved transverse surfaces with different c. 
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It has already been shown that Eq. (26) is consistent in form with Eq. (14)9. For the so-called “long time 
approximation”, Eq. (26) by two-scale perturbation analysis9 is identical to the result that can be obtained by the 
method of center manifold33,34, which provides a systematic and rigorous approach to calculate successive approx-
imations. Analytical solutions for the mean concentration distribution (for example, cross-sectional average of 
Eq. (26)) obtained by the two methods can all be expressed as the solution of the “generalized dispersion model” 29 
in the following form
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where Gn are constants. As n increases, the approximations accurately reveal the exact concentration moments as 
→ ∞⁎t , and the well-known example is its capability of capturing the variance deficit, which is a small term in 

the second order moment but cannot be revealed by the classic Taylor dispersion model. However, since Gn are 
constants instead of functions of time, the solutions fail at an early time of the concentration transport, as indi-
cated by Gill and Sankarasubramanian29, and also in some recent comparisons between results deduced by both 
the Liapunov-Schmidt technique of bifurcation theory30 and the method of center manifold33,34.

Despite the numerous studies focusing on mean concentration, the multi-dimensional concentration dis-
tribution has received less attention. In a previous study9, it is also the case that only comparisons for the mean 
concentration have been performed for the obtained analytical (cross-sectional average of Eq. (26)) and existing 
numerical results. Up to now, to what extent the analytical solution Eq. (26) can give a good prediction for the real 
concentration distribution remains unknown. Thus, for the present exploration, we need to figure out 1) what 
is the concentration distribution for an early time (for example, t* =  0.2), at which Eq. (26) cannot give a good 
prediction (it has been shown9 that even the mean concentration distribution was not able to be appropriately 
predicted at this time); 2) at a typical time when Taylor dispersion is believed to be well established (for example, 
t* =  1.0), how well can Eq. (26) predict the multi-dimensional concentration distribution. These questions drove 
the present work, and are addressed through numerical simulations presented in the next section.

To analytically evaluate the uniform concentration across the curved transverse surfaces, a direct means is to 
choose a curved transverse coordinate referring to θ, which then results in the uniform concentration across the 
“flat” cross-sections under the new coordinate system. Thus, we introduce the following transformation according 
to Eq. (6):

η ζ ζ
Θ/ = − + + . ( )Pe

Pe 4 8
1
12 28

2 4

Hence, we use the constant /1 12 here only to adjust the longitudinal position of the resulted concentration 
cloud, fixing its centroid at Θ = 0. However, it does not necessarily have to be in this value for the intended eval-
uation because an arbitrary constant will not affect the transverse concentration distribution pattern.

The transformed analytical solution Eq. (26) in the { ζΘ, , ⁎t } system is
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which is presented in this form to indicate that the concentration distribution can be independent of the Peclet 
number Pe in the system of Θ/ , C{ Pe Pe } (we have neglected the insignificant longitudinal molecular diffusion 
effect because Pe 1 is usually the case for practical purposes), as illustrated in some later figures.

As a result, it is possible to consider the transverse concentration difference under the curved coordinate by a 
new indicator concentration difference percentage, which is similar to that defined by Wu and Chen9 under the 
straight coordinate:
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which is the ratio of the maximum concentration difference to the reference concentration for a given transverse 
surface at a given time.

In the next section, we show that mixing across the family of curved surfaces can be regarded as complete in 
the time scale of ∼⁎t 1, which is consistent with that for the validity of Taylor dispersion model. This means that 
our results are built on the well-known foundation of the establishment of Taylor dispersion: as long as the trans-
port process enters the Taylor dispersion regime, the concentration will be uniform across such surfaces. It is vital 
in demonstrating some properties of the family of invariant curved transverse surfaces, one of which is that it will 
not be affected by the initial condition of the release. For example, a point concentration release results in a 
unique longitudinal Gaussian distribution of the mean concentration (not considering the longitudinal displace-
ment of the centroid of the concentration cloud), no matter where the source is placed (at any transverse posi-
tion), and the case of continuous release can be seen as the superposition of the cases of instantaneous release.

Since Taylor dispersion is an asymptotic process for the cross-sectional mean concentration to gradually 
approach a Gaussian distribution, traditionally we assign a time scale of t*∼ 1 for the transport process to enter 
the Taylor regime. This is partly because the degree for the real concentration distribution to approach Gaussian 
is hard to quantify. Now we find that during Taylor dispersion the concentration will be uniformly distributed 
across a family of curved surfaces, inversely, we can use this as a new criterion for entering Taylor regime, which 
would be much better to apply than the previous criterion focusing on the approach to Gaussian distribution. So 
for the first time, we can quantitatively define a threshold for such a uniformity across the curved surfaces, and we 
choose the value of the maximum concentration difference for the classical case (laminar tube flow) at the typical 
time of t* =  1 (which appears to be about 3% in the later analysis) to be the criterion.

Regarding the family of invariant curved transverse surfaces, their specific shape may vary due to differ-
ent cross-sectional shapes of the confined flow region and velocity distribution (laminar or turbulent, steady or 
unsteady); however, there will always be such surfaces for a given flow configuration. According to the previous 
analysis in the paper, it is easy to find that in a general form, the function F1 needed for the shape function θ is 
governed by

ψ∇( ∇ ) = ′, ( )K F 311

ν
∂
∂
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= , ( )F 0 331

where K denotes the “diffusion coefficient”, which may be a function of the transverse coordinates; ν∂/∂  denotes 
differentiation along the normal to the boundary Γ; and the angle brackets 〈 ⋅ 〉 denote the properly defined trans-
verse average operation. Thus, the family of invariant curved transverse surfaces can still be described by Eq. (5). 
It should be noted that Eqs (31–33) as well as Eqs (19–21) are not new, but only constitute essential elements of 
the crux relation (Eqs (5) and (23)) between what is known (F1), and what is unknown (the family of the curved 
surfaces) in the paper. This can also be seen as a mathematical illustration of the fact that our finding is exactly 
based on the established theory of Taylor dispersion.

Results and Discussions
We performed numerical simulations for scalar transport in laminar tube flow to obtain an idea about the 
real concentration distribution and its evolution during the transition to the Taylor dispersion regime. The 
numerical efforts were made based on the finite element method (COMSOL, http://www.comsol.com/) for the 
convection-diffusion equation with its boundary condition as given by Eqs (12) and (13).

We can rewrite Eq. (12) as
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where the combination η( / )Pe  can be seen as a new longitudinal variable. For the Taylor dispersion process, the 
molecular diffusion effect can usually be neglected for practical purposes because of a large value of Pe9,29 (for 
example, at the order of 103 or 104), then the last term at the right hand side of Eq. (34) can be discarded to get:
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Notice that there are no additional independent parameters in Eq. (35), thus reducing the computational cost 
of the simulation. The initial release is considered to be of unit mass

δ η| = ( / ). ( )=⁎C Pe 36t 0

Since Eq. (35) indicates a transport process observed for a longitudinally moving coordinate system with the 
mean flow velocity, during the entire process the centroid of the solute cloud is centered at η = 0. We carefully 
chose the computational region to ensure that at the end of each selected case ( = . , . , .⁎t 0 2 0 5 and 1 0, respec-
tively), the solute cloud was properly captured within the whole region. Therefore, the mesh size of 200 ×  200 was 
found sufficient for all three cases, validated by additional computations with increased mesh sizes. For the initial 
condition Eq. (36), we chose the central two columns of grids around η = 0, that is, altogether 400 grids to have a 
uniform concentration while the other grids are with zero concentration. This treatment was also found capable 
of giving the correct initial condition for the chosen cases.

By a first glance of the results, we can have some qualitative impression on the concentration distribution dif-
ferences, either across the flat plane or the deduced curved transverse surfaces. The quantitative descriptions will 
be provided in later contents associated with the defined indicators for the differences.

In Fig. 2(a), it is obvious at this early stage that the mixing is insufficient, either across the flat cross-sections or 
the curved transverse surfaces. It is the crossover region in the neighborhood of = .⁎t 0 2 for different mechanisms 
to dominate the scalar transport process19: usually at an earlier time the process is dominated by convection, and 
at the later time it generally falls into the Taylor dispersion regime, although with certain non-Gaussian features 
(such as asymmetry) remained to some extent for the longitudinal concentration distribution. At a later time of 
= .⁎t 0 5, from the contours we find the uniformity of the concentration distribution across the curved surfaces is 

relatively achieved, while the radial concentration difference remains high. Generally, the mixing across the 
curved surfaces for the downstream (η > 0) cloud is better, and a less uniform region appears at the vicinity of 
tube wall for the upstream cloud.

Figure 2(c) shows that the mixing across the curved surfaces can already be regarded as complete at = .⁎t 1 0, 
despite the noticeable longitudinal asymmetry between upstream and downstream extents of the cloud. Thus, 
achieving a uniformly distributed concentration across the curved surfaces can be observed to be a new indica-
tion of the transition to the Taylor dispersion regime for scalar transport. On the other hand, since it is commonly 
believed that the non-Gaussian properties for the mean concentration distribution generally dampen out at this 
time18, the sole time scale of ∼⁎t 1 is sufficient to characterize the transition; and the two respective basic pro-
cesses for the longitudinal and transverse concentration evolution can finally be regarded as one via observations 
with reference to the family of curved transverse surfaces.

By some flat transverse cross-sections, in Fig. 3, we provide further comparisons between the results of the 
presently performed numerical simulations and the analytical solution by Wu and Chen9. As we mentioned, the 
performance of Eq. (26) was not yet fully understood in the previous paper: For the first time, we numerically 
verified the predictions of η ζ( , , )( )

⁎C t3  for the complete spatial concentration distribution, and found excellent 
agreement with the numerical results. Thus η ζ( , , )( )

⁎C t3  is referred to as the “real concentration distribution” 
for the Taylor dispersion regime from here on.

http://www.comsol.com/
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In Fig. 3, the concentration is shown to deviate to a large degree from a uniform distribution across the flat 
cross-sections of the cloud. Importantly, the figure reveals the complicated patterns of the concentration distribu-
tion observed in a reference frame that is not so appropriate: from the flat cross-sections, it is difficult to achieve 
some sound idea regarding the characteristics for the concentration distribution in the solute cloud. For example, 
it is unexpected at first glance that “the maximum transverse concentration difference is found on some interme-
diate cross-section, while the minimum is near the center and the edges of the cloud” 9.

The uniform concentration distribution is more gradual across the flat cross-sections. This can be observed in 
Fig. 4(a,b) on the reduction of the cross-sectional concentration difference: even for long times, as =⁎t 5, the 
uniformity of the concentration is not so well established transversely. Quantitatively for the maximum concen-
tration of the cloud, the maximum concentration difference percentage was found to be close to 20%9. The 
decrease of the transverse concentration difference can be observed as the consequence of the separation of the 
concentration contours, as demonstrated by a flat cross-section in red between the same contours of C Pe =  0.25 
and 0.50 in Fig. 4(a,b), which is actually caused by the decrease of the longitudinal concentration gradient. An 
important feature found in these two subfigures is that the shape of the contours remains unchanged for different 
concentrations and times, which indicates perfect reference surfaces for describing the pattern of the evolution of 
the concentration.

To generally understand the process for the “real concentration distribution” to achieve uniformity across the 
curved transverse surfaces, we refer to ζ(Θ, , )( )

⁎C t3  by Eq. (29), and the concentration contours are plotted in 
Fig. 4(c,d). From the excellent results, the transverse concentration is found to be nearly uniformly distributed in 
the ζΘ, , ⁎t{ } system at = .⁎t 1 0, which is much better than the slowly asymptotic uniformity achieved in the 

Figure 2.  Numerical results for scalar transport in laminar tube flow: the concentration contours. 
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η ζ, , ⁎t{ } system, as shown by Fig. 3 at the same time. In Fig. 4(d), the uniformity is further improved with straight 
lines to represent the contours in the figure in comparison with the aforementioned 20% difference in the maxi-
mum concentration of the cloud in the {η ζ, , ⁎t } system.

Figure 5 gives detailed information for the concentration distribution across the curved transverse surfaces at 
different longitudinal positions. Instead of revealing a large concentration variation across the flat cross-sections, 
as shown in Fig. 3, the concentration distributions given in Fig. 5 are nearly independent of the curved transverse 
coordinate.

To exactly reveal the longitudinal distribution of the concentration difference and the process for the real 
concentration distribution to achieve uniformity across the curved transverse surfaces, we refer to (Θ, )⁎r tb  by 
Eq. (30) in Fig. 6. Because we generally understand that the uniformity is achieved at the time scale of R2/D, three 
typical dimensionless times of t* =  0.5, 1.0 and 2.0 are chosen.

Figure 3.  Concentration distributions across some flat cross-sections of the cloud. 
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From the curves in the figure, the concentration difference is shown to reach the maximum in the vicinity of 
longitudinal center of the cloud. A relatively more intense fluctuation of the difference percentage exists for the 
upstream half of the concentration cloud than that for the downstream half. At longer times, the maximum dif-
ference percentage is found to decrease from ∼ 7% to ∼ 1%, confirming the excellent uniformity that is achieved 
across the curved transverse surfaces at these times. For the typical time of t* =  1.0, a maximum difference per-
centage of ∼ 3% is found across the curved surfaces, which can be compared with the previous value of nearly 50% 
across the flat cross-sections at the same time. To achieve transverse uniformity to the same degree (∼ 3% by dif-
ference percentage) in the {η ζ, , ⁎t } system, two orders of magnitude longer times (t* =  ∼100) are required9.

The present findings on the uniform concentration across the curved surfaces also enable the quantitative 
definition of a new criterion for entering Taylor dispersion, and the 3% maximum concentration difference for 
the typical case can be adopted as a threshold. This can be compared with the traditionally considered criterion 
focusing on the approach to longitudinal normality for the mean concentration.

Figure 4.  Concentration contours with reference to the flat and curved transverse surfaces, respectively. 



www.nature.com/scientificreports/

1 1Scientific Reports | 6:20556 | DOI: 10.1038/srep20556

Conclusions
The main finding of the present paper is the characterization of the pattern of the complete spatial concentration 
distribution. For scalar transport in laminar tube flow, at the time-scale of R2/D, the transverse concentration 
approaches a uniform concentration across a family of invariant curved surfaces, instead of the flat cross-sections 
in the traditional view. In addition, the previously discussed different types of transverse concentration variations 
are shown to be the result of observation in a “flat” reference frame, which is not appropriate for the process.

During the analytical analysis, the family of curved surfaces for the uniform concentration is shown to be 
caused by the final balance between flow shear and transverse diffusion, which are the key elements for the con-
cept of Taylor dispersion. Thus, although the present study is based on the analysis of the simple laminar tube 
flow, the conclusion regarding the curved transverse surfaces can be valid for Taylor dispersion in more compli-
cated flows (turbulent, unsteady, etc.) with different cross-sectional shapes.

Observing the approach to a uniform concentration across the curved surfaces is a new angle for the transi-
tion to the Taylor dispersion regime, and its advantages are that: 1) the uniform concentration distribution can 

Figure 5.  Concentration distributions at different longitudinal positions across the curved transverse 
surfaces. 
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be evaluated much easier than the longitudinal normality and 2) it reveals the nature of Taylor dispersion. The 
evaluation in the paper is accomplished by transforming the straight transverse coordinate for the previously 
obtained analytical solution into the curved one according to the deduced shape function. An indicator for the 
concentration difference across the curved surfaces is defined under the curved coordinate by analogy to that 
under the straight one; it reveals a maximum difference percentage of ∼ 3% across the curved surfaces compared 
with the previous value of nearly 50% across the flat cross-sections at the same time of t* =  1.0. To achieve trans-
verse uniformity to the same degree (∼ 3% by concentration difference percentage) at the same time across the 
flat cross-sections, two orders of magnitude longer times (t* =  ∼ 100) are required.
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