SCIENTIFIC **Reports**

Received: 18 June 2015 Accepted: 15 December 2015 Published: 27 January 2016

OPEN An approach to scoring cursorial limb proportions in carnivorous dinosaurs and an attempt to account for allometry

W. Scott Persons IV & Philip J. Currie

From an initial dataset of 53 theropod species, the general relationship between theropod lower-leg length and body mass is identified. After factoring out this allometric relationship, theropod hindlimb proportions are assessed irrespective of body mass. Cursorial-limb-proportion (CLP) scores derived for each of the considered theropod taxa offer a measure of the extent to which a particular species deviates in favour of higher or lower running speeds. Within the same theropod species, these CLP scores are found to be consistent across multiple adult specimens and across disparate ontogenetic stages. Early theropods are found to have low CLP scores, while the coelurosaurian tyrannosauroids and compsognathids are found to have high CLP scores. Among deinonychosaurs, troodontids have consistently high CLP scores, while many dromaeosaur taxa, including Velociraptor and Deinonychus, have low CLP scores. This indicates that dromaeosaurs were not, overall, a particularly cursorily adapted group. Comparisons between the CLP scores of Tyrannosaurus and specimens referred to the controversial genus Nanotyrannus indicate a strong discrepancy in cursorial adaptations, which supports the legitimacy of Nanotyrannus and the previous suggestions of ecological partitioning between Nanotyrannus and the contemporaneous Tyrannosaurus.

Because direct behavioral observations are impossible, assessing the running speeds of fossil taxa is, except when fossil trackways are available^{1,2} or when attempting range-bound biomechanical simulations³⁻⁵, usually limited to the recognition of anatomical traits that are known to correlate with locomotor performance in modern animals. Chief among these traits are limb proportions, most typically: proportional limb length. Other factors being equal, longer limbs impart greater maximum running speeds, because elongated limbs permit greater stride length and effectively allow an animal to cover more ground in a single step⁶⁻¹¹. Although, during walking and other gaits at slow speeds, short-limbed animals may be able to compensate for limited individual stride lengths by increasing stride frequency, during running, stride length has been shown to be an overwhelmingly important factor influencing maximum speed^{6,7,9,10}.

Broadly speaking, femoral length is a hindlimb dimension that varies little with regard to speed, and femoral length seems to be relatively stable in comparison with body length, skull length, ilium length, etc.¹¹⁻¹⁶. Assessments of cursorial limb elongation usually consider the length of the lower leg (i.e. from the knee down). Among modern animals, lower-leg length is a statistically significant predictor of relative running speed^{10,17}, although its predicative power is strongly improved when comparisons are limited to closely related groups with similar overall limb anatomy and locomotive styles¹⁰

Non-avian theropod dinosaurs (hereafter referred to simply as "theropods") include a diverse array of carnivorous forms, but most have hindlimb morphologies that are strikingly conservative¹⁸⁻²⁰. This makes theropods a prime group in which to consider cursorial limb proportions. Such considerations have important implications for theropod ecology, because the speeds at which predators can run is a crucial factor that influences their prey choice, hunting strategies, and the habitats in which they are most successful. Previous quantitative studies on the cursorial adaptations of theropods have generally focused on the absolute speeds of particular taxa^{3,21-24}. One generally consistent result of most such studies is that the vast range in absolute body size throughout theropods has a strong influence on predictions of speed, because increasing body mass imposes increasing limitations on

Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. Correspondence and requests for materials should be addressed to W.S.P. (email: persons@ualberta.ca) or P.J.C. (email: philip.currie@ualberta.ca)

Figure 1. The general observation that smaller-bodied non-avian theropods tend to have proportionately longer lower legs holds true across comparisons between distantly related taxa (A), closely related taxa (B), and ontogenetic stages within a single taxon (C). All illustrations scaled to the same proximodistal femur length.

muscle capabilities and on bone and joint strength^{22,24}. Proportionate to body mass, more elongate lower legs are typically found among smaller-bodied theropods^{11,16,25}. This general rule holds true in comparisons between both closely and disparately related taxa and throughout the ontogeny of a single species—with smaller juveniles having proportionately more elongate lower-legs than larger adults (Fig. 1)^{11,16}.

In this paper, we do not estimate absolute or relative maximum running speeds, but rather quantify and compare theropod limb proportions to assess their relative cursoriality^{11,26}. It is the aim of this study to simply evaluate how strongly the morphology of a particular theropod species has been evolutionarily modified in favor of enhanced cursorial ability, regardless of whether or not the end result of that modification is a maximum running speed that is greater or less than that of other species. In this way, we infer phylogenetic differences in cursoriality, which most logically reflects differential selective pressures for rapid or efficient locomotion. To this end, the allometric effects of body mass on theropod limb proportions is a serious potentially confounding problem. Because allometric restrictions and cursorial adaptive pressures are effectively competing forces that exert opposite influences on the limb morphology of any particular theropod, the one has the potential to obscure the other¹¹. For instance, a theropod lineage that is exposed to adaptive pressures favoring cursoriality may show relatively unaltered or even diminished lower limb proportions if, at the same time, that lineage undergoes an increase in body mass and allometric pressures match or exceed selective pressures favoring cursoriality. Similarly, a theropod lineage that undergoes a reduction in absolute body mass may show greater proportional limb elongation, not because the lineage has been exposed to greater selective pressures that favor cursoriality but simply because allometric pressures have been relieved. Carrano¹¹ termed this concealing allometric effect on limb proportions "muting" and "enhancing". This problem has limited large-scale studies of theropod cursorial evolution, and an approach is offered here by which allometric effects on theropod limb proportions can first be identified and then factored out, giving a true measure of the extent to which hindlimb proportions have been modified in favor of cursoriality.

Material and Methods

Composition of the initial dataset. Hindlimb length measurements were taken from an initial set of 53 theropod specimens (Table 1). In instances when multiple valid specimens were available for a particular species, only a large specimen was selected, with the aim of restricting the initial dataset to ontogenetically mature individuals. Femur length and metatarsal III length were measured from the proximal-most to the distal-most extent of both bones. It was not possible to identify the distal-most extent of the tibia in all taxa, because the distal end is frequently obscured by fusion with the astragalus and calcaneum. For this reason, "tibia length" for all taxa is actually a measure of the combined proximodistal length of the tibia and the astragalus/calcaneum, when all bones are held in tight articulation. The term "lower leg-length" is here used to refer to the combined proximodistal length of the tibia (plus the astragalus and calcaneum) and metatarsal III. Several previous studies of limb proportions have found that, within the lower leg, it is simply the proportional length of the metatarsals that typically indicates cursorial morphology, and that the length of the tibia is frequently irrelevant. We have chosen to combine both lengths into a single measure in the interest of inclusivity and because tibia length has been recognized as allometrically variable among some theropods¹⁶.

In the interest of consistency, all measurements were taken directly by one of either of the two authors (not pulled from previously reported data within the literature). All measurements were made directly from the fossils or, in cases when quality was judged equivalent, from casts (no measurements were made indirectly from photographs or illustrations). Standard tape measures were used for large specimens and digital calipers were used for small specimens.

The goal of this study is only to consider limb proportions in carnivorous theropods, and several large, but presumed herbivorous or largely-herbivorous, theropod groups are notably omitted from the initial set of specimens (e.g. "elaphrosaurs", ornithomimosaurs, oviraptorosaurs, and therizinosaurs). There are three major reasons for not including possible herbivorous taxa. First, the ecological differences between carnivores and herbivores undoubtedly imposes different pressures on locomotor evolution. Cursorial morphology in large herbivores frequently relates more to endurance and the ability to continuously forage across expansive home ranges. Second, many herbivorous theropods have unique foot and limb morphologies. For instance, advanced therizinosauroids have four weight-bearing toes²⁷, advanced ornithomimosaurs lack a hallux²⁸, and some ornithomimosaurs have broad short ungulas²⁹. Key to this study is the overall conservative morphology of most carnivorous theropod limbs, and limiting the considered taxa to carnivores, therefore, removes a substantial source of potential variation from the dataset. Finally, it has been argued that the limb proportions of herbivorous theropods have a different (nearly isometric) ontogeny³⁰, and this difference would confound the later consideration of ontogenetic variation.

Calculating cursorial-limb-proportion (CLP) score. To evaluate lower-leg proportions in the context of body mass requires a measureable osteological correlate of body mass. Femoral length is here used as that correlate. Femoral size has been found to be a reasonable indicator of body mass in multiple studies of both modern animals and dinosaurs^{16,31,32}. Although other femoral dimensions (such as femur circumference and diameter) are slightly better size correlates than length³³, length was selected as the measure of femur size, because femur length is seldom distorted by taphonomic factors and could be reliably measured from the largest number of specimens. By comparison, theropod femoral circumference and diameter are often impossible to reliably measure, because theropod femora are relatively thin walled and hollowed and are, therefore, prone to collapsing internally when fossilized and buried. As noted by Campione and Evans³³, femur-length/mass scaling follows a roughly isometric pattern in modern animals, and multiple studies have shown femoral length to be among the least variable hindlimb dimensions^{12,16,34-36}. Femoral length does, therefore, provide a generally reliable indicator of body mass, especially when compared among members of the same taxonomic group with the same general limb forms, and the morphology of non-avian theropod hindlimbs has long been recognised as highly conservative²⁰. Additionally, it should be remembered, as pointed out by Carrano³⁷ in his seminal work on dinosaur size evolution, that, because femoral length has an established linear relationship with body mass, femoral length serves as a valid proxy for body mass and allows the relative sizes of dinosaurs to be compared on the same scale (which is all that is needed in this study).

The initial theropod dataset was used to create a bivariate plot³⁸, with femur length and lower-leg length on either axis. A simple best-fit power curve was then applied to the plot (Fig. 2). All analyses were performed using Microsoft Excel 2013. This power curve (which is generated by Equation 1: $l = 4.178f^{0.8371}$, where *l* is lower-leg length and *f* is femur length), is here interpreted as representing the normal relationship between body mass (approximated by femur length) and lower-leg length, as established by the dataset as a whole. As such, Equation 1 offers a way of predicting the lower-leg length of a particular species based on its femur length, and comparisons between a predicted lower-leg length and its true lower-leg length offers a way to quantitatively evaluate the relative abnormality of the lower-leg length of that species, irrespective of allometry. The percentage difference by which the true lower-leg length of a particular species differs from the lower-leg length predicted for that species by Equation 1 is here reported as the "cursorial-limb-proportion" (CLP) score of that species. This approach of deriving a comparative score of how a particular taxon differs from a prediction based on the absolute size of that taxon and analysis of a size-dependent relationship seen in a large sample of taxa is commonly used in assessments of allometricly influenced traits, with perhaps the most well-known example being the derivation of encephalization quotient (EQ) scores as a way of estimating animal intelligence from relative brain size³⁹.

Example. To better explain how the CLP scores were derived in this study, it may be helpful to briefly consider an example. The ceratosaurian theropod *Deltadromeus agilis* was given its name, which means "agile delta runner", because Sereno *et al.*⁴⁰ interpreted its elongate hindlimbs as being highly adapted for cursoriality. To evaluate the limb proportions of *D. agilis* using the methods of this study, the femur length (741 mm) is input into

Beal-TheoremakUCMNT 10971a22922715.836.8Colophysic hum'nCCMNP 10971a22025.921420255.9Guarbasarur calideirentiMCN-PY 235.51.420265.5Caurbasarur calideirentiPN1255.61.74413220.065.5Procompognatus traiscaSMNS 129196.1011.001.00Procompognatus traiscaSMNS 129196.1011.0498.0Signarus huftUCMP 221011.431.6498.020.1Signarus huftCCMP 221011.431.6498.020.1Carstosarur partaleiMCN-PRP1-25.07.004.0497.6Carstosarur partaleiMCN-PRP1-25.07.004.548.00Carstosarur sancorusUSNA 47.36.205.531.12.8Deltadomesa giftsSGM Din 27.117.004.548.00Deltadomesa giftsGCG 20102.012.017.55Ausa tradictaUPV 10735.04.011.02Malosarus foreitoOUM 11551.129.524.531.20Carusanto statisticaNCN1 143.51.129.524.531.20Albosarus forgitoOLM 11565.002.001.001.00Startprotomolytic contextsOLM 11565.002.002.001.00Albosarus forgitoNTVP V2.841.129.631.001.00Startprotomolytic contextsNTVP V2.841.001.001.00	Species	ID	Femur Length	Tibia Length	Metatarsal III Length	Lower-leg length	
Cachegory basedCXMNI 1071µ229128138365Dialphosarra verbariliUCVN 77270600500238588Gaulusaura caddariandiMCN VV 235521420295297Herrenzaura indigualectoriaPT 1256473413223665Hismerra MichardiaSNNN 1293194410700180Septiaura triusaciaSNNN 12931194940231911Cardonaura triusaciaKMV 8701556400231911Cardonaura singuiarrisMWC 11630520234754Cardonaura singuiarrisUSNA 4738620555254859Deladromeus aglisSGM Din 27117004941134Industrus ringuiarrisUSNA 4738620555254859Deladromeus aglisSGM Din 27117004941131Industrus ringuiarSGM Din 27117004341131MaglasauradiOUN 11558510405240755Patentifysonaura forciPV L073590541229830Cardonaura sitakonensisNCSM 143451120952445432Cardonaura sitakonensisIVP V23614144321233Cardonaura sitakonensisIVP V2361454360241233Cardonaura sitakonensisIVP V2361454360243857Gaunaura forciIVP P 502356256<	Basal Theropods						
Displayment weiher likeUCM Y7270600500298828Discultances acconditoristsMCN V12356214413223636Like acconditoristsMNN R1291414415220637Procompage Mathem StassicsSMNS I25319610070.0180Segisarus haltUCM Y3101143164986231691Segisarus haltUCM Y3101143164986231691Sessearus trassicsKMV 8701100150244754Carctansarus meinerinsMWC111600555254899Deladomeurs acisarusUSNM 4735670535254899Deladomeurs acisarusSGM D1a 27117034311128Carctansarus meinerinsISR 40-1-54870735253254755Deladomeurs acisarusISR 40-1-548707362301243753Deladomeurs acisarusISR 40-1-548707364301128453Consalenge acconsarusISR 40-1-54870736230243253Deladomeurs acisarusISR 40-1-548707304301128Consalenge acconsarusISR 40-1-548707304301128CarcansarusISR 40-1-548707304301214CarcansarusISR 40-1-548707304301121CarcansarusISR 40-1-541304201231 <td< td=""><td>Coelophysis bauri</td><td>CMNH 10971a</td><td>229</td><td>227</td><td>138</td><td>365</td></td<>	Coelophysis bauri	CMNH 10971a	229	227	138	365	
Gambanes and oblerinesisMCN-PY 235021.402.09597Herrensauri obligationsiPVI 2366473413223665Diconstrue lidentianiHINN R1391424415220635Procompogradults triassicsSNNS 129519611070180Segisaura IndianiUCMP 32101143164986986Canato array striaticsKMV 870155646023191Canatoarras mignicornisMCP-PBP14-236700640346986Carcitoaarras mignicornisUSNA 4735620555254859Deladomena egilisSGM-Dia 27117054341134IndustornisUSNA 4735620555254899Deladomena egilisSGM-Dia 27117054341134IndustornisUSNA 4735510451240735Beladomenas egilisOCG 20010201231122753Eatroptoponitylic contensisPVL 40735904342431231Intristicaura forentiOVM 115561109524401414Carloaaras endowenisIVVP 12341109524401414Abrance MichaenesisIVVP 72441451304521231Abrance MichaenesisIVVP 7244145130161130Abrance MichaenesisIVVP 7234140120120120Abrance MichaenesisIVVP 7234<	Dilophosaurus wetherilli	UCMP 77270	600	560	298	858	
Ideraceman indegualetoxisPVL 25647.341.322.36.8.6Likinstram klanstoraIMNN R129142.441.37.018.0Pacompognathis triasicaSMNS 129142.414.49.82.2.2Sitosarar triasicaKMV R70155.640.42.3.16.91Carlosarus magnicornisMCI-PIPH-12.67.006.4.03.6.67.004.4.17.0.1Acasaarus magnicornisMWC 1.16.805.552.5.48.0.97.0.14.4.11.1.1Industrus magnicornisUSNM 47.356.704.4.17.0.14.4.11.1.11.0.11.1.21.3.11.1.21.3.11.1.21.3.11.1.21.1.	Guaibasaurus candelariensis	MCN-PV 2355	214	202	95	297	
Idiansterms linestermsHNN R12914444152200635Procompognathus transicusSMNS 129519611070180Sigsiaarus traissicusKAV 8701185400231601CaratosarusKAV 87016305302349786Caratosarus anguitoriisMCP-BP11-2367006403469866Caratosarus anguitoriisMNC1.1630555234879Deladomese aglisSSM-1736205552311114Indosuchus raptoriusISI 840-1548717004441134Indosuchus raptoriusSCM-Din 27117004341134Indosuchus raptoriusCCG 20002112212353733Einterpionophylas econientsOCMU 11358510231232735Piantizkysaurus foresiPVL 4073590541289830Actocardifisaarus takoesisMCCM-114 666580287480Albanarus fagilisANNI 2309858104231231Chlanatianurus takoesisMCCM-114 666580280100100Simaptor daugiIVPP V284140382251635Albanastarus enstructisMIVP 4345110130811112Sansarus enstructisMIVP 4345110130181112Actocardifisaarus takoesisMIVP 142841302001301Sansarus fagilisMIVP 436120 <td>Herrerasaurus ischigualestensis</td> <td>PVL 2566</td> <td>473</td> <td>413</td> <td>223</td> <td>636</td>	Herrerasaurus ischigualestensis	PVL 2566	473	413	223	636	
Procompognation triansicusSMNNS 129519611070180Segisauru hulliUCMP 321011541640961Sensaura trissicusKMV 87015566400961CratosaursMCF-PEPH-126600600856Carlosaurus nazioernisMCF-PEPH-2367006401134Cerntosaurus nazioernisUSNN 47356205552548090Deliadromes agilisCSCM Din 271170014141134Indosuchus raptoriusISI R-01-548727953331128HegatosaurodaUSNN 47355104052400755Excorptoponybas concinsisOUM 135885104052400758Pintrizbysaurus floreiPV1 407395345312331233Chandengocodurus primtivusCCG 20010950580287857Pintrizbysaurus floreiMCNSM 143511019524531434ChandengocodurusMCCM-11 6666580580287853ChandengositusMCCM-11 6666580580287833Chandensaurus takalonaurusMCCM-11 66667807204341304Concenerator corrowtusMCCM-11 66665802844301210Siangaro anstrustusMIWG 548/INM1R 100107306703401010Siangaro anstrustusMIWG 548/INM1R 100107306203401210Siangaro anstrustusMIWE 5400 <td< td=""><td>Liliensternus liliensterni</td><td>HMN R1291</td><td>424</td><td>415</td><td>220</td><td>635</td></td<>	Liliensternus liliensterni	HMN R1291	424	415	220	635	
spegianus haliUCMP 2210114316498262Sinosaurus bariadusKMV 8701556460211640CatabasansMCP-PBP1-236700640346886Caratasaura seginornisMCP-PBP1-236700640346886Caratasaura seginornisUSNM 4735620555254889Dehadomeua egilsSCM-Dia 27417004341114Indesschen reprinisBSI R Al-4548727753331128MeglosauroisCCG 20010201231122433MaglosauroisCCG 20010201231124735Batteriopongocohare prinitivusCCG 20010201451240735Patantickysaurus foresiOUUM 13558510455240175Chandongocohare prinitivusCCG 2010201231123123Chandongocohare prinitivusCCG 2010201453120135Chandonsaurs alokensisNUCM 1135811009544601141CarosaursIVP V28411909544601141Carosaurs andorensisIVP P V28411909544601161Carosaurs constructusIVP P 28407557724101182Carosaurs constructusIVP P 70208757724101182Carosaurs constructusIVP P 70208757724101182Carosaurs constructusIVP 9500	Procompsognathus triassicus	SMNS 12951	96	110	70	180	
Sinsonar triasicarKMK 87015404006211691CaratosaursMCC-PBPH-26700640536986Caratosaurs magincornisMWC 1.1630520624879Cartosaurs magincornisGUSN 47256207304341114Induscular galisSGM-Din 27417004341134Induscular galisSGM-Din 27417004341134Induscular galisSGM-Din 27417004341134Induscular galisSGM-Din 27417004341134MaglosauxidoT7417004341134Palmitchysaurs flowingOUM 113531504544321233Chandengecolurus printitusCCC 200102014541231233Chandengecolurus flowingPUK 10335005008101233Chandengecolurus flowingNCSM 14345110095445401233Chandengecolurus flowingMCCM-Hide6658028028141310Chandensaurus tabukhaurusIVPP V230364360200560Causaara consurusIVPP 1230364360920364920Stamptor dangiIWP 5020164454352140121Marchaurus tabukhaurusIME 65A058349292Nochaurus tabukhaurusIME 65A0583492140Causaara congantusIMP 502 (cat of	Segisaurus halli	UCMP 32101	143	164	98	262	
CarctaosansUncentreUncentreAucasanur singinioniMCI-PBPI1-23640640744Carctaosanur snakornisUSNA 4735620555254899Deladoronur agilisUSNA 4735620555254899Deladoronur agilisSGM Din 27417004341113Indisuchi ariptoriusISI & 401-454872795330128MegloaxuroidsCCG 20010201231123553Barnickyasanus foresiOVUM 13558510495240735Barnickyasanus foresiPVL 4073590541249830Carcanninsaarus atokensisNCSM 1434511209524531405Allosanurs forgilisANNI 2309858104231213ChanadoagnesisIVPP V328414909544401312Chanatosanus onstructusIVPP V3284140362251635Allosanurs constructusIVPP V3284140362251133Samator corronatusMCCM-LH 6666580580100100Samator dorgiIVPP V3284140362251135Samator satiris constructusIVPP 8702875772416118Samator dorgiIVP 96002655583492131Samator dorgiIVP 960026555803492131Samator dorginIVP 96002655152260160 <td< td=""><td>Sinosaurus triassicus</td><td>KMV 8701</td><td>556</td><td>460</td><td>231</td><td>691</td></td<>	Sinosaurus triassicus	KMV 8701	556	460	231	691	
Ancanur garidaiMCI-PPII-236700640346986Ceratosaurus naguicornisMWC 1.1630553624800Certatosaurus ansiornisUSNM 473620553514800Delukoneus aglitsSCM-Din 27417004341134Indosuchus naptoriusISI R 401-4548727953331128MegalosaurusCCG 20010201213122553Eatroptoponghia comiensisOUM 11353590541280830Carrosaurus ducensisPVL 40735905412801203Acroconthosaurus atokensisNCSM 1434511005524531405Allonaurus fugilisAMNH 29098381044231233Chilantiaturus tabulukouensisIVPP V284411905544601414Concarentar corocontusMIVCG 634//BMNH R.100017806703401010Concarentar corocontusMIVPP V2264454382251633Nerenator saleriiIVPP V2398541401010100Simaplor dangiIVPP V239854500200200Baal CeutosaursIMP 6340//BMNH R.100017806703401010Conservator saleriiIMP 6434//BMNH 7411013081211Marchanda tabelisIMP 6434//BMNH 75111013081211Simaplor dangiIMP 6434//BMNH 75111013081211<	Ceratosaurs						
Cartosaurus magnicornis MWC L1 630 520 234 774 Cartosaurus naioarnis USNM 4735 620 555 254 889 Cartosaurus naioarnis USNM 4735 620 555 254 889 Delaufomes agilis USNM 4735 620 795 333 1128 Megalosauroids CCG 20010 201 231 122 553 Eutropropondylus contensis OUM 113558 510 495 240 735 Platnizkysaurus foresi PVL 4073 590 541 289 830 Caronosurs Caronosurs Allosaurus atokenis NCSM 1445 1120 952 453 1405 Allosaurus fagilis AMN 1298 1190 954 460 1414 Conconsurs IVPP V2884 1190 954 460 1414 Conconsurs aleri MCCM-L11 6666 580 580 287 867 Gasoaurus tatoki Mukolensis IVPP V284 150 660 560	Aucasaurus garridoi	MCF-PBPH-236	700	640	346	986	
Caratosarus nasioornis USNN 4735 620 555 254 809 Dehadromeus aglis SGM-Din 2 741 700 434 1134 Indisacture straptorins ISI R401-154 872 795 333 1128 Megalossuroids CCCG 20010 201 211 122 353 Exatroptoponychysia conciensis OUM 113558 510 495 240 735 Platnitzlysaurus floresi PVL 4073 590 541 289 830 Carnosaurs Adrosaurus tokensis NCSM 14345 1120 952 443 1233 Chilantistaurus tokukouensis IVPP V2844 140 440 1414 Concorventor corventus MCCM-LII 16666 580 580 287 633 Gasoaurus constructus IVPP V284 454 382 251 633 Gasoaurus constructus MCCM-LII 1666 580 580 280 1010 Simaptor dongi IVP V239 364 360 200 560 </td <td>Ceratosaurus magnicornis</td> <td>MWC 1.1</td> <td>630</td> <td>520</td> <td>234</td> <td>754</td>	Ceratosaurus magnicornis	MWC 1.1	630	520	234	754	
Deladromeus aglis SGM-Din 2 741 700 434 1134 Indiscular septorius ISI R 401-454 872 795 333 1128 Regalosaurois Exterptogondylus coniensis OUM 113558 510 495 240 735 Exterptogondylus coniensis OVM 113558 510 495 240 735 Paturitz/sysaurus floresi PVL 4073 590 541 289 830 Carnosaurs MCCM-L14355 1120 952 453 1405 Allosaurus otherainis NCSM 14345 1120 952 463 1132 Allosaurus otherainis IVPP V284 1190 954 460 1141 Concorenator corcovatus MCCM-L14666 580 580 287 687 Gassaurus onstructus MCCM-L14666 580 580 287 633 Baal Cochurosaures IVPP V236 364 360 200 660 Baal Cochurosaures IVP V239 364 1010 103	Ceratosaurus nasicornis	USNM 4735	620	555	254	809	
Indesuchus raptorius ISI R. 401-454 872 795 3.33 1128 Megalosauroids	Deltadromeus agilis	SGM-Din 2	741	700	434	1134	
Megalosauroids CCC 20010 201 122 353 Chaandongocodurus primitivus CCC 20010 201 231 122 353 Piantizkyaarus floresi OUM [13558 510 495 240 735 Piantizkyaarus floresi PVL 4073 590 541 289 830 Carrosasus	Indosuchus raptorius	ISI R 401-454	872	795	333	1128	
Chuandongscoelurus primitivus CCG 20010 201 231 122 353 Eustreptopondylus oxenienisis OUM [13558 510 495 240 735 Datintizkysaurus floresi PVL 4073 590 541 289 830 Carnosaurs Acrocanthosaurus atokensis NCSM 14345 1120 952 453 1405 Allosaurus fagilis AMNH 290 985 810 423 1233 Chilarntisaurus tashnikuensis IVPP V284 1190 954 460 1141 Concavenator corcovatus MCCM-LH 6666 580 580 287 867 Gassaurus torstructus IVPP V284 1490 954 460 1141 Concavenator salerii IVPP V284 454 382 251 633 Neevenator salerii IVPP V284 454 360 200 560 Baal Coelurosaurs Juravenator stale IVP ¥702 364 360 200 560 Baal Coelurosaurs Juravenator stale <td< td=""><td>Megalosauroids</td><td>l I</td><td></td><td></td><td></td><td></td></td<>	Megalosauroids	l I					
Eustreptospondylus aconiensis OUM J13558 510 495 240 735 Platinitzkyaaurus floresi PVL 4073 590 541 289 830 Carnosaurs Accocanthosaurus fagilis AMNH 290 985 810 423 1233 Chilantaisaurus taoknukouensis IVPP V284 1190 954 460 1414 Concavenator corrovatus MCCM-LH 6666 580 580 287 867 Gasosaurus constructus IVPP V264 454 382 251 633 Neovenator salerii MIVG 6348/BMNH R.1001 780 670 340 1010 Simraptor dongi IVPP V239 364 360 200 560 Basal Coelurosaurs IVPP v239 364 360 20 560 Basal Coelurosaurs IMP 950.2 (cast of CEUM 5071) 145 199 107 306 Compognathids IMP 94.09.0 210 280 140 421 Ihavasquathas orientalis NICP M497 235 280	Chuandongocoelurus primitivus	CCG 20010	201	231	122	353	
Piatnitzkysaurus floresi PVL 4073 590 541 289 830 Carrosaurs	Eustreptospondylus oxoniensis	OUM J13558	510	495	240	735	
Carnosaurs NCSM 14345 1120 952 453 1405 Allosaurus fragilis AMNH 290 985 810 423 1233 Chilantiasiurus schuktuoensis IVPP V2884 1190 954 460 1414 Concavenator corcovatus MCCM-LH 6666 580 580 287 867 Gaussurus constructus IVPP V2844 454 382 251 633 Noevnator saferiti MIWG 6348/BMNH R10001 780 670 340 1010 Simaptor dongi IVPP V239 364 360 200 560 Basal Coelurosaurs JME Sch 200 52 58 34 92 Inaravendor starki JME Sch 200 52 58 34 92 Nedcolbertia justinhofmami TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids MINH CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440	Piatnitzkysaurus floresi	PVL 4073	590	541	289	830	
Acrocanthosaurus atokensis NCSM 14345 1120 952 453 1405 Allosaurus fragilis AMNH 290 985 810 423 1233 Chilantaisaurus tashukuoensis IVPP V2884 1190 954 460 1414 Concavenator corvovatus MCCM-1H 6666 580 580 287 867 Gasosaurus constructus IVPP V.264 454 382 251 633 Neovenator salerii MIWG 6348/BMNH R.10001 780 670 340 1010 Simaptor dongi IVPP 87002 875 772 410 1182 Yangchuanosaurus zigongensis IVPP 8202 875 772 410 1182 Gasoaurus constructus IMP 95.02 (cast of CEUM 5071) 145 190 107 306 Compsognathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NGP M97 235 280 160 440 Sinosaurophagus IMP-V-05-8-01 210 249 <	Carnosaurs	1		l	1		
Allosaurus fragilis AMNH 290 985 810 423 1233 Chilantaisaurus tashuikouensis IVPP V.2884 1190 954 460 1414 Concavenator corcovatus MCCM-LH 6666 580 580 287 867 Gassaurus constructus IVPP V.7264 454 382 251 633 Nevenator salerii MIWG 6348/BNNH R.1001 780 670 340 1010 Simaptor dongi IVPP V.239 364 360 200 560 Basal Coelurosaurs Imaventor starki IME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids MIGP Mv97 235 280 160 440 Sinocalliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids MON 554 727 730	Acrocanthosaurus atokensis	NCSM 14345	1120	952	453	1405	
Chilantaisaurus tashuikouensis IVPP V2884 1190 954 460 1414 Concoventor corcovatus MCCM-LH 6666 580 580 287 867 Gasoaurus constructus IVPP V7264 454 382 251 633 Newneators salerii MIWG 6348/RMNH R.10001 780 670 340 1010 Simaptor dongi IVPP 87002 875 772 410 1182 Yangchuanosaurus zigongensis IVPP V239 364 360 200 560 Basal Cochurosaurs 58 34 92 Mcclobertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids 110 130 81 211 Huaxiagnathus ongipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinocalinopteryx gigas JM-V-05-8-01 210	Allosaurus fragilis	AMNH 290	985	810	423	1233	
Concavenator corcovatus MCCM-1.H 6666 580 580 287 867 Gasosaurus constructus IVPP V.7264 454 382 251 633 Newenator salerii MIWG 6348/BMNH R.10001 780 670 340 1010 Simaptor dongi IVPP 87002 875 772 410 1182 Yangchamosaurus zigongensis IVPP V.239 364 360 200 560 Basal Cochurosaurs Juracentanosaurus zigongensis IVPP 87002 875 772 410 1182 Compsognathus Goddbertia justinhofinanni TMP 96.02 (cast of CEUM 5071) 145 199 107 306 Compsognathus Gongosenathus Intervention 440 440 440 440 440 440 440 440 440 580 113 410 417 427 Sinosauropteryx gigus JMP-V-05-8-01 210 280 147 427 Yrannosauroids GMV 2124 108 152 96 248 1575 <	Chilantaisaurus tashuikouensis	IVPP V.2884	1190	954	460	1414	
Gasosaurus constructus IVPP V.264 454 382 251 633 Neovenator salerii MIWG 6348/BMNH R.10001 780 670 340 1010 Sinraptor dongi IVPP 87002 875 772 410 1182 Yangchuanosaurus zigongensis IVPP V.239 364 360 200 560 Basal Coelurosaurus Juravenator starki JME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids 101 130 81 211 Huaxiagnathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP M/97 235 280 160 440 Sinocalliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosaurojteryx prima GMV 2124 108 152 96 248 Tyrannosauroids ROM 807 10	Concavenator corcovatus	MCCM-LH 6666	580	580	287	867	
Neovenator salerii MIWG 6348/BMNH R.10001 780 670 340 1010 Sinraptor dongi IVPP 87002 875 772 410 1182 Yangchuanosaurus zigongensis IVPP V.239 364 360 200 560 Basal Coelurosaurs 1VPP V.239 364 360 200 560 Basal Coelurosaurs IVPP V.239 364 360 200 560 Basal Coelurosaurs IVPP V.239 364 199 107 306 Compsognathids IVRP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids MINHN CNJ 79 110 130 81 211 Huaxiagnathus origingtes MINH PV-05-8-01 210 280 160 440 Sinosaurotepteryx gigas JMP-V-05-8-01 102 96 595 1575 Alectrosaurus sarcophagus ROM 807 1020 980 595 1576 Alectrosaurus olsoni AMNH 6554	Gasosaurus constructus	IVPP V.7264	454	382	251	633	
Sinraptor dongi IVPP 87002 875 772 410 1182 Yangchuanosaurus zigongensis IVPP V.239 364 360 200 560 Basal Coelurosaurs JME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 507)1 145 199 107 306 Compsognathus Compsognathus Interventor starki 199 100 306 Compsognathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinosauropteryx gigas JMP-V-05.8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids X Yaranosauroids 1210 280 147 427 Abertosaurus soloni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 </td <td>Neovenator salerii</td> <td>MIWG 6348/BMNH R.10001</td> <td>780</td> <td>670</td> <td>340</td> <td>1010</td>	Neovenator salerii	MIWG 6348/BMNH R.10001	780	670	340	1010	
Line Solution IVP V.239 364 360 200 560 Basal Coelurosaurs JME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathus Compsognathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinocalliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alectrosaurus olsoni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Diaple paradoxus IVPP V14243 185 203 118 321 Dryptosaurus aquilunguis IVP P 1	Sinraptor dongi	IVPP 87002	875	772	410	1182	
Basil Coclurosaurs JME Sch 200 52 58 34 92 Juravenator starki JME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids 110 145 199 107 306 Compsognathids 110 130 81 211 Huaxiagnathus orientalis NIGP My97 235 280 160 440 Sinosaliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids AMNH 6554 727 730 480 1210 Appalachiosaurus sarcophagus ROM 807 1020 980 595 1575 Alectosaurus olsoni AMNH 6554 727 730 4480 1210 Daspletosaurus torosus MOR 590 865	Yangchuanosaurus zigongensis	IVPP V.239	364	360	200	560	
Juravenator starki JME Sch 200 52 58 34 92 Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathids Compsognathids NIGP Mv97 235 280 160 440 Sinocallioptryx gigas JMP-V.05.8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alectorsaurus olsoni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus aquilunguis TMP 84.181.2 (cast of ANSP 995/10006) 778 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus labratur <td< td=""><td>Basal Coelurosaurs</td><td></td><td></td><td></td><td></td><td></td></td<>	Basal Coelurosaurs						
Nedcolbertia justinhofmanni TMP 96.90.2 (cast of CEUM 5071) 145 199 107 306 Compsognathuids Compsognathuids Sinosalioptery 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinosauropteryx gigas JMP-Vo5-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alectrosaurus soloni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus aquilunguis TMP 84.181.2 (cast of ANSP 978 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus bualt	Iuravenator starki	IME Sch 200	52	58	34	92	
Compsognathids Compsognathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinocalliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids 4 </td <td>Nedcolbertia iustinhofmanni</td> <td>TMP 96.90.2 (cast of CEUM 5071)</td> <td>145</td> <td>199</td> <td>107</td> <td>306</td>	Nedcolbertia iustinhofmanni	TMP 96.90.2 (cast of CEUM 5071)	145	199	107	306	
Loc Compsognathus longipes MNHN CNJ 79 110 130 81 211 Huaxiagnathus orientalis NIGP Mv97 235 280 160 440 Sinocalliopteryx gigas JMP-V-05-8-01 210 280 147 427 Sinosauropteryx prima GMV 2124 108 152 96 248 Tyrannosauroids 4 1020 980 595 1575 Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alectrosaurus olsoni AMNH 6554 727 730 480 1210 Appalachiosaurus motgomeriensis RMM6670 786 781 482 1263 Daspletosaurus torosus MOR 590 865 815 498 1313 Dilong paradoxus IVPP V14243 185 203 118 321 Scryptosaurus aquilunguis NMC 2120 1030 980 615 1595 Gargosaurus libratus NMC 2100 1020 980	Compsognathids						
Image Image <th< td=""><td>Compsognathus longipes</td><td>MNHN CNI 79</td><td>110</td><td>130</td><td>81</td><td>211</td></th<>	Compsognathus longipes	MNHN CNI 79	110	130	81	211	
s JMP-V-05-8-01 210 280 147 427 Sinocalliopteryx gigas JMP-V-05-8-01 108 152 96 248 Tyrannosauroids GMV 2124 108 152 96 248 Tyrannosauroids Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alctrosaurus olsoni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus torosus MOR 590 865 815 498 1313 Dilong paradoxus IVPP V14243 185 203 118 321 Dryptosaurus aquilunguis P395/10006) 778 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus baatar MPC-D100/63 1020 980 595 1575	Huaxiagnathus orientalis	NIGP Mv97	235	280	160	440	
Internet program Internet program <thinternet program<="" th=""> <thinternet program<="" t<="" td=""><td>Sinocallioptervx gigas</td><td>IMP-V-05-8-01</td><td>210</td><td>280</td><td>147</td><td>427</td></thinternet></thinternet>	Sinocallioptervx gigas	IMP-V-05-8-01	210	280	147	427	
Tyrannosauroids Construction Construction Construction Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Alectrosaurus olsoni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus torosus MOR 590 865 815 498 1313 Dilong paradoxus IVPP V14243 185 203 118 321 Dryptosaurus aquilunguis TMP 84.181.2 (cast of ANSP 9995/10006) 778 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus baatar MPC-D100/63 1020 980 595 1575 Tyrannosaurus rex CM 9380 (cast of AMNH 973) 1269 1166 680 1846 Yutyrannus huali ZCDM V5001, IVPP FV1961 650 655 350	Sinosauroptervx prima	GMV 2124	108	152	96	248	
Albertosaurus sarcophagus ROM 807 1020 980 595 1575 Albertosaurus soni AMNH 6554 727 730 480 1210 Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus torosus MOR 590 865 815 498 1313 Dilong paradoxus IVPP V14243 185 203 118 321 Dryptosaurus aquilunguis TMP 84.181.2 (cast of ANSP 9995/10006) 778 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus baatar MPC-D100/63 1020 980 595 1575 Tyrannosaurus rex CM 9380 (cast of AMNH 973) 1269 1166 680 1846 Yutyrannus huali ZCDM V5001, IVPP FV1961 650 655 350 1005 Dromaeosaurs MCZ 4371 336 368 164 532 Adasaurus mongoliensis MPC-D100/20 270	Tyrannosauroids						
International meterphysic Internation Internation <thinternation< th=""> Internation <thinternatio< td=""><td>Albertosaurus sarcophagus</td><td>ROM 807</td><td>1020</td><td>980</td><td>595</td><td>1575</td></thinternatio<></thinternation<>	Albertosaurus sarcophagus	ROM 807	1020	980	595	1575	
Appalachiosaurus montgomeriensis RMM6670 786 781 482 1263 Daspletosaurus torosus MOR 590 865 815 498 1313 Dilong paradoxus IVPP V14243 185 203 118 321 Dryptosaurus aquilunguis TMP 84.181.2 (cast of ANSP 9995/10006) 778 796 380 1176 Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus baatar MPC-D100/63 1020 980 595 1575 Tyrannosaurus rex CM 9380 (cast of AMNH 973) 1269 1166 680 1846 Yutyrannus huali ZCDM V5001, IVPP FV1961 650 655 350 1005 Dromaeosaurs MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145	Alectrosaurus olsoni	AMNH 6554	727	730	480	1210	
Appendition in iteration in the method of the intervention of t	Appalachiosaurus montgomeriensis	RMM6670	786	781	482	1263	
Diagram Intervision Intervision <thintervision< th=""> <thintervision< th=""> <th< td=""><td>Daspletosaurus torosus</td><td>MOR 590</td><td>865</td><td>815</td><td>498</td><td>1313</td></th<></thintervision<></thintervision<>	Daspletosaurus torosus	MOR 590	865	815	498	1313	
Driving paradistic TATL P in the Paragetering The P	Dilong paradoxus	IVPP V14243	185	203	118	321	
Gorgosaurus libratus NMC 2120 1030 980 615 1595 Guanlong wucaii IVPP V14531 343 395 189 584 Tarbosaurus baatar MPC-D100/63 1020 980 595 1575 Tyrannosaurus rex CM 9380 (cast of AMNH 973) 1269 1166 680 1846 Yutyrannus huali ZCDM V5001, IVPP FV1961 650 655 350 1005 Dromaeosaurs MNUFR-15 505 490 234 725 Adasaurus mongoliensis MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Dryptosaurus aquilunguis	TMP 84.181.2 (cast of ANSP 9995/10006)	778	796	380	1176	
Generation of the first of the fir	Gorgosaurus libratus	NMC 2120	1030	980	615	1595	
Tarbosaurus baatar MPC-D100/63 1020 980 595 1575 Tyrannosaurus rex CM 9380 (cast of AMNH 973) 1269 1166 680 1846 Yutyrannus huali ZCDM V5001, IVPP FV1961 650 655 350 1005 Dromaeosaurs Achillobator giganticus MNUFR-15 505 490 234 725 Adasaurus mongoliensis MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Guanlong wucaii	IVPP V14531	343	395	189	584	
Information Information <thinformation< th=""> <thinformation< th=""></thinformation<></thinformation<>	Tarbosaurus baatar	MPC-D100/63	1020	980	595	1575	
Yutyrannus huali Call Field Gala Gala Field Gala Field Gala Gala Field Gala Field Gala Field Gala Field Gala Gala Field Gala Field Gala Field Gala Gala Field Gala Gala Gala Field Gala Gala Gala Field Gala Gala Gala Gala Gala Gala Gala Ga	Tyrannosaurus rex	CM 9380 (cast of AMNH 973)	1269	1166	680	1846	
Intrinstriktion LODIN (3003, 111 (111)) OB OB SSO 1005 Dromaeosaurs Achillobator giganticus MNUFR-15 505 490 234 725 Adasaurus mongoliensis MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Yutvrannus huali	ZCDM V5001_IVPP FV1961	650	655	350	1015	
Achillobator giganticus MNUFR-15 505 490 234 725 Adasaurus mongoliensis MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Dromaeosaurs	20211 / 0001,1111 1 / 1/01	000	000	550	1005	
Adasaurus mongoliensis MPC-D100/20 270 295 147 442 Deinonychus antirrhopus MCZ 4371 336 368 164 532 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Achillohator giganticus	MNUFR-15	505	490	234	725	
Intervention Intervention<	Adasaurus mongolionsis	MPC-D100/20	270	205	147	AA2	
Demonytrus antirinopus MCL 4371 530 508 104 552 Mahakala omnogovi MPC 100/1033 79 110 82 192 Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Deinonychus autienhotus	MC7 /271	270	295	15/	522	
Microraptor gui QM V1002 108 145 72 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Mahakala omnorovi	MDC 100/1022	70	110	0104	102	
Introductor gail QM V 1002 108 145 /2 217 Saurornitholestes langstoni TMP 88.121.39 212 285 117 402	Microraptor avi	OM V1002	100	145	72	217	
Sum or manufestes ungstorit IMP 00.121.39 212 285 11/ 402	Saurornitholoctor lauroton:	TMD 00 101 20	212	205	117	402	
L OPTIPII00	Continued	11411 00.121.37	212	203	11/	402	

Species	ID	Femur Length	Tibia Length	Metatarsal III Length	Lower-leg length
Sinornithosaurus millenii	IVPP V.12811	148	125	93	218
Velociraptor mongoliensis	IGM 100/986	238	255	99	354
Troodontids					
Saurornithoides mongoliensis	AMNH 6516	198	243	139	382
Sinornithoides youngi	IVPP V.9612	140	191	177	368
Sinovenator changii	IVPP V12615	117	149	86	235
Troodon formosus	MOR 748	320	352	210	562

 Table 1. Hindlimb measurements form the initial theropod dataset (all measurements in mm).

Figure 2. Log/log plot of femur vs. lower-leg length for the initial dataset of 53 theropod taxa. The red line denotes the best-fit power curve and the dotted lines denote the confidence interval.

.....

the equation for predicted lower-leg length (Equation 1) and yields a predicted length of 1055 mm. In actuality, *D. agilis* has a lower-leg length of 1134 mm. So, the true lower-leg length of *D. agilis* differs from its predicted lower-leg length by 79 mm. Thus the inference of Sereno *et al.*⁴⁰ is here supported, as *D. agilis* is found to have a lower-leg that is 7.5% longer than would be "normal" for a theropod of its size (based on the relationship seen in the initial 53 taxa dataset) and is given a CLP score of +7.5. Note: if *D. agilis* had failed to live up to its name and had been found to have a lower-leg length that was abnormally short (below the predicted length), its CLP score would be reported as a negative value.

Exploring consistency in multi-specimen taxa. Because calculating the CLP score for any particular species requires femoral, tibia, and metatarsal III length measurements, CLP scores can only be calculated from specimens with relatively complete hindlimbs. This limits the number of taxa that are able to contribute to the initial dataset. It also means that, for the vast majority of species, it is only possible to base the CLP score calculation on measurements taken from a single specimen. For the sake of consistency, all species in the initial dataset are represented only by single specimens (in instances where more than one potential specimen was available, the largest or the best preserved specimen was generally chosen). This imparts a potential source of error. In the first place, the initial dataset does not consider the amount of individual variation that may be present within a species. Secondly, and potentially more seriously, some species may be represented by specimens that are ontogenetically immature.

The few theropod species for which multiple specimens with sufficiently complete hindlimbs are known offer a chance to explore both the degree of individual variation in CLP score and the effect of ontogeny. Limb measurements were taken from multiple specimens of six theropod species (*Albertosaurus sarcophagus* n = 4, *Allosaurus fragilis* n = 8, *Coelophysis bauri* n = 10, *Gorgosaurus libratus* n = 6, *Herrerasaurus ischigualestensis* n = 7, and *Tyrannosaurus rex* n = 4) (Table 2).

Results

The CLP scores derived from the initial dataset are reported in Table 3, with all taxa arranged in rank order of CLP score, and in Fig. 3, with taxa arranged phylogenetically. The scores range from -20.4 to +40.6, with an average of +0.7.

The CLP scores derived from the multi-specimen dataset are presented in Table 2 and Fig. 4. The highest variation in the scores within any species was found in the four specimens of *Tyrannosaurus rex*—scores ranged from +15.5 to +9.1, a difference of 6.4. However, a series of F-tests confirm that the amount of variance seen in the *Tyrannosaurus rex* data is not significantly greater than that observed in any of the other multi-specimen taxa. The greatest deviation of any score from the mean score of its species was found in the *Tyrannosaurus rex* specimen MOR 555, which deviates from the mean by 3.2. This suggests that, when interpreting the scores derived from the initial dataset, it is reasonable to assume that the reported CLP scores may deviate from the average CLP score of that species by as much +/-3.2.

Of the eight oldest and phylogenetically least-derived theropods included in the initial dataset, none had a positive CLP score. *Guaibasaurus candelariensis*, and *Herrerasaurus ischigualestensis*, the most basal dinosaurs included in the study, both have scores below -10 (implicating them as among the least cursorially adapted).

ID	Femur Length	Tibia Length	Metatarsal III Length	Lower-leg length			
Herrerasaurus ischigualestensis							
MACN 18.060	280.6	259	132	391			
MACN 18.090	286	280	134	414			
PVL 2054	370	335	176	511			
PVL 2566	482	415	221	636			
PVSJ 373	345	315	164	479			
PVSJ 373	354	318	165	483			
Coelophysis bauri							
AMNH 7223	209	224	126	350			
AMNH 7224	203	221	120	341			
AMNH 7229	135	154	85	239			
AMNH 7232	141	157	95	252			
AMNH 7233	126	140	81	221			
AMNH 7246	122	136	79	215			
AMNH 7247	125	138	84	222			
AMNH 7249	196	207	110	317			
CMNH 10971a	229	227	138	365			
MNA V3318	123	136	82	218			
Allosaurus fragilis							
AMNH 290	985	810	423	1233			
AMNH 324	850	738	327	1065			
AMNH 6125	850	732	355	1087			
CM 11844	843	724	360	1084			
USNM 4734	753	658	320	978			
UUVP 6000	865	738	374	1112			
UUVP 60001	850	745	372	1117			
UUVP 6000r	880	730	375	1105			
Albertosaurus sarcophag	us						
NMC 11315	680	690	445	1135			
ROM 807	1020	980	595	1575			
TMP 1981.10.1	940	900	575	1475			
TMP 1985.98.1	750	770	475	1245			
Gorgosaurus libratus							
AMNH 5423	605	640	432	1072			
TCMI 2001.89.1	830	885	538	1423			
FMNH PR 2211	445	472	343	815			
NMC 11593	940	925	605	1530			
ROM 1247	765	785	500	1285			
TMP 91.163.001	755	770	513	1283			
Tyrannosaurus rex							
BHI 6230	1100	1025	660	1685			
CM 9380 (cast of AMNH 973)	1269	1166	680	1846			
MOR 555	1280	1150	670	1820			
RTMP 81.12.1 (cast of NMC 9950)	1200	1095	650	1745			
LACM 23845	825	825	508	1333			

Table 2. Hindlimb measurements form the multi-specimen dataset (all measurements in mm).

.....

These results contradict previous interpretations that some early theropods are examples of highly cursorial forms, and suggests that such interpretations were misled by the effect of allometry and the relative small size of these early theropods. Instead, the primitive theropod condition appears to have been hindlimb proportions that are relatively non-cursorial. Evidence of high cursorial limb proportions were found among deinonychosaurs, tyrannosauroids, compsognathids, and also found in the non-coelurosaurian theropods *Concavenator corcovatus* and *Deltadromeus agilis*.

Note that we have treated *Guaibasaurus candelariensis*, and *Herrerasaurus ischigualestensis* as theropods. There is currently debate over whether these taxa belong within the Theropoda proper or if they fall outside

Sinornithosaurus millenii	-20.4	Segisaurus halli	-1.6
Guaibasaurus candelariensis	-20.4	Compsognathus longipes	-1.3
Juravenator starki	-19.4	Chuandongocoelurus primitivus	-0.3
Ceratosaurus magnicornis	-18.1	Concavenator corcovatus	0.9
Sinosaurus triassicus	-16.7	Microraptor gui	3.0
Velociraptor mongoliensis	-13.2	Sinovenator changii	4.5
Herrerasaurus ischigualestensis	-12.2	Guanlong wucaii	5.5
Ceratosaurus nasicornis	-11.0	Yutyrannus huali	6.3
Chilantaisaurus tashuikouensis	-9.9	Dryptosaurus aquilunguis	7.0
Gasosaurus constructus	-9.6	Deltadromeus agilis	7.5
Neovenator salerii	-8.3	Troodon formosus	7.6
Allosaurus fragilis	-7.9	Saurornitholestes langstoni	8.6
Coelophysis bauri	-7.6	Huaxiagnathus orientalis	9.0
Indosuchus raptorius	-6.7	Saurornithoides mongoliensis	9.3
Acrocanthosaurus atokensis	-5.8	Daspletosaurus torosus	9.3
Procompsognathus triassicus	-5.6	Tyrannosaurus rex	11.5
Achillobator giganticus	-5.3	Nedcolbertia justinhofmanni	13.6
Piatnitzkysaurus floresi	-4.8	Appalachiosaurus montgomeriensis	13.9
Eustreptospondylus oxoniensis	-4.8	Albertosaurus sarcophagus	14.2
Liliensternus liliensterni	-4.0	Tarbosaurus baatar	14.2
Yangchuanosaurus zigongensis	-3.8	Gorgosaurus libratus	14.7
Dilophosaurus wetherilli	-3.0	Sinocalliopteryx gigas	16.3
Dilong paradoxus	-2.8	Alectrosaurus olsoni	16.5
Adasaurus mongoliensis	-2.6	Sinosauropteryx prima	17.8
Sinraptor dongi	-2.5	Mahakala omnogovi	18.5
Deinonychus antirrhopus	-2.2	Sinornithoides youngi	40.6
Aucasaurus garridoi	-2.0		

Table 3. Cursorial-limb-proportion (CLP) scores from the initial dataset.

.....

Figure 3. Theropod phylogeny, with CLP scores reported for individual species and average CLP scores reported for larger clades.

it⁴¹⁻⁴⁴. Additionally, it has been argued that *Guaibasaurus candelariensis* may have closer affinities to the sauropodamorpha^{45,46}. Although *Guaibasaurus candelariensis* has the lowest CLP score in the dataset, it is not a statistical outlier (according to a Grubbs' test).

Discussion and Additional Analyses

Tyrannosauroids. One clear result from the initial dataset CLP score calculations is that tyrannosauroids have high CLP scores. Among the sampled tyrannosauroids, the basal taxa *Dilong paradoxus*, *Dryptosaurus aquilunguis*, *Guanlong wucaii*, and *Yutyrannus huali* have the lowest scores, while the more advanced tyrannosauroids *Alectrosaurus olsoni* and *Appalachiosaurus montgomeriensis* and all tyrannosaurs have much higher scores. This confirms previous assessments that tyrannosauroids are characterised by proportionately elongate hindlimbs and that lower-leg length became more exaggerated in later and more advanced forms^{11,12,20}. The development of high CLP scores in derived tyrannosauroids is consistent with the evolution of an arctometatarsus. The arctometatarsus is a modified metatarsal form that has been linked to fast linear locomotion^{12,47} and enhanced agility^{48–50}.

That tyrannosauroids have exceptionally elongate lower-legs is a factor that may modify how the results of this study should be interpreted. Because of their more recent heritage and the resulting high abundance of more complete specimens, tyrannosauroids make a large contribution to the initial dataset (eleven taxa, accounting for more than 20%). In particular, tyrannosauroids are disproportionately represented among the extremely large theropods in the initial dataset (tyrannosauroids account for seven of the thirteen theropods with femur length greater than 750 mm and four of the six theropods with femur length greater than 1000 mm). This high concentration of proportionately long legged but extremely large theropods may have skewed the dataset and had undue influence on the derivation of the predicted lower-leg length equation. To test this possibility, the tyrannosauroids data was separated from the initial dataset and the resulting two new datasets were subjective to an analysis of covariance (ANCOVA) using R statistical software. The result suggests that the tyrannosauroid data does have a significant influence (F = 21.06, p > 0.001). This indicates that special caution is warranted when interpreting the scores of species found by this study to have negative or "abnormally" low CLP scores. In fact, the proportions of these species may actually be closer to the norm or even above it, but have received a negative score because they are being considered within a dataset that has a high concentration of the extremely leggy tyrannosauroids. In particular, the low scores reported for other large theropods should be interpreted cautiously, and the method and approach here outlined will benefit from the future addition of more large non-tyrannosauroid taxa, but, at present, sufficiently complete specimens from such taxa are lacking.

Deinonychosaurs. Gatesy and coauthors^{18,51-54} observed that a major change in hindlimb locomotive style occurred during the evolution of birds and their close relatives: the size and importance of the caudofemoral musculature was greatly reduced and the importance of knee flexion increased, while the importance of femoral retraction decreased. Although it was originally hypothesised that this change in locomotive musculature and emphasis occurred gradually across the whole of the theropod lineage, caudofemoral musculature remained important and unreduced in many coelurosaurian groups^{55,56}. However, even the most basal deinonychosaurs show evidence of substantial caudofemoral reduction and are inferred to have begun the corresponding change in locomotor style⁵⁷. This means that the CLP scores calculated for deinonychosaurs should be interpreted with special caution. As seen in modern birds, greater emphasis on knee flexion requires, if stride length and speed are not to be diminished, greater elongation of the lower leg and concomitantly reduced femora^{53,58}.

Because increased emphasis on knee flexion generally requires proportionately longer metatarsals and shorter femora to still accomplish high speed running and because deinonychosaurs are classically regarded as among the more cursorily adapted theropods, deinonychosaurs would be doubly expected to have high CLP scores. However, this expectation is only partially met. All four troodontid species were found to have high CLP scores (ranging from +4.5 to +40.6 – the highest score of any of the considered taxa), and a Grubbs' test found *Sinornithoides youngi*, which has the highest CLP score in the dataset (40.6) to be a significant outlier (Z = 3.337, critical Z = 3.151). This suggests that at least some troodontids had adapted avian-like limb proportions. However, the CLP scores of the eight dromaeosaurs were decidedly mixed (ranging from -20.4 to +18.5). Of these, *Mahakala omnogovi*, *Microraptor gui*, and *Saurornitholestes langstoni* have extremely high scores, while the CLP scores of the other five dromaeosaurs are all negative.

That a majority of the considered dromaeosaurs were found to have low scores indicates dromaeosaurs, as a group, did not undergo strong adaptive limb specialization for high-speed running. Indeed, given the reduced caudofemoral musculature of dromaeosaurs and the higher CLP scores of most compsognathids and tyranno-sauroids (both more basal coelurosaurian groups), the opposite seems true: a majority of dromaeosaurs appear to have undergone a de-emphasis on cursorial limb proportions and to have been exposed to strong selective pressures favoring reduced running ability. These results are largely consistent with those of Carrano (1990)¹¹. As in tyrannosauroids, the deinonychosaurs CLP scores are consistent with the presence/absence of an arctometatarsus: the consistently high scoring troodontids possess an arctometatarsus, while the dromaeosaurs do not.

Ontogenetic variation and controversial taxa. Among the multi-specimen dataset were individuals of the same species that differed from each other substantially in terms of femur length, and, therefore, assumed body mass. Although absolute size is not always an indicator of relative age, it is reasonable to assume that many of the smaller specimens probably represent younger individuals. For instance, the largest of the *Coelophysis bauri* specimens (CMNH 10971a) has a femur that is more than 53% longer than the smallest (AMNH 7246), and the largest of the *Herrerasaurus ischigualestensis* specimens (PVL 2566) has a femur that is more than 58% longer than the smallest (MACN 18.060). Four of the tyrannosaur specimens are known juveniles (the *Albertosaurus sarcophagus* specimen NMC 11315, the *Gorgosaurus libratus* specimens AMNH 5423 and FMNH PR 2211, and the *Tyrannosaurus rex* specimen LACM 23845). Of these, FMNH PR 2211 has a femur length that is less than half that of NMC 11593 (implying an order of magnitude difference in likely bodyweight). Yet, the CLP scores calculated for even these exceptionally large and small specimens do not strongly vary from each other and fall within or near the range of scores calculated from other more moderately sized members of the same species (Fig. 4). The CLP score of a particular theropod species, therefore, appears to neither increase nor decrease with mass and age. This indicates that the widely documented changes in theropod hindlimb proportions over ontogeny can be largely explained by factors simply relating to growth in body mass.

Aside from indicating a generalized growth pattern across theropods, the recognition that, with respect simply to body mass, theropod hindlimb proportions follow roughly the same trend ontogenetically as interspecifically has several implications. First, it suggests that even if some specimens included in the initial dataset are immature, the CLP scores derived for those specimens are not likely to be misrepresentative. Second, it means that comparing CLP scores offers a potential independent method for assessing the validity of novel taxa erected based on immature or age-indeterminate specimens, which are suspected of belonging to pre-existing species, particularly when differences in limb proportions are hypothesised to be discriminating characters.

For example, the controversial Late Cretaceous tyrannosaur *Nanotyrannus lancensis* has been interpreted by some as a separate genus⁵⁹⁻⁶² and by others as a junior synonym of *Tyrannosaurus rex*^{16,63,64}. Arguments that favor the synonymy of *N. lancensis* and *T. rex* center on the interpretation of the various traits that appear to differ between *N. lancensis* and *T. rex* (which include various proportions of the skull, a small foramen in the quadratojugal, braincase morphology, tooth counts, and the form of the glenoid) as being ontogenetically dependent and indicating that all alleged *N. lancensis* specimens are, in actuality, immature specimens of *T. rex*. There has been much discussion over the legitimacy of *N. lancensis* within the literature, but there will be no attempt here to summarize the points and counterpoints of, and to, the various arguments made by both camps (instead, readers are directed to consult Carr⁶³ and Larson⁵⁹). These arguments include a variety of anatomical proportions and characters, with Carr⁶⁴ emphasising synapomorphies and *N. lancensis* diagnoses generally focusing on differences between it and *T. rex*. The elongate hindlimb proportions of specimens referred to *N. lancensis* have been specifically implicated in the debate as a trait that distinguishes *N. lancensis* and, alternatively, as a trait that can be explained away as simply reflecting immaturity.

The allegedly elongate hindlimbs of *Nanotyrannus lancensis* also have potential paleoecological implications. Excluding *N. lancensis, Tyrannosaurus rex* is the only large carnivorous theropod known from the uppermost Maastrichtian beds of North America. This implies a lower diversity in large predators than is seen in most other well sampled dinosaur faunas. Furthermore, it has been postulated that the more elongate hindlimbs of *N. lancensis* reflect a form of predatory ecological niche partitioning between *N. lancensis* and *T. rex*. Bakker⁶⁵ has suggested that the two tyrannosaurs are analogous to modern lions and cheetahs, with the smaller, more gracile, and longer legged *N. lancensis* being adapted for high-speed running. Such a comparison implies that *N. lancensis* should have proportionately more elongate hindlimbs and should, therefore, be predicted to have a much higher CLP score than *T. rex*.

To test this prediction, leg measurements were taken from two specimens that have been referred to *Nanotyrannus lancensis*. The first of these specimens is BMRP 2002.4.1 ("Jane"). The second is BHI-6437, a 3-D digital specimen produced through photogrammetry⁶⁰ and accessioned in the digital collections of the Black Hills Institute of Geological Research (see acknowledgments). The measurements and resulting CLP scores for BMRP 2002.4.1 and BHI-6437 (Table 4) are very close to one another (35.8 and 32.7, respectively), and the scores of both these specimens fall well above the range of scores established from the four specimens of *Tyrannosaurus*.

ID	Femur Length	Tibia Length	Metatarsal III Length	Lower-leg length	Leg Score
BMRP 2002.4.1	720	836	563	1399	35.8
BHI-6437	657	720	546	1266	32.7

 Table 4. Limb measurements and CLP scores from the Nanotyrannus lancensis dataset (all measurements in mm).

.....

rex. Moreover, the scores of BMRP 2002.4.1 and BHI-6437 exceed the range of scores established by any of the other tyrannosauroids, including similarly sized and immature *Albertosaurus* and *Gorgosaurus* specimens (Fig. 4). The prediction that the alleged *Nanotyrannus lancensis* specimens should show limb proportions indicative of high cursorial adaptation is, therefore, met. Indeed, the two *N. lancensis* scores exceed those of any other non-avialan theropod included in the initial dataset, making *N. lancensis* arguably the most cursorily adapted of all non-avialan carnivorous theropods.

Nevertheless, some caution is warranted in the interpretation of the exceptionally high CLP scores here reported for the two alleged *Nanotyrannus lancensis* specimens. Although the score of BMRP 2002.4.1 and BHI-6437 exceed those of adult *Tyrannosaurus rex* specimens and those of juvenile specimens of other tyrannosaurus, there is, as yet, no clearly identified juvenile *T. rex* specimen with limb proportions different from the referred *N. lancensis* specimens. It could, therefore, still be argued that *T. rex* and *N. lancensis* are synonymous, and that these results simply show that juvenile *T. rex* possessed abnormally cursorial limb proportions that became altered over ontogeny. This is an interpretation with its own significant ecological implications – perhaps for ontogenetic diet shifts and adult vs. juvenile niche partitioning. However, such an interpretation is an argument for a special case, because, in at least two other genera of large-bodied tyrannosaurs (*Albertosaurus* and *Gorgosaurus*), it is known that no similar changes in limb proportions occur. Establishing growth series for other large tyrannosaurs, including the closely related *Tarbosaurus*, will help further address this challenge.

Conclusion. Accounting for the influence of allometry permits cursorial hindlimb proportions to be scored across all carnivorous theropods, regardless of body mass. CLP scores are generally low among early primitive theropods but are high in more derived forms, including both the small-bodied compsognathids and the large-bodied tyrannosaurs. This supports previous arguments that coelurosaurs are characterised by highly cursorial limb proportions^{11,12} and supports more general inferences of increased relative limb elongation throughout the evolutionary history of predatory theropods⁶⁶. However, dromaeosaurs constitute an exception, as several dromaeosaur taxa appear to have strongly reduced cursorial limb proportions.

That the same allometric correcting method derived from interspecific comparisons also appears effective in intraspecific ontogenetic comparisons, indicates that much of the ontogenetic limb variation previously reported within different theropod taxa can be explained in terms of simple allometry. Although in the tyrannosaurs *Albertosaurus* and *Gorgosaurus*, small bodied juveniles were found to fall within the same CLP-score range as large-bodied adults, CLP scores calculated for the tyrannosaur *Nanotyrannus* fell well outside the range of scores calculated for *Tyrannosaurus*. This result suggests that the proportionately elongate lower legs of *Nanotyrannus* are not allometrically equivalent to those of *Tyrannosaurus* and are, therefore, a legitimate character to cite as a morphological discriminator between the two. This illustrates how CLP scores may in future studies be used in taxonomic assessments of juvenile specimens.

Unlike many previous attempts at estimating maximum running speeds in theropods and other approaches to allometric assessments of cursorial adaptations, the method here outlined is simple and Equation 1 can easily be applied to other theropod taxa. This method offers a way to quantify the degree of hindlimb elongation in descriptions of new theropod taxa, such that cursoriality can be quantitatively and more accurately assessed. Hopefully this method will be refined and utilized as new specimens become available, and the methodology will be applied to other dinosaur groups.

References

- 1. Alexander, R. Estimates of speeds of dinosaurs. Nature 261, 129-130 (1976).
- 2. Thulborn, R. A. Preferred gaits of bipedal dinosaurs. Alcheringa 8, 243-252 (1984).
- 3. Bates, K. T., Manning, P. L., Margetts, L. & Sellers, W. I. Sensitivity analysis in evolutionary robotic simulations of bipedal dinosaur running. *Journal of Vertebrate Paleontology* **30**, 458–466 (2010).
- Sellers, W. I. & Manning, P. L. Estimating dinosaur maximum running speeds using evolutionary robotics. Proceedings of the Royal Society of London B: Biological Sciences 274, 2711–2716 (2007).
- 5. Hutchinson, J. R. & Gatesy, S. M. Dinosaur locomotion: beyond the bones. Nature 440, 292-294 (2006).
- 6. Alexander, R. Optimization and gaits in the locomotion of vertebrates. Physiol. Rev 69, 29-64 (1989).
- Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. *Journal of Experimental Biology* 115, 283–292 (1985).
 Pennycuick, C. On the running of the gnu (Connochaetes taurinus) and other animals. *The Journal of Experimental Biology* 63,
- Fremeener, A. A. Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size.
- Biewener, A. A. Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. Journal of Experimental Biology 105, 147–171 (1983).
- Christiansen, P. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zoological Journal of the Linnean Society 136, 685–714 (2002).
- Carrano, M. What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology 247, 29–42 (1999).
- Holtz Jr, T. R. The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). Journal of Vertebrate Paleontology 14, 480–519 (1995).
- 13. Scott, K. M. Allometric trends and locomotor adaptations in the Bovidae. Bulletin of the AMNH, 179, 197-288 (1985).
- 14. Bakker, R. T. The dinosaur heresies (Penguin, 1988).

- Bakker, R. T. The deer flees, the wolf pursues: incongruities in predator-prey coevolution In *Coevolution* (eds. Futuyma D. J., Slatkin M.) 35–382 (Sunderland, 1983).
- 16. Currie, P. J. Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. *Canadian Journal of Earth Sciences* **40**, 651–665 (2003).
- 17. Garland, T. & Janis, C. M. Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? *Journal of Zoology* 229, 133–151 (1993).
- 18. Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. *Journal of Vertebrate Paleontology* 17, 308–329 (1997).
- Carrano, M. T. & Sidor, C. A. Theropod hind limb disparity revisited: Comments on Gatesy and Middleton (1997). Journal of Vertebrate Paleontology 19, 602–605 (1999).
- Farlow, J. O., Gatesy, S. M., Holtz, T. R., Hutchinson, J. R. & Robinson, J. M. Theropod locomotion. American Zoologist 40, 640–663 (2000).
- Sellers, W. I. & Manning, P. L. Estimating dinosaur maximum running speeds using evolutionary robotics. Proceedings of the Royal Society B: Biological Sciences 274, 2711–2716 (2007).
- 22. Christiansen, P. Strength indicator values of theropod long bones, with comments on limb proportions and cursorial potential. *Gaia* 15, 241–255 (1998).
- Farlow, J. O., Smith, M. B. & Robinson, J. M. Body mass, bone "strength indicator", and cursorial potential of Tyrannosaurus rex. Journal of Vertebrate Paleontology 15, 713–725 (1995).
- 24. Hutchinson, J. R. & Garcia, M. Tyrannosaurus was not a fast runner. Nature 415, 1018-1021 (2002).
- Carrano, M. T. Implications of limb bone scaling, curvature and eccentricity in mammals and non-avian dinosaurs. *Journal of Zoology* 254, 41–55 (2001).
- 26. Coombs Jr, W. P. Theoretical aspects of cursorial adaptations in dinosaurs. *Quarterly Review of Biology*, 393–418 (1978).
- Fiorillo, A. R. & Adams, T. L. A therizinosaur track from the Lower Cantwell Formation (Upper Cretaceous) of Denali National Park, Alaska. *Palaios* 27, 395–400 (2012).
 Barsbold, R. & Osmólska, H. Ornithomimosauria In *The Dinosauria* (eds. Dodson, P. & Osmólska, H.) 225–244 (University of
- California Press, 1990). 29. Lee, Y.-N. *et al.* Resolving the long-standing enigmas of a giant ornithomimosaur *Deinocheirus* mirificus. *Nature* **515**, 257–360
- Lee, Y.-N. *et al.* Resolving the long-standing enigmas of a giant ornithomimosaur *Deinocheirus* mirificus. *Nature* 515, 257–360 (2014).
 Let al. Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications. *Naturwissenschaften* 100.
- Lü, J. et al. Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications. Naturwissenschaften 100, 165–175 (2013).
- Christiansen, P. Long bone scaling and limb posture in non-avian theropods: evidence for differential allometry. *Journal of Vertebrate Paleontology* 19, 666–680 (1999).
- 32. Farlow, J. O., Hurlburt, G. R., Elsey, R. M., Britton, A. R. & Langston Jr, W. Femoral dimensions and body size of Alligator mississippiensis: estimating the size of extinct mesoeucrocodylians. *Journal of Vertebrate Paleontology* **25**, 354–369 (2005).
- Campione, N. E. & Evans, D. C. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. *Bmc Biology* 10, 60 (2012).
- 34. Russell, D. A. Tyrannosaurs from the Late Cretaceous of western Canada (Queen's Printer, 1970).
- Currie, P. J. & Zhao, X.-J. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30, 2037–2081 (1993).
- 36. Rosenberg, D. & Dodson, P. An allometric analysis of dinosaur skeletons. Journal of Vertebrate Paleontology 16, 61 (1996).
- Carrano, M. T. Body-size evolution in the dinosauria In Amniote paleobiology: perspectives on the evolution of mammals, birds, and reptiles (eds Carrano, M. T. et al.) Ch. 8, 225–268 (University of Chicago Press, 2006).
- 38. Sokal, R. R. & Rohlf, F. J. Biometry, The Principles and Practice of Statistics in Biological Research (WH Freeman & Co. 1969)
- 39. Jerison, H. J. The theory of encephalization. Annals of the New York Academy of Sciences 299, 146–160 (1977).
- 40. Sereno, P. C. et al. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272, 986-991 (1996).
- Sereno, P. C. & Novas, F. E. The skull and neck of the basal theropod Herrerasaurus ischigualastensis. Journal of Vertebrate Paleontology 13, 451–476 (1994).
- 42. Sereno, P. C. & Novas, F. E. The complete skull and skeleton of an early dinosaur. Science 258, 1137-1137 (1992).
- Novas, F. E. New information on the systematics and postcranial skeleton of Herrerasaurus ischigualastensis (Theropoda: Herrerasauridae) from the Ischigualasto Formation (Upper Triassic) of Argentina. *Journal of Vertebrate Paleontology* 13, 400–423 (1994).
- Sereno, P. C., Forster, C. A., Rogers, R. R. & Monetta, A. M. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. *Nature* 361, 64–66 (1993).
- Sereno, P. C., Martínez, R. N. & Alcober, O. A. Osteology of Eoraptor lunensis (Dinosauria, Sauropodomorpha). Journal of Vertebrate Paleontology 32, 83–179 (2012).
- Ezcurra, M. D. A new early dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Argentina: a reassessment of dinosaur origin and phylogeny. *Journal of Systematic Palaeontology* 8, 371–425 (2010).
- Wilson, M. C. & Currie, P. J. Stenonychosaurus inequalis (Saurischia: Theropoda) from the Judith River (Oldman) Formation of Alberta: new findings on metatarsal structure. *Canadian Journal of Earth Sciences* 22, 1813–1817 (1985).
- 48. Snively, E. Functional morphology of the tyrannosaurid arctometatarsus (University of Calgary, 2000).
- Snively, E. & Russell, A. P. Kinematic model of tyrannosaurid (Dinosauria: Theropoda) arctometatarsus function. Journal of Morphology 255, 215–227 (2003).
- Snively, E., Russell, A. P. & Powell, G. L. Evolutionary morphology of the coelurosaurian arctometatarsus: descriptive, morphometric and phylogenetic approaches. *Zoological Journal of the Linnean Society* 142, 525–553 (2004).
- 51. Gatesy, S. M. Caudefemoral musculature and the evolution of theropod locomotion. Paleobiology 16, 170-186 (1990).
- 52. Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. *Evolution* 50, 331–340 (1996).
- 53. Gatesy, S. M. Functional evolution of the hind limb and tail from basal theropods to birds In *Functional morphology in vertebrate paleontology* (ed. Thomason, J.), 219–234 (Cambridge University Press, 1995).
- 54. Hutchinson, J. R. & Gatesy, S. M. Adductors, abductors, and the evolution of archosaur locomotion. *Paleobiology* **26**, 734–751 (2009).
- 55. Persons IV, W. S. & Currie, P. J. The tail of *Tyrannosaurus*: reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods. *The Anatomical Record* **294**, 119–131 (2011).
- Persons IV, W. S., Currie, P. J. & Norell, M. A. Oviraptorosaur tail forms and functions. Acta Palaeontologica Polonica 59, 553–567 (2013).
- 57. Persons, W. S. & Currie, P. J. Dragon tails: convergent caudal morphology in winged archosaurs. Acta Geologica Sinica 86, 1402–1412 (2012).
- 58. Christiansen, P. & Bonde, N. Limb proportions and avian terrestrial locomotion. Journal für Ornithologie 143, 356–371 (2002).
- 59. Larson, P. The case for *Nanotyrannus* In *Tyrannosaurid paleobiology* (eds Parrish, J. *et al.*) 15–53 (Indiana University Press, 2013).
- Larson, P. The validity of Nanotyrannus lancensis (Theropoda, Lancian Upper Maastrichtian of North America) Supplement to the Journal of Vertebrate Paleontology 2013 Annual Meeting Abstract Volume, 159 (2013).

- 61. Bakker, R. T., Williams, M. & Currie, P. J. *Nanotyrannus*, a new genus of pygmy tyrannosaur, from the latest Cretaceous of Montana. *Hunteria* 1, 1–30 (1988).
- 62. Currie, P. J., Hurum, J. H. & Sabath, K. Skull structure and evolution in tyrannosaurid dinosaurs. *Acta Palaeontologica Polonica* 48, 227–234 (2003).
- 63. Carr, T. D. Craniofacial ontogeny in tyrannosauridae (Dinosauria, Coelurosauria). Journal of Vertebrate Paleontology 19, 497–520 (1999).
- Carr, T. D. & Williamson, T. E. Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society 142, 479–523 (2004).
- 65. Trivedi, B., Tiny tyrant–fossil may be mini T. res cousin. National geographic today. (2002) Avalible at: news.nationalgeographic. com/news/2002/08/0809_0208080_TVhadrosaur.html. (Accessed: 7th December 2015).
- 66. Bakker, R. T. & Bir, G. 14. Dinosaur crime scene investigations: theropod behavior at Como Bluff, Wyoming, and the evolution of birdness In Feathered dragons: studies on the transition from dinosaurs to birds (eds Currie, P. et al.) 301–342 (2004).

Acknowledgements

The skeleton from which BHI-6437 was produced is currently privately owned and, at the time of writing, has an uncertain fate (it may remain in private hands or may be accessioned by a formal research institution). BHI-6437 (which is accessioned into the digital collection of the Black Hills Institute of Geological Research and made available to researchers) is then, and may remain, the only means the scientific community has to access the skeleton. In this regard, the attainment and curation of BHI-6437 on the part of the Black Hills Institute of Geological Research constitutes a safeguard against the loss of the original material and provides an admirable service to vertebrate paleontology. Lastly, we thank Dr. Richard Moses (University of Alberta) for his recommendations regarding statistical approaches.

Author Contributions

W.S.P. IV wrote the main manuscript text. W.S.P. IV prepared Figs 1–4 and Tables 1–5. All authors reviewed the manuscript and collected the reported data.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Persons IV, W. S. and Currie, P. J. An approach to scoring cursorial limb proportions in carnivorous dinosaurs and an attempt to account for allometry. *Sci. Rep.* **6**, 19828; doi: 10.1038/srep19828 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/