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Comparative transcriptome and 
metabolome provides new insights 
into the regulatory mechanisms 
of accelerated senescence in litchi 
fruit after cold storage
Ze Yun1,*, Hongxia Qu1,*, Hui Wang1, Feng Zhu2, Zhengke Zhang1, Xuewu Duan1, Bao Yang1, 
Yunjiang Cheng2 & Yueming Jiang1

Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under 
ambient conditions (AC) is approximately 4–6 days. Post-harvest cold storage prolongs the life of 
litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, 
the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1–2 days. 
To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold 
storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed 
by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence 
of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation 
of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, 
and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated 
specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and 
small GTPase-mediated signal transduction. The respiratory burst was largely associated with 
increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the 
lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit.

Litchi is an important economic crop in subtropical China. Because of its high nutritional value, sweet taste and 
attractive red colour, litchi fruit is strongly favoured and sought by consumers. However, the short shelf life of the 
litchi fruit under ambient conditions has greatly restricted the development of the litchi industry. Under ambient 
conditions, litchi fruit are highly perishable, which is characterised by pericarp browning and loss of flavour1,2. To 
date, cold storage has proven to be the most efficient method of prolonging the life of litchi fruits3 and is widely 
used in the litchi industry. Although cold storage is effective at increasing the shelf life of litchi fruit for up to 
approximately 30 days, the subsequent shelf life of the fruit under ambient conditions is very short (< 48 h) com-
pared with fruit that had been stored only under ambient conditions4.

Fruit ripening and senescence are complex biological processes that are unique to plants. Fruit can be divided 
into two groups according to their ripening and senescence processes. Climacteric fruit are characterized by 
ripening-associated increases in respiration and ethylene production rates, and the phytohormone ethylene can 
act as a major trigger and coordinator of the ripening process. In contrast, no significant increase in phytohor-
mones is observed in non-climacteric fruits1. In these fruits, the best fruit quality and flavour are achieved at 
harvest maturity, followed by a gradual slowing of the fruit senescence process. The little experimental evidence 
available reveals that factor-associated signalling pathways are the main drivers of the fruit ripening process 
in non-climacteric fruits. The identification of the regulatory or structural genes controlling fruit ripening and 
senescence is necessary for the improvement of fruit quality.
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Over the past few years, the abscisic acid (ABA) signalling pathway has been investigated extensively5. For 
example, as an intracellular messenger, ABA performs a critical function in improving plant tolerance to cold 
stress6 and activating senescence7,8. In addition, other signalling molecules are thought to be involved in plant 
senescence, including ethylene, auxin, reactive oxygen species (ROS), jasmonic acid and salicylic acid7,9. However, 
further investigation is needed to determine which of these pathways is plays a central role in the induction of 
litchi fruit senescence.

ROS play an important role in regulating physiological activities such as plant senescence. Because plant cells 
are in a state of oxidative stress during senescence, enhanced ROS production can pose a threat by causing lipid 
peroxidation, protein oxidation, nucleic acid damage, enzyme inhibition and activation of the programmed cell 
death pathway, which ultimately leads to cell death10. ROS accumulation is largely determined by the balance 
between ROS production and scavenging capacities of the fruit. Shifts in this balance have an impact on the 
senescence, quality deterioration and loss of marketability of horticultural products11. ROS levels are usually 
controlled by ROS-scavenging antioxidant enzymes, such as superoxide dismutases, catalases and peroxidases12. 
In addition to these enzyme systems, fruit also contains a variety of antioxidants, including phenolic compounds 
and anthocyanins13,14.

Pericarp browning is a sensory characteristic of litchi fruit. Fruit with more than 25% pericarp browning is 
not usually considered to be acceptable by consumers. Pericarp browning is mainly attributable to the degra-
dation of anthocyanins and the oxidation of phenolic compounds by polyphenol oxidase2,14. Moreover, oxida-
tion of polyphenols by peroxidase in the presence of hydrogen peroxide, as another oxidation pathway, not only 
removes ROS but also leads to pericarp browning of litchi fruit15. Inhibition of lipid peroxidation, which reduces 
membrane fluidity and increases membrane permeability15, delays pericarp browning and extends the storage 
life of litchi fruit1. Most research in the past two decades has focused on the development of litchi preservation 
technology. However, little attention has been focused on the understanding of the regulatory mechanisms of 
post-harvest senescence in litchi fruit.

In this study, the transcriptome of the litchi pericarp was assembled; technologies for comparing the tran-
scriptome and metabolome were then applied to investigate the global changes that occur during litchi fruit 
senescence to provide new insights into its mechanism.

Results
The shelf life of AC fruit was 4–6 days. Cold temperatures prolonged the storage time of litchi fruit. In this study, 
litchi fruit that were stored for 14 days at 4 °C and 75–85% relative humidity (RH) exhibited little pericarp brown-
ing, but the shelf life of the fruit after removal from cold storage (PCS fruit) was only approximately 1–2 days at 
20–25 °C and 75–85% RH. Therefore, the senescence of litchi fruit, as indicated by its shelf life, was significantly 
accelerated after pre-cold storage compared with normal senescence at ambient temperature. The main aim of the 
present study was to determine the possible mechanism of accelerated senescence in PCS fruit. A comparative 
analysis between the transcriptomes and metabolomes of the PCS fruit at 24 h with those at 0 h, named Group 1,  
was completed; a similar comparative analysis of AC fruits at 4 days with those at 0 days was performed and 
named Group 2. The up-regulated genes and metabolites in both Groups 1 and 2 were closely associated with litchi 
fruit senescence as a whole, whereas genes and metabolites that were up-regulated in Group 1 but not Group 2  
were mainly associated with the accelerated senescence observed in the PCS fruit.

Characteristics of litchi fruit senescence under different storage conditions. To identify any dif-
ferences in senescence between the AC and PCS fruits, the browning index, total soluble solids (TSS) and res-
piration rate were determined. Browning indices of 20 and 80% were observed in AC fruits after 4 and 8 days of 
storage, respectively (Fig. 1A). In contrast, cold storage significantly inhibited pericarp browning, indicated by a 
browning index of 3.57% after 14 days of cold storage (Fig. 1A). However, the fruit placed at ambient temperature 
after removal from cold storage browned more rapidly (Supplementary Fig. S1). The browning indices of the PCS 
fruit after 24 and 48 h at ambient temperature following 14 days of cold storage were 20.83 and 39%, respectively 
(Fig. 1A).

There were no significant differences in the TSS contents of the AC fruit at harvest and the PCS fruit after 
14 days of cold storage (Fig. 1B). Thereafter, the TSS content decreased gradually in both the AC and PCS fruit 
during storage. Interestingly, the rates of decrease in TSS content slowed down in both AC and PCS fruits after 4 
days and 24 h, respectively (Fig. 1B).

The respiration rate peaked in the AC fruit after 2 days and then decreased gradually (Fig. 1C). In contrast, the 
respiration rate in the PCS fruit increased gradually to a plateau by the end of the shelf period (Fig. 1C).

Taken together, the results showed that cold storage effectively slowed down litchi pericarp browning and 
slowed the decrease in the TSS content. A similar extent of browning was observed in the AC fruit after 4 days and 
in the PCS fruit after 24 h. The findings revealed a critical comparative point in terms of senescence in 4-day AC 
fruit and 24-h PCS fruit, which were sampled in subsequent transcriptomic analyses.

Litchi pericarp transcriptome. Because there is a lack of genomic information about litchi, the transcrip-
tome was sequenced for reference in future comparative analyses. To characterise the transcriptome of the litchi 
pericarp during senescence, total RNA samples were extracted from the AC fruit after 0 and 4 days of storage at 
ambient temperature and from the PCS fruit after 0, 24 and 48 hours on the shelf at ambient temperature (after 
pre-cold storage). After cleaning and quality checks, Illumina paired-end sequencing was run, and 243,174,996 
reads were generated, each read averaging 100 or 40 bp in length. Supplementary Table S1 provides a summary 
of the sequence data. After assembly, 58,638 unigenes of the following lengths were identified: 200− 500 bp 
(61.49%), 500− 1000 bp (16.31%), 1000− 3000 bp (17.97%) and > 3000 bp (4.23%). The assembled sequences were 
deposited in the NCBI database. After ESTScan analysis, 32,252 coding regions and proteins were identified. A 
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total of 28,013 unigenes were annotated in the nonredundant (NR) database: 16,310 unigenes, 8855 unigenes and 
2739 unigenes were annotated in the Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases, respectively.

Pericarp transcriptomes of litchi fruit stored under different conditions. Litchi fruit are highly 
perishable, with a shelf life of approximately 6 days under ambient conditions. Cold temperatures effectively 
extend the storage life of litchi fruit, but the subsequent shelf life at ambient temperature is only 2 days (Fig. 1). In 
the present study, the pericarp transcriptomes of fruit stored at ambient temperature and fruit stored at ambient 
temperature after cold storage were analysed. To increase the reproducibility of the sequencing data, one cDNA 
library was paired-end sequenced (100 bp), and the other was single-read sequenced (40 bp). An analysis of the 
statistical significance of the data produced by the two sequencing approaches was performed respectively. The 
genes that were expressed at significant levels (in both sets of sequencing data) and showed more than a 2-fold 
change in expression level were used for further analysis. It was determined that a total of 4140 genes were dif-
ferentially expressed in litchi fruit during senescence. Among them, 1036 genes were down-regulated, and 554 
genes were up-regulated in AC fruits at 4 days compared with those at 0 days. In contrast, 2268 genes were 
up-regulated and 974 genes were down-regulated in PCS fruits at 24 h, compared with those at 0 h. Of the 692 
genes that were differentially expressed in both AC and PCS fruit, 119 genes were up-regulated in both AC and 
PCS fruits, whereas 78 genes were down-regulated in both AC and PCS fruit (Fig. 2). Interestingly, 2149 genes 
were up-regulated in only the PCS fruit, and 114 genes were specifically down-regulated in only the PCS fruit 
(Fig. 2).

To obtain more information from the large quantities of data, gene function clustering analysis was applied 
to handle information extraction. Functional analysis of the 4140 differentially expressed genes by Blast2GO was 
performed across the broad groupings of biological processes, molecular function and cellular components. In 
biological processes, the genes were distributed among 15 categories (Fig. 3): the largest one being “metabolic 

Figure 1. Browning index (A), TSS (B) and respiration intensity (C) during litchi fruit senescence under 
ambient conditions and shelf-life after pre-cold storage. AC fruits were stored under ambient temperature 
conditions (approximately 20–25 °C and 75–85% relative humidity) immediately after harvest. After 14 days of 
cold storage (4 °C and 75–85% relative humidity), PCS fruits were stored under the same ambient temperature 
conditions mentioned above. The standard errors are presented using error bars.
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process” (1897 genes), followed by “cellular process” (1870 genes), “single-organism process” (1125 genes) and 
“response to stimulus” (1032 genes). In the molecular function group, the largest category was “organic cyclic 
compound binding” (872 genes) followed by “heterocyclic compound binding” (872 genes). Interestingly, a large 
number of these genes were classified as “transferase activity” genes (522), “hydrolase activity” genes (479) and 
“oxidoreductase activity” genes (391). In the cellular component group, most of the gene functions were clus-
tered into the following categories: “intracellular membrane-bounded organelle” (1319 genes), “plastid” (469 
genes), “cytosol” (415 genes), “intracellular non-membrane-bounded organelle” (256 genes), “mitochondrion” 
(241 genes), “vacuole” (231 genes), “Golgi apparatus” (175 genes), “nuclear part” (170 genes), “ribosome” (167 
genes), “intracellular organelle lumen” (165 genes) and “endoplasmic reticulum” (138 genes).

KEGG pathway analysis classified the 4140 differentially expressed genes into 22 categories, of which the 
largest one was ‘general function prediction only’ (395 genes), followed by ‘post-translational modification, pro-
tein turnover and chaperones’ (357 genes), and ‘signal transduction mechanisms’ (247 genes). These results sug-
gest that these genes have pivotal roles in signal transduction and post-translational modification during fruit 
senescence. The remaining differentially expressed genes were placed in the following categories: ‘carbohydrate 
transport and metabolism’ (164 genes), ‘amino acid transport and metabolism’ (143 genes), ‘energy production 

Figure 2. DEGs in senescing litchi fruit under ambient conditions and shelf-life after pre-cold storage. A 
Venn diagram was constructed. PCS down: genes down-regulated in PCS fruits; PCS up: genes up-regulated in 
PCS fruits; AC down: genes down-regulated in AC fruits; AC up: genes up-regulated in AC fruits.

Figure 3. Cluster analysis of DEGs according to GO analysis. GO term assignments were based on significant 
hits against the NR database for plant species. A total of 4140 differentially expressed genes were clustered using 
blast2GO, and the analysis was performed with respect to biological processes, molecular functions and cellular 
components. Level-three data are shown in this figure.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:19356 | DOI: 10.1038/srep19356

and conversion’ (118 genes), ‘lipid transport and metabolism’ (109 genes) and ‘secondary metabolite biosynthesis, 
transport and catabolism’ (124 genes) (Fig. 4).

Comparison of the pericarp metabolome of litchi fruit under different storage conditions.  
Comparative primary metabolomic analysis was conducted by GC-MS. A total of 65 metabolites were identified 
using the external standard method and were searched against the GC-MS metabolite database. Among them, 
46 metabolites were differentially accumulated during fruit senescence. They were classified into the following 
seven clusters: sugars (12 metabolites), organic acids (eight metabolites), fatty acids (five metabolites), alcohols 
(four metabolites), alkaloids (five metabolites), amino acids (two metabolites) and others (ten metabolites). 
Interestingly, the amounts of most of these metabolites were lower in the PCS fruit at 0 h than in the AC fruit at 0 
days (Fig. 5). In contrast, almost all metabolites accumulated in the PCS fruit by 24 h compared with those at 0 h, 
including sugars, organic acids, fatty acids, alcohols, alkaloids, amino acids and others (Fig. 5). It seems that the 
primary metabolites of litchi fruit decreased during cold storage but increased sharply after transfer to ambient 
temperature. Specifically, several metabolites increased significantly in both AC and PCS fruit during senes-
cence, including D-(+ )-turanose, butanedioic acid, threonic acid, 5α -androstan-17-one, butane, trisiloxane and 
myo-inositol (Fig. 5). Apparent differences between the metabolomes of the PCS and AC fruits were observed. 
For example, the content of octadecanoic acid increased significantly in the 6-day AC fruit compared with those 
at 0 days but decreased significantly in the 48-h PCS fruit compared with those at 0 h. Similar trends were also 
observed with L-fucitol, glycerol, isoborneol, 2(3H)-furanone and 1-monolinoleoylglycerol (Fig. 5).

Signal transduction-related genes that were differentially expressed during litchi fruit senes-
cence. The 247 signal transduction genes were analysed for functions using BiNGO 2.44. The results suggest 
that litchi fruit senescence was regulated co-ordinately by various factors, including ABA, G protein-coupled 
receptor proteins, small GTPases and calcium ions (Supplementary Fig. S2). Interestingly, lychee_15320, a gene 
involved in the ‘regulation of the ABA-mediated signalling pathway’, was up-regulated in both the AC and PCS 
fruit. However, the trends observed in the ABA-related gene expression profiles varied between the AC and 
PCS fruit. For example, the genes related to the ABA-mediated signalling pathway and the response to ABA 
stimulation were up-regulated in the PCS fruit but down-regulated or not significantly altered in the AC fruit 
(Fig. 6). Thus, the results suggest that senescence was regulated by ABA through the activation of various sets 
of target genes in the AC and PCS fruits. The only GTPase up-regulated in the AC fruit was lychee_15055. In 
contrast, 18 small GTPase signalling-related genes were up-regulated in the PCS fruit (Fig. 6). Furthermore, 4 G 
protein-coupled receptor signalling pathway-related genes were up-regulated in the PCS fruit but not in the AC 
fruit (Fig. 6), suggesting that GTPase and G protein might be involved in PCS fruit but not AC fruit senescence. 
Two calcium ion-signalling genes were up-regulated, and ten genes were down-regulated during AC fruit senes-
cence (Fig. 6); seven genes were up-regulated, and four were down-regulated during PCS fruit senescence (Fig. 6). 
In short, ABA and calcium ion signalling might be involved in the senescence of both AC and PCS fruits, but 
small GTPases and G proteins were induced only during PCS fruit senescence.

Genes related to secondary metabolism that were differentially expressed during litchi fruit 
senescence. Of the genes involved in secondary metabolism, 124 genes were differentially expressed during 
litchi fruit senescence. Among these genes, 40 genes were down-regulated and 32 genes were up-regulated during 
AC fruit senescence, whereas 14 genes were down-regulated and 65 genes were up-regulated during PCS fruit 
senescence. The genes that were up-regulated during AC and PCS fruit senescence were involved in fatty acid 

Figure 4. Cluster analysis of DEGs according to KEGG pathways. After comparative transcriptomic analysis, 
4140 genes were found to be differentially expressed during litchi fruit senescence. All those genes were 
classified according to the KEGG pathway database. Clusters of interest were selected for subsequent analysis.
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oxidation, ABA metabolism, gibberellin metabolism, oxidation and reduction, and oxygen and ROS metabolism 
(Supplementary Fig. S3). In contrast, many of the genes that were up-regulated during PCS fruit senescence 
were down-regulated or showed no significant change during AC fruit senescence. These genes were involved 
in phenylpropanoid, coumarin, lignin and flavonoid metabolism and included lychee_5244, lychee_48526, 
lychee_28548, lychee_43311, lychee_47963, lychee_21016, lychee_4641, lychee_48170, lychee_14457 and 
lychee_22413. This result indicated that more dramatic changes occurred in secondary metabolism during PCS 
fruit senescence than in the AC fruit. Interestingly, some genes related to cytochrome P450 were up-regulated 
during both AC and PCS fruit senescence or were specifically up-regulated during senescence in the PCS fruit. 
This finding suggested that cytochrome P450 might play a pivotal role during litchi fruit senescence.

Figure 5. Differentially accumulated primary metabolites in senescing litchi fruits under ambient 
conditions and shelf life after pre-cold storage. PCS fruit samples (0, 24 and 48 h) and AC fruit samples (0, 
4 and 6 days) were used for the differential primary metabolic profiling analysis. Metabolites were detected by 
GC-MS using ribitol as the internal standard. The data are presented as ratios of the two samples. Up-regulated 
metabolites are presented in red and down-regulated metabolites in green.
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Figure 6. DEGs related to signal transduction in senescing litchi fruit under ambient conditions and shelf-
life after pre-cold storage. After cluster analysis, genes related to ABA, calcium ion, G protein and GTPase 
signal transduction were selected, and the logarithm with base 2 of the ratio between the two samples was 
calculated. Up-regulated genes are presented in red and down-regulated genes in green.
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Lipid transport- and metabolism-related genes that were differentially expressed during litchi 
fruit senescence. Seven genes involved in lipid transport and metabolism were up-regulated during AC 
fruit senescence, whereas 72 genes were up-regulated in senescent PCS fruit. Most of these genes were involved 
in fatty acid oxidation or glycerophospholipid, sterol and isopentenyl metabolism (Supplementary Fig. S4).  
Several processes of fatty acid oxidation were represented by genes that were up-regulated in the PCS fruit, 
including α -oxidation, β -oxidation, unsaturated fatty acid β -oxidation and other oxidations. The related genes 
included lychee_16708, lychee_3591, lychee_4924, lychee_52524, lychee_46445, lychee_29914 and lychee_56255. 
Interestingly, two genes were detected and predicted to be lipoxygenase, a critical enzyme in lipid peroxidation. 
Lychee_54651 was up-regulated during PCS fruit senescence, but no significant change in its expression was 
observed in the AC fruit; lychee_45350 and lychee_52428 were down-regulated during AC fruit senescence, but 
their expression levels were not significantly changed in the PCS fruit.

Genes related to oxidation-reduction processes that were differentially expressed during litchi 
fruit senescence. Genes involved in oxidation-reduction processes accounted for 126 of the genes that were 
differentially expressed during litchi fruit senescence. A large number of the up-regulated genes were predicted 
to be peroxidases, most of which were up-regulated specifically in the PCS fruit. Interestingly, there was no sig-
nificant expression of polyphenol oxidase-related genes during litchi fruit senescence. In addition, two genes 
that encode a key subunit of nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, lychee_2233 and 
lychee_20470, were predicted to be respiratory burst oxidases. In this context, lychee_2233 was up-regulated 
in the AC and PCS fruits during senescence, whereas lychee_20470 was up-regulated in the PCS fruit and 
down-regulated in the AC fruit.

Genes related to protein phosphorylation that were differentially expressed during litchi fruit 
senescence. Sixteen genes classified as protein phosphorylation genes were down-regulated and four genes 
were up-regulated during AC fruit senescence. In contrast, 47 protein phosphorylation genes were up-regulated 
during PCS fruit senescence, including seven calcium signal-related genes, ten serine/threonine protein 
kinase-related genes, 11 other protein kinase-related genes and two ATP-binding proteins. Thus, it appears that 
more proteins were phosphorylated in the PCS fruit than in the AC fruit.

Genes related to energy production and conversion processes that were differentially 
expressed during litchi fruit senescence. Energy production and conversion genes related to NADPH 
synthesis (lychee_10129), ATP transport (lychee_14863) and adenosine 5′ -triphosphatase (ATPase) activity 
(lychee_34156) were up-regulated during litchi fruit senescence. Specifically, 78 energy production and con-
version genes were up-regulated in the PCS fruit (Fig. 7). Among these genes involved in ATP synthesis and 
nicotinamide-adenine dinucleotide (NADH) synthesis and reduction, a large number of their corresponding 
proteins are predicted to participate in energy production and conversion (Fig. 7). Interestingly, three ATP 
transport-related genes, which were predicted to be members of the ABC transporter family, were up-regulated 
in the PCS fruit: lychee_5370, lychee_49172 and lychee_52807 (Fig. 7). The expression profiles of these genes 
suggest that more energy was consumed during PCS fruit senescence than AC fruit senescence.

The tricarboxylic acid cycle is a series of enzyme-catalysed chemical reactions that form a key pathway in 
aerobic plant respiration. Genes predicted to be malate dehydrogenases were up-regulated in both AC and PCS 
fruits. Specifically, ten malate dehydrogenase genes (six isoforms), isocitrate dehydrogenase (three isoforms) and 
2-oxoglutarate dehydrogenase (one isoform) were up-regulated, but only in the PCS fruit (Fig. 7). In addition, the 
aldehyde dehydrogenase gene, which encodes a critical enzyme for anaerobic respiration, was up-regulated; one 
isoform was up-regulated in the AC fruit and five isoforms in the PCS fruit (Fig. 7). These findings suggest that 
both aerobic and anaerobic respiration processes were activated in senescent AC and PCS fruits but were more 
pronounced in the PCS fruit.

Intracellular energy metabolism molecules that were differentially accumulated during litchi 
fruit senescence. To examine the roles of molecules involved in intracellular energy metabolism during 
litchi fruit senescence, ATP and ADP contents were analysed. ATP and ADP levels decreased during AC fruit 
senescence but increased in senescent PCS fruits (Fig. 8). Interestingly, the ATP/ADP ratio decreased gradually 
during the senescence of AC and PCS fruits; however, the ratio was lower in the PCS fruit than in the AC fruit, 
especially at the time of harvest of the AC fruits, compared with the PCS fruits at 0 h after 14 days of cold storage 
(Fig. 8).

Verification by real-time qRT-PCR. To verify the usability of the transcriptomic data, the relative tran-
script levels of 36 genes that were either significantly up- or down-regulated were determined using quanti-
tative real-time reverse-transcription PCR (qRT-PCR) (Fig. 9). These genes included nine ABA signal-related 
genes (lychee_15320, lychee_16044, lychee_42716, lychee_25001, lychee_16965, lychee_34633, lychee_56386, 
lychee_56172 and lychee_8842), three calcium-mediated signalling-related genes (lychee_44217, lychee_53887 
and lychee_33754), three G protein-coupled receptor signalling-related genes (lychee_11831, lychee_26595 and 
lychee_34935), nine GTPase signal-related genes (lychee_8030, lychee_14052, lychee_24870, lychee_30847, 
lychee_33808, lychee_39393, lychee_46804, lychee_48241 and lychee_48284), chloroplastic linoleate 
13S-lipoxygenase 3-1, (lychee_54651), malate dehydrogenase (lychee_10129), a predicted ABC transporter C 
family member 2 isoform 1 (lychee_5370), a predicted protein (lychee_41836), phenylalanine ammonia lyase 
(lychee_5244), a putative cytochrome P450 (lychee_47963), long-chain acyl-CoA synthetase 4 (lychee_16708), 
sphingolipid fatty acid alpha hydroxylase (lychee_4924), an acidic endochitinase-like protein (lychee_29658), a 
putative ATP-binding protein (lychee_38585), a serine/threonine protein kinase (lychee_55553), a putative class I 
chitinase (lychee_51483) and xyloglucan endotransglycosylase (lychee_34946). These genes are involved in signal 
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transduction, transport, cell wall function, respiration and energy, and fatty acid and other types of metabolism. 
The results obtained by qRT-PCR correlated well with the transcriptomic data, suggesting that the transcriptomic 
data were accurate and useful.

Discussion
Litchi fruit senescence. Litchi is a non-climacteric subtropical fruit that is highly valued commercially for 
its white, translucent aril and attractive red skin colour. However, harvested litchi fruit deteriorate quickly due to 
rapid pericarp browning, leading to a reduced market value15. Cold storage effectively slows down litchi pericarp 
browning and reduces TSS loss. However, it has been noted that the subsequent shelf life of the fruit after cold 
storage is < 48 h. Pericarp browning occurs faster in PCS fruit than in AC fruit under ambient temperature condi-
tions, which suggests that there are factors that might induce and accelerate the browning. Fruit senescence is the 
final event in fruit development and is regulated by internal and external factors. The senescence of non-climac-
teric fruit is a complicated process that involves an entirely controlled programme that is coordinated by internal 
signals to achieve maximum efficiency for life support9.

Transcriptome of litchi pericarp. The transcriptome of the developing litchi pericarp was assembled by 
Li et al. in 2014 using the cultivar “Baitangying”, with special attention paid to pericarp cracking16. In the present 
study, the transcriptome of the senescent pericarp using the “Huaizhi” cultivar was assembled, with special atten-
tion paid to pericarp browning, suggesting that the two transcriptome libraries are different. Therefore, it has been 
kindly suggested that this study is the first report of comparative transcriptome profiling of litchi fruit browning.

G protein-coupled receptor protein-, small GTPase- and calcium ion signal- accelerated litchi 
fruit senescence. Plant hormones have long been implicated in the regulation of fruit senescence. ABA 
may play a key role in initiating non-climacteric fruit senescence8. In the present study, the senescence of both 

Figure 7. DEGs in litchi fruit after pre-cold storage. After cluster analysis, genes related to energy metabolism 
were selected, and genes that were specifically expressed in PCS fruits were graphically analysed and visualised 
using the MapMan database at TAIR (http://www.arabidopsis.org/). All genes are shown in small squares.  
Up-regulated genes are presented in red and down-regulated genes in green.

http://www.arabidopsis.org/
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the AC and PCS fruits was regulated by an ABA-mediated signalling pathway. However, more genes involved in 
senescence-related responses to ABA stimulation and the ABA-mediated signalling pathway were up-regulated 
in the PCS fruit than in the AC fruit (Fig. 6).

Additionally, calcium ions play important roles in the induction of cell death and as secondary messengers 
during cold-induced signal transduction via a stimulus-specific increase in [Ca2+]cyt

17. The calcium-sensing 
receptor is a class C G protein-coupled receptor that senses the level of calcium ions18, whereas the small GTPase 
positively regulates calcium ion signalling19. During PCS fruit senescence, many of these genes were up-regulated, 
including seven genes involved in calcium-mediated signalling, four genes that operate in the G protein-coupled 
receptor signalling pathway, and 20 genes involved in small GTPase-mediated signal transduction (Fig. 6). 
Interestingly, during the accelerated PCS fruit senescence, genes involved in calcium ion-, G protein-coupled 
receptor- and GTPase-mediated signalling were dramatically up-regulated. Thus, the results suggested that cal-
cium ion-, G protein- and GTPase-mediated signal transduction might be involved in the acceleration of PCS 
fruit senescence.

Oxidation-related genes might play roles during litchi fruit senescence. ROS play a critical role 
in fruit senescence11, and cold stress can increase ROS production20. This study found that cold storage of litchi 
fruit induced the expression of respiratory burst oxidases that encode the key subunits of plant NADPH oxidases, 

Figure 8. Energy status in senescent litchi fruits during ambient storage and shelf life after pre-cold 
storage. ATP and ADP contents are expressed as nmol g−1 FW (fresh weight). The energy statuses of PCS and 
ACS fruits are shown as solid and dotted lines, respectively. AC fruits were stored under ambient conditions 
(approximately 20–25 °C and 75–85% relative humidity) immediately after harvest. After cold storage (4 °C and 
75–85% relative humidity) for 14 days, PCS fruits were also stored under ambient conditions at 20–25 °C and 
75–85% relative humidity. The standard errors are presented using error bars.
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which catalyse the reduction of molecular oxygen to produce hydrogen peroxide21. NADPH oxidase activity can 
be controlled by small GTPases of the Rop family22. These findings suggest that pre-cold storage increased ROS 
production via a small GTPase- signalling pathway in the PCS fruit. Enhanced ROS production can pose a threat 
to cells by causing lipid peroxidation, protein oxidation, nucleic acid damage and activation of the programmed 
cell death pathway, which ultimately lead to cell death10. ROS production could be one of the causes of accelerated 
senescence in the pre-cold storage fruit.

Lipid peroxidation is an inherent feature of senescing cells12 and can be triggered by ROS or lipoxygenase dur-
ing plant cell senescence. In senescing AC fruit, lipoxygenase was down-regulated; therefore, lipid peroxidation 
is mediated by ROS alone. In contrast, PCS fruit senescence was promoted by ROS and lipoxygenase, which is 
consistent with accelerated senescence initiated by pre-cold storage.

Pericarp browning is an important characteristic of fruit senescence. It has been well established that litchi 
pericarp browning is generally attributable to the oxidation of phenolic compounds14,23. Elevated levels of pheno-
lics in the cells cause slowing of senescence14. However, more putative peroxidase genes were up-regulated during 
PCS fruit senescence than during AC fruit senescence. Phenolic compounds can be oxidised to corresponding 
semiquinones and quinones by peroxidases24. In addition, anthocyanin oxidation requires that these molecules 
become accessible to peroxidases. The major litchi anthocyanin cyanidin 3-rutinoside can be oxidised by litchi 
peroxidases25.

In short, litchi senescence might be accompanied by the oxidation of fatty acids, polyphenols and anthocy-
anins, processes that are mediated by ROS and peroxidases. Pre-cold storage not only increased ROS produc-
tion but also up-regulated peroxidases that could collectively oxidise fatty acids, anthocyanins and phenolics in 
senescing litchi fruit. The additional expression of genes associated with the lipoxygenase oxidation pathway in 
the PCS fruit might further accelerate the senescence process.

Genes related to phenylalanine metabolism might play vital roles during litchi fruit senes-
cence. Phenylpropanoid metabolic processes represent the principal pathways of anthocyanin and flavonoid 
synthesis. The major polyphenols present in litchi fruit were flavonoids26. A large number of genes in the phenyl-
propanoid metabolic pathway linked with cytochrome P450 were up-regulated during fruit senescence but more 
so in the PCS fruit than in the AC fruit (Supplementary Excel S1), which might lead to enhanced polyphenol 

Figure 9. Verification of gene expression. The transcript levels of 36 selected genes were determined at 
different stages of litchi fruit senescence. The relative expression levels were analysed by quantitative real-time 
PCR. The default gene expression level was set to 1 at 0 days in AC fruit and 0 h in PCS fruit. The data for each 
gene are presented on a single graph and the y-axis is shared by the results for the AC and PCS fruit.
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synthesis. The increased polyphenol levels could then be oxidised by ROS and peroxidases to cause pericarp 
browning. Pre-cold storage may have induced the accumulation of more polyphenols in the PCS fruit than in the 
AC fruit during storage under ambient temperature conditions, and the subsequent oxidation may have caused 
the accelerated fruit senescence. Plant cytochrome P450s are involved in a wide range of biosynthetic reactions 
that lead to the production of various fatty acid conjugates, plant hormones, defensive compounds or medically 
important drugs27. Up-regulated cytochrome P450s could promote litchi fruit senescence through signal regu-
lation and primary and secondary metabolism. However, which process plays the more important role needs to 
be examined in a future study. In the present study, polyphenol oxidase, an important enzyme in litchi pericarp 
browning26, was not detected in either AC or PCS fruit, possibly because the sequencing depth was less.

In higher plants, coumarins originate from the general phenylpropanoid pathway, and they can inhibit the 
growth of rice, mung bean, lettuce and clover seedlings28. Coumarins also inhibit 14C-glucose incorporation into 
cellulose by inhibiting its biosynthesis rather than its breakdown28. In addition, coumarins abolish the exponential 
phase and accelerate the onset of the stationary phase of cell growth. These allelochemical compounds may also 
act as inhibitors of the cell cycle and/or as senescence-promoting substances29. Most of the coumarin-related syn-
thesis genes were up-regulated in both the AC and PCS fruits, but more so in the PCS fruit. On these grounds, it 
is speculated that coumarins might play a role in promoting fruit senescence, but this idea needs to be confirmed.

Protein phosphorylation might play a vital role during litchi fruit senescence. Protein activities 
can be regulated in many ways. Protein phosphorylation has emerged as a major regulatory mechanism in plant 
signalling and senescence30. In the present study, serine/threonine protein kinases and calcium-dependent pro-
tein kinases were up-regulated in the PCS fruit specifically, possibly contributing to their accelerated senescence. 
Phosphorylation and dephosphorylation cascades can be triggered by calcium ion signalling31. Consistent with 
our results, calcium-dependent protein kinases also regulate ROS production by NADPH oxidase32. Thus, cal-
cium could function as both a signalling molecule and an inducer of the oxidative burst.

Genes and proteins related to energy metabolism play vital roles during litchi fruit senes-
cence. In the cell, the rate of mitochondrial oxidative phosphorylation is tightly regulated by the ATP/ADP 
ratio33, such that low ATP/ADP ratios reflect cellular energy deficiencies rather than low ATP concentrations. 
Thus, the PCS fruit at 0 h in the ambient temperature after 14 days of cold storage exhibited greater energy defi-
ciency, as indicated by the significantly lower ATP/ADP ratio than the ratio found in the AC fruits at 0 days 
(Fig. 8). To compensate for this energy deficiency, genes involved in the tricarboxylic acid cycle were greatly 
up-regulated, including oxidative phosphorylation, anaerobic respiration, ATP synthesis and ABC transporter 
genes (Supplementary Excel S1). Furthermore, increased monosaccharide levels in the PCS fruit compared with 
the AC fruit provided more substrates for the tricarboxylic acid cycle (Fig. 5). These findings were consistent 
with gradual AC fruit senescence and accelerated PCS fruit senescence that was driven by an energy deficiency34.

Conclusion
This study provided an overall picture of litchi fruit senescence. The browning index, TSS and respiration rate 
showed that cold storage effectively slows the pericarp browning of litchi and reduces TSS loss and suggests that 
the critical turning points in fruit senescence were 4 days for the AC fruit and 24 h for the PCS fruit. Comparative 
transcriptomic and metabolomic analyses provided new insights into how litchi fruit senescence was accelerated 
by pre-cold storage. Under ambient conditions, litchi fruit senescence was likely to be an oxidation process pro-
moted by ABA, including the oxidation of lipids, polyphenols and anthocyanins driven by up-regulated peroxi-
dase activity and increased ROS production (Fig. 10). The accelerated senescence in PCS fruit could might be due 
to up-regulated calcium signal-, G protein-coupled receptor- and small GTPase-mediated signal transduction, 
which elicited a respiratory burst. The respiratory burst could have led to increased ROS production, up-regulated 
peroxidase activity and the initiation of the lipoxygenase pathway, which would, in turn, drive the accelerated 
senescence of the PCS fruit (Fig. 10).

Materials and Methods
Sample collection. Mature litchi (Litchi chinensis Sonn., cv. Huaizhi) fruits were obtained from a commer-
cial orchard in Guangzhou, China. Fruits were selected for uniformity in shape, size and colour and were divided 
into two groups. One group was stored under ambient temperature conditions (AC) (20− 25 °C and 75− 85% rel-
ative humidity) and was sampled at 0, 2, 4, 6 and 8 days. The other group of fruit was stored at a cold temperature 
(PCS) (4 °C and 75− 85% relative humidity) for 14 days. After cold storage, the PCS fruit was stored under the 
same ambient temperature conditions as the AC fruit and was sampled at 0, 12, 24, 36 and 48 hours. The pericarp 
tissue from each fruit was surgically removed along the equatorial plane; 30 fruits formed one biological replicate, 
and five biological replicates were performed for each sampling time. Each pericarp replicate was ground to pow-
der in liquid nitrogen and then stored at − 80 °C until needed for further analyses.

Determination of the characteristics of litchi fruit senescence. Important indices of senescence 
in litchi fruit, including the browning index, respiration rate and total soluble solids (TSS), were determined in 
the present study. The browning index was assessed by evaluating the browned area on each pericarp of more 
than 120 fruits, according to Duan et al.23. The following browning scale was used: 0 =  no browning (excellent 
quality); 1 =  slight browning; 2 =  < 1/4 browning; 3 =  1/4− 1/2 browning; and 4 =  > 1/2 browning. The browning 
index was calculated with this equation: ∑ (browning scale ×  number of corresponding fruits)/4 ×  total number 
of fruits. One replicate composed of 30 litchi fruits was used for measurements of the respiration rate by infrared 
gas analysis using an LI-6262 CO2/H2O analyser (LI-COR, Inc., Lincoln, NE, USA) according to the method of 
Wang et al.4. Juice was obtained from the fruit flesh with a juicer (HR1861, Philips Co., Beijing, China) and was 
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then filtered through cheesecloth. The TSS content of the juice was determined using a portable refractometer 
(Atago PAL-1, Japan).

RNA extraction, library preparation and sequencing. Total RNA was extracted from pericarp tissues 
using a Qiagen RNeasy Kit according to the manufacturer’s instructions. Zero and 4 day samples of AC fruit 
and 0, 24 and 48 h samples of PCS fruit were used for RNA library preparation and sequencing. RNA degrada-
tion and contamination was monitored on 1% agarose gels. RNA purity was checked using a NanoPhotometer® 
spectrophotometer (Implen, CA, USA). The RNA concentration was measured using the Qubit® RNA Assay Kit 
with a Qubit® 2.0 Fluorometer (Life Technologies, CA, USA). RNA integrity was assessed using the RNA 6000 
Nano Assay Kit with the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Messenger RNA (mRNA) 
was purified from total RNA using polyT oligos attached to magnetic beads. Fragmentation was achieved using 
divalent cations under elevated temperatures in a proprietary fragmentation buffer (Illumina). The first-strand 
cDNA synthesis was performed using random oligonucleotides and SuperScript II. The second-strand cDNA syn-
thesis was performed using DNA polymerase I and ribonuclease H. After adenylation of the 3′ -ends of the DNA 
fragments, Illumina PE adapter oligonucleotides were ligated to prepare for hybridisation. To preferentially select 
cDNA fragments of 200 base pairs (bp) in length, the library fragments were purified with the AMPure XP system 
(Beckman Coulter, Beverly, USA). DNA fragments with ligated adaptor molecules on both ends were selectively 
enriched using the Illumina PCR Primer Cocktail in a 10-cycle PCR. Products were purified using the AMPure 
XP system and were quantified using the Agilent High Sensitivity DNA assay with the Agilent Bioanalyzer 2100 
system. The clustering of the index-coded samples was performed on a cBot System using the TruSeq PE Cluster 
Kit v3-cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster generation, the library 
preparations were sequenced on an Illumina HiSeq 2000 platform. Two biological samples from each time point 
were used for library construction. One sample was paired-end sequenced (expected library size: 200 bp; read 
length: 100 nucleotides (nt)); the other was single-read sequenced (expected library size: 200 bp; read length: 
40 nt). Each library was sequenced once. The raw data were uploaded to the National Center for Biotechnology 
Information (NCBI, SRA247016).

De novo sequence assembly and functional annotation of the transcriptome. Raw data (raw 
reads) in FASTQ format were first processed through Perl scripts that we developed. In this step, clean data (clean 

Figure 10. A speculative model of litchi fruit senescence. Litchi fruit senescence is likely to be an oxidation 
process regulated by ABA under ambient conditions. After pre-cold storage, the senescence process was 
accelerated. This model is based on the reported transcriptome and metabolome findings. Solid arrows indicate 
activation that is specific to PCS fruits. Arrows with broken shafts indicate events that occur in both AC and 
PCS fruits.
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reads) were obtained by removing reads containing adaptors and poly-N and low-quality reads from the raw data. 
At the same time, the Q20, GC content and sequence duplication level of the clean data were calculated. All the 
downstream analyses were conducted on high-quality, clean data. Paired-end sequencing was performed. The left 
files (read 1 file) from all libraries/samples were pooled into one large left.fq file, and the right files (read 2 file) 
were pooled into one large right.fq file. Transcriptome assembly was performed based on the left.fq and right.
fq files using Trinity with min_kmer_cov set to 2 and all other parameters set to default35. In the last step, blastx 
(E-value <  0.00001) was employed to search for homologues of our assembled unigenes in protein databases such 
as NR, Swiss-Prot, KEGG and COG. The best results were used to determine the sequence orientations of the 
unigenes. If results from different databases conflicted with one another, a priority order (i.e., NR, Swiss-Prot, 
KEGG and COG) was followed to determine the sequence orientation. If a unigene aligned to none of the above 
databases, ESTScan software was used to predict its coding regions and to determine their sequence orienta-
tions36. The functional annotation by GO terms (http://www.geneontology.org) was analysed using the program 
Blast2GO. The COG and KEGG pathway annotations were performed using Blastall software against the COG 
and KEGG databases, respectively.

Differential unigene expression. The uniquely mapped reads for a specific transcript were counted by 
mapping them to the assembled sequences using SOAP37. The gene expression level was calculated using RPKM38. 
The RPKM value for each transcript was then measured in reads per kilobase of transcript sequence per million 
mapped reads38. Furthermore, the fold changes in transcript levels were calculated using this formula: log2 (case_
RPKM/control_RPKM). If the value of either the case_RPKM or the control_RPKM was zero, 0.01 instead of zero 
was used to calculate the fold change. The false discovery rate method was used to determine the threshold of the 
P value in multiple tests. ‘FDR ≤  0.001 and an absolute value of log2Ratio ≥  1’ was the threshold used to judge the 
significance of the observed differential gene expression. Paired-end and single-read sequenced data were used 
to determine which genes were differentially expressed, respectively. Genes that exhibited significant differential 
expression (between two samples) in both of the sequencing approaches were used for further analysis.

GO functional enrichment analysis for differentially expressed genes (DEGs). The analysis 
mapped all DEGs to GO terms in the database by calculating the gene numbers for every term, followed by an 
ultra-geometric test to find significantly enriched GO terms among the DEGs compared with the transcriptome 
background. GO terms that fulfilled this condition were then defined as significantly enriched GO terms among 
the DEGs. Finally, the Blastall program was used to annotate the pathways represented by the DEGs using the 
KEGG database.

Real-time quantitative RT-PCR verification. Zero-, 4- and 6-day samples of AC fruit and 0-, 24- and 
48-h samples of PCS fruit were used for real-time quantitative RT-PCR verification. Two micrograms of total 
RNA was reverse-transcribed to obtain first strand cDNA using the RevertAid First Strand cDNA Synthesis 
Kit (Fermentas, Lithuania) according to the manufacturer’s instructions. Gene-specific primer pairs had been 
designed using Primer Express software (Applied Biosystems, Foster City, CA, USA) were used for real-time PCR 
that was run on the ABI 7500 Real-Time System (PE Applied Biosystems, Foster City, CA, USA). Actin was used 
as the standard to normalise the cDNA content4.

Primary metabolic profiling. PCS fruit samples (0, 24 and 48 h) and AC fruit samples (0, 4 and 6 days) 
were used for primary metabolic profiling analysis. Metabolites were detected using gas chromatography coupled 
with mass spectrometry (GC-MS) according to the method of Yun et al.39. A total of 300 mg of each fruit sample 
was extracted in 2700 μ l of methanol, and 300 μ l of 0.2 mg ml−1 ribitol in water was added as an internal standard. 
The following MS operating parameters were used: an ionisation voltage of 70 eV (electron impact ionisation); 
an ion source temperature of 200 °C; and an interface temperature of 250 °C. Spectra of the total ion current were 
recorded in the mass range of 45− 600 atomic mass units in the scanning mode.

Determination of ATP and ADP concentrations. Measurements of the ATP and ADP contents were 
performed according to the method of Wang et al. using a Waters 2695 HPLC (Waters, Inc., Milford, MA, USA) 
with a Pinnacle II C18 column (4.6 ×  250 mm) and an ultraviolet detector set to 254 nm4.

Statistical analyses. Five biological replicates were used to measure the pericarp browning index, respi-
ration rate, TSS and ATP and ADP contents, and four biological replicates were used for GC-MS and qRT-PCR 
analysis. Data for each sample were statistically analysed using Student’s t-test (P <  0.05).
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