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Temperature based Restricted 
Boltzmann Machines
Guoqi Li1,*, Lei Deng1,*, Yi Xu2,*, Changyun Wen3, Wei Wang4, Jing Pei1 & Luping Shi1

Restricted Boltzmann machines (RBMs), which apply graphical models to learning probability 
distribution over a set of inputs, have attracted much attention recently since being proposed 
as building blocks of multi-layer learning systems called deep belief networks (DBNs). Note that 
temperature is a key factor of the Boltzmann distribution that RBMs originate from. However, none 
of existing schemes have considered the impact of temperature in the graphical model of DBNs. In 
this work, we propose temperature based restricted Boltzmann machines (TRBMs) which reveals that 
temperature is an essential parameter controlling the selectivity of the firing neurons in the hidden 
layers. We theoretically prove that the effect of temperature can be adjusted by setting the parameter 
of the sharpness of the logistic function in the proposed TRBMs. The performance of RBMs can be 
improved by adjusting the temperature parameter of TRBMs. This work provides a comprehensive 
insights into the deep belief networks and deep learning architectures from a physical point of view.

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network1–6 that applies graph-
ical models to learning a probability distribution over a set of inputs7. The restricted Boltzmann machines (RBMs) 
were initially invented under the name Harmonium by Smolensky in 1986 8. After that, Hinton et al. proposed fast 
learning algorithms for training a RBM in mid-2000s9–12. Since then, RBMs have found wide applications in 
dimensionality reduction9, classification13–18, feature learning19–25, pattern recognition26–29, topic modelling30 and 
various other applications31–39. Generally, RBMs can be trained in either supervised or unsupervised ways, 
depending on the task. RBMs originate from the concept of Boltzmann distribution40, a well known concept in 
physical science where temperature is a key factor of the distribution. In fact, in statistical mechanics41–43 and 
mathematics, a Boltzmann distribution is a probability distribution of particles in a system over various possible 
states. Particles in this context refer to gaseous atoms or molecules, and the system of particles is assumed to have 
reached thermodynamic equilibrium44,45. The distribution is expressed in the form of ( ) ∝ −F state e

E
kT  where E is 

state energy which varies from state to state, and kT is the product of Boltzmann’s constant and thermodynamic 
temperature. However, none of existing schemes in RBMs consider the temperature parameter in the graphical 
models, which limits the understanding of RBM from a physical point of view.

In this work, we revise the RBM by introducing a parameter T called “temperature parameter”, and propose 
a model named “temperature based restricted Boltzmann machines” (TRBMs). Our motivation originates from 
the physical fact that the Boltzmann distribution depends on temperature while so far in RBM, the effect of tem-
perature is not considered. The main idea is illustrated in Fig. 1. From a mathematical point of view, the newly 
introduced T is only a parameter that gives more flexibility (or more freedom) to the RBM. When T =  1, the 
model TRBM reduces to the existing RBM. So the present RBM is a special case of the TRBM. We further show 
that the temperature parameter T plays an essential role which controls the selectivity of the firing neurons in the 
hidden layers. In statistical mechanics, Maxwell-Boltzmann statistics46–48 describes the average distribution of 
non-interacting material particles over various energy states in thermal equilibrium, and is applicable when the 
temperature is high enough or the particle density is low enough to render quantum effects negligible. Note that 
the change in temperature affects the Maxwell-Boltzmann distribution significantly, and the particle distribution 
depends on the temperature (T) of the system. At a lower temperature, distributions moves to the left side with a 
higher kurtosis49. This implies that a lower temperature leads to a lower particle activity but higher entropy50–52. 
In this paper, we uncover that T affects the firing neurons activity distribution similar to that of a temperature 
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parameter in Boltzmann distribution illustrated in Fig. 1, which gives some insights on the newly introduced T 
from physical point of view. From the figure, it is seen that a TRBM is a variant of the Boltzmann machine (BM) 
and RBM named after Boltzmann distribution. Note that the difference between BM and RBM lies in the various 
constraints on the connections between neurons, while the energy function in both BM and RBM follows the 
Boltzmann distribution. So far in both BM and RBM, the effect of temperature is not considered, especially when 
used for machine learning. In this work, we address such an issue by introducing a temperature parameter T into 
the probability distribution of the energy function following the Boltzmann distribution.

Our approaches and contributions are summarized as follows. Firstly, we prove that the effect of the tempera-
ture parameter can be transformed to the steepness of the logistic function53,54 which is a common “S” shape 
(sigmoid curve) when employing the contrastive divergence algorithm in the process of pre-training of a TRBM. 
Because the steepness of the sigmoid curve changes the accept probability when employing the Markov Chain 
Monte Carlo (MCMC) methods55,56 for sampling the Markov random process57,58. Secondly, it is proven that the 
error propagated from the output layer will be multiplied by 

T
1 , i.e., the inverse of the temperature parameter T, in 

every layer when doing a modified back propagation (BP) in the process of fine-tuning of a TRBM. We also show 
that the propagated error further affects the selectivity of the features extracted by the hidden layers. Thirdly, we 
show that the neural activity distribution impacts the performance of the TRBMs. It is found that the relatively 
lower temperature enhances the selectivity of the extracted features, which improves the performance of a TRBM. 
However, if the temperature is lower than certain value, the selectivity turns to deteriorate, as more and more 
neurons become inactive. Based on the results established in this paper, it is natural to imagine that temperature 
may affect the cognition performance of a real neural system.

Results
Temperature based Restricted Boltzmann Machines. As mentioned, a RBM is a generative stochastic 
artificial neural network that can learn a probability distribution over a given set of inputs. A RBM is a variant of 
the original Boltzmann machine, which requires all neurons to form a bipartite graph – neurons are divided into 
two groups, where one group contains “visible” neurons and the other group contains “hidden” ones. Neurons 
from different groups may have a symmetric connection, but there is no connection among neurons within the 
same group. This restriction allows for more efficient training algorithms which are available for the original class 
of Boltzmann machines, in particular the gradient-based contrastive divergence algorithm59,60.

It is well known that a RBM is an energy-based model in which the energy function61–63 is defined as

∑ ∑ ∑∑( , ) = + +
( )

θ
= = = =

,E v h a v b v h w v
1i

n

i i
j

n

j j
i

n
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where θ consists of W =  (wi,j) (size nv ×  nh) which is associated with the connection between a hidden unit hj and 
a visible unit vi, and bias weights ai for visible units and bj for hidden units. To incorporate the temperature effect 
into the RBM, a temperature parameter T is introduced to the following joint distribution of the vectors v and h 
of the “visible” and “hidden” vectors:

( , , ) =
( ) ( )θ
θ

− ( , )θ
P v h T

Z T
e1

2

E v h
T

where Zθ(T), the sum of 
θ− ( , )

e
E v h
T  over all possible configurations, is a normalizing constant which ensures the 

probability distribution sums to 1, i.e.,

Figure 1. The main idea of this work. (a) The relationships among the temperature in a real-life physical 
systems, particle activity distribution and the artificial neural systems. (b) Illustration of a TRBM as a variant of 
Boltzmann machine (BM) and restricted Boltzmann machine (RBM).
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Denote v as an observed vector of v. Similar to RBM, TRBM is trained to maximize a distribution called like-
lihood function Pθ(v), which is a marginal distribution function of Pθ(v, h, T), i.e.,
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It is obtained that
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Remark 1. Similarly to RBM, there are two stages for training a typical TRBM for deep learning, i.e., a 
pre-training stage and a fine-tuning stage10–12. The most frequently used algorithms for these two stages are con-
trastive divergence and back propagation, respectively.

Contrastive divergence for pre-training a TRBM. In the pre-training stage, the contrastive divergence 
algorithm performs MCMC/Gibbs sampling and is used inside a gradient descent procedure to compute weight 
update. Theorem 1 shows that we only need to modify the sharpness of a logistic function when temperature is 
considered, in order to employ the contrastive divergence algorithm.

Theorem 1. When applying contrastive divergence for pre-training a TRBM, the temperature parameter con-
trols the sharpness of the logistic sigmoid function.

Proof. Note that for an observed v, we have
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Then, the likelihood function can be written as
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When θ =  Wij, we have
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Then, it is obtained that
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where vj
k is the k–th Gibbs sampling of vj. Similarly, for the case that θ =  ai and θ =  bi, we obtain that
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It can be seen that T actually controls the sharpness of the logistic function from equations (10) to (12), and 
the learning algorithm is given by:



www.nature.com/scientificreports/

5Scientific RepoRts | 6:19133 | DOI: 10.1038/srep19133

η

η

η

( + ) = ( ) + ⋅
∂ ( )
∂

( + ) = ( ) + ⋅
∂ ( )
∂

( + ) = ( ) + ⋅
∂ ( )
∂ ( )

, ,
,

w n w n
P v

w

a n a n
P v
a

b n b n
P v
b

1
ln

1
ln

1
ln

13

i j i j
i j

j j
n

j
n

j j
n

j
n

Thus, this theorem holds. □ 
Theorem 1 indicates that the effect of the temperature parameter can be effectively reflected on the sharpness 

of the logistic sigmoid function. This benefits the implementation of contrastive divergence in pre-training a 
TRBM as one only needs to adjust T as seen in equations (10)–(12).

Back propagation for fine-tuning a TRBM. In employing the contrastive divergence algorithm for 
pre-training a TRBM, we have shown that the sharpness of the logistic sigmoid function reflects the temperature 
effection. In the fine-tuning stage, the back propagation will be applied. In this section, we further show how the 
temperature parameter affect the back propagation progress for fine-tuning a TRBM. It is shown that the error 
propagated from the output layer will be multiplied by 

T
1  in every layer.

Let the logistic sigmoid function, which is also called the activation function, of the TRBM be

ψ ( / ) =
− ( )− /

x T
e
1

1 14x T

Note that ψ< ( / ) <x T0 1 and the derivative of a sigmoid function is
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where ψ ψ ψ( / ) = ( / ) ⋅ ( − ( / ))
∼ x T x T x T1  and we have ψ< ( / ) <

∼ x T0 1.
Theorem 2. When applying back propagation for fine-tuning a TRBM, the error signal propagated from the 

output layer of TRBM will be multiplied by 
T
1  at every layer.

Proof. From Fig. 2(a), when considering the gradient on the output layer, the cost function = ∑R ej j
2, where 

ej =  yj −  dj, dj is the output of the network and yj is the given labels. We have

ba
Figure 2. Illustration of the back propagation on TRBMs. 
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As shown in Fig. 2(b), suppose that the error signal on the layer κ which is transformed back from its next 
layer is fixed as κej , the cost function on layer κ can be regarded as = ∑ 




κ κR ej j
2
. Then, the gradient of the cost 
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is the error signal for the neuron i on layer κ −  1, and it is the summarization of all the error signals transferred 
from layer κ. Comparing with the standard back propagation progress in RBMs, the error in doing back propaga-
tion in TRBM will be multiplied by 

T
1 , as summarized in Fig. 3. □ 

Simulations
A 784-500-500-2000-10 network is built after layer-by-layer pre-training of TRBMs and overall fine-tuning under 
the back propagation algorithm. the training data is a MNIST set which contains 60000 handwritten digits. As 
there is no parameter T in a RBM and for the convenience of comparisons we introduce another parameter T0 
set such that T/T0 =  1 corresponds the standard RBM. So the values of T/T0 reflect how we set the temperature 
in TRBM, i.e., a higher T/T0 implies a relative higher temperature compared with a RBM. We achieve 8 groups of 
weight parameters by training the network at different temperatures respectively, including T/T0 of 0.1, 0.2, 0.5 
0.8, 1.0, 1.2, 1.5 and 2.0. For each testing, 10000 groups of sampling data of the firing neuron number in layer 2 are 
computed, in which the input for each sampling is randomly chosen from the 10000 digits in the MNIST testing 
set. Notably, the firing neuron is also a result of probabilistic sampling. For example, if the output of a neuron in 
layer 2 is 0.3, it has a chance of thirty percent to fire. At last, we illustrate the neuronal activity distribution via 
drawing the histogram of 10000 groups of the firing neuron number in layer 2. As the temperature gradually rises, 
the activity distribution curve moves to the right which indicates more firing neurons; while, the reverse result is 
observed when the temperature decreases.

Layer 1 Layer 2

Layer N-1Layer N

Signal
Error

Error 
Back Propagation 

in TRBMs

Input

Output

  1/Tin

out

1/T

  1/T

Figure 3. Illustrate of how temperature affects the back propagation progress. The error propagated from 
the output layer will be multiplied by 1/T in every layer. For a relative higher temperature since T >  1, the 
amplitude of the gradient will be reduced by 1/T times. For a relative higher temperature T <  1, the amplitude of 
the gradient will be strengthened by 1/T times.
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Figure 4 shows the performance of the TRBMs with respect to different temperature values. We allow T/T0 
changing from 0.1 to 2. Note that when T/T0 =  1, the model is reduced to the standard RBM. The temperature 
increases as T/T0 >  1, and decreases as T/T0 <  1. It is observed that the performance of the TRBM improves as 
the temperature decreases significantly when T/T0 is higher than 1. And it can be further improved when T/T0 
becomes lower and achieves its best performance around T/T0 =  0.5. After that, the performance deteriorates as 
T/T0 decreases. The best error rate is around 1%.

To see how temperature affects the extracted features on layer 2, we plot these features in Fig. 5. Note that each 
neuron in layer 2 has a 784-dimensional weight vector as it connects 784 neurons in layer 1. We could reshape the 
784-dimensional weight vector to a 28 ×  28 matrix which is called a reconstruction map. As the reconstruction 
map can be reconstructed for each neuron in layer 2, all the maps we reconstructed are considered as extracted 
features on this layer. Figure 5 shows 15 ×  15 randomly chosen reconstruction maps, where each block element 
corresponds to a reconstruction map of a neuron in layer 2. The reconstruction maps are obtained at four dif-
ferent temperatures: (a) T/T0 =  0.1; (b) T/T0 =  0.5; (c) T/T0 =  1.0; (d) T/T0 =  2.0. Four typical features are recon-
structed, including blank, stroke, digit and snowflake. The blank feature indicates small weights and snowflake 
feature is resulted from large weights. As temperature arises, i.e., T/T0 increases, blank features become less while 
more snowflake features appear, which leads to intense responses of the post-neurons. Note that when T/T0 =  1.0 
in Fig. 5(c), the TRBM is reduced to the standard RBM, where three features including stroke, digit and snowflake 
can be observed. But the TRBM captures the best stroke features at a relatively lower temperature T/T0 =  0.5 in 
Fig. 2(b), where the blank, the digit and the snowflake are almost invisible. However, as the temperature falls 
continuously, sparse activities64 of the neurons lead to better selectivity, but more inactive connections, i.e. blank 
features.

In addition, we show how the temperature affect the extracted features on the third layer in Fig. 6. Each 
neuron in layer 3 has a 500-dimensional weight vector connected to the neurons in layer 2, and each neuron in 
layer 2 has a weight reconstruction map. Consequently, we can reconstruct a weight map of each neuron in layer 
3, by computing a weighted sum of all 500 reconstruction maps of the neurons in layer 2. Similarly, we obtain 
the extracted features on layer 3 at four different temperatures: (a) T/T0 =  0.1; (b) T/T0 =  0.5; (c) T/T0 =  1.0; (d) 
T/T0 =  2.0. Since the digit features are usually expected to appear at higher layers, here we focus on the number 
of digit features in the weight reconstruction map at different temperatures. As the temperature rises, the digit 
features significantly decrease. Considering the digit features in Figs 4 and 5 in the meantime, we conclude that 
a lower temperature accelerates the travelling speed of digit features from the input layer to the output layer. For 
example, when T/T0 =  0.1, the digit features begin to appear in the weight reconstruction map of the neurons in 
layer 2; while, this phenomenon is still not obvious even in the weight reconstruction map of the neurons in layer 
2 when T/T0 =  2.

We also estimate the probability distribution of the number of firing neurons (or called “neuron activity dis-
tribution”) under different temperatures. Firstly, it is worthy to make clarifications on parameter T as the opera-
tion of TRBM is not the same as a physical heat exchange process. Since T can be considered as a mathematical 
parameter, it can be fixed as a constant when using the proposed modified back propagation (BP) algorithm to 
investigate its effects. In this case, the network runs by repeatedly choosing a unit and setting its state based on the 
training algorithm. According to a Boltzmann distribution, after running for sufficiently long time with a fixed T, 
the probability of a state of the network will depend only upon the final energy level of that state, and not on the 
initial state from which the process is started. This relationship indicates that the state distribution has converged 
to an equilibrium state. For example, as shown in Fig. 7 in the paper, if we train the network at a lower tempera-
ture T1, the probability distribution of the number of firing neurons (neuron activity distribution) will converge 

Figure 4. The performance of the TRBMs with respect to different temperatures. We choose 8 groups of 
weight parameters by training the network at different temperatures respectively, including T/T0 of 0.1, 0.2, 0.5 
0.8, 1.0, 1.2, 1.5 and 2.0.
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to an equilibrium state, i.e. the left-most curve; while if we increase the temperature to T3 when training, the state 
will converge to a new equilibrium state, i.e. the right-most curve. This implies that, the network state will reach 
a particular equilibrium distribution for a particular given parameter T. In other words, there exists a one-one 
mapping between T and the neuron activity distribution.

How T affects the firing neuron activity distribution can be tested by repeating experiments with a different 
fixed T for each training process with the results given in Fig. 7. It is observed that parameter T affects the firing 
neurons activity distribution similar to that of a temperature parameter in Boltzmann distribution illustrated in 
Fig. 1. Particularly, with lower temperature, the neuron activity decreases but with higher entropy and selectiv-
ity; while higher temperature leads to intense neuron activity. So the previous mentioned “equilibrium distribu-
tion” can be reasonably considered as a similar real-life thermal equilibrium. This is also why we could treat the 
parameter T as a temperature, and name our newly proposed RBM as Temperature based Restricted Boltzmann 
Machines (TRBM).

The kurtosis65 can be applied to characterize the selectivity of the TRBM, and it is the degree of peakedness of 
a distribution, defined as a normalized form of the fourth central moment of a distribution. Generally speaking, a 
higher degree of peakedness corresponds to a better selectivity. For a random variable X with mean and variance 
being μ and σ2, respectively, the kurtosis is defined by

µ
σ

( ) = (( − ) )) − ( )Kurt X E X
3 19

4

4

The “minus 3” at the end of this formula is often explained as a correction to make the kurtosis of the normal 
distribution equal to zero. It is observed that a higher temperature also leads to a more flat distribution, which 
has a lower kurtosis, i.e. poor selectivity. In contrast, better selectivity of low power often results in smaller error 
rate for pattern recognition. However, if the temperature is too low, the neuronal activity will be so sparse that the 

Figure 5. Temperature effection on the extracted features on layer 1 for (a) T/T0 = 0.1; (b) T/T0 = 0.5;  
(c) T/T0 = 1.0; (d) T/T0 = 2.0. 
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Figure 6. Temperature effection on the extracted features on layer 3 for (a) T/T0 = 0.1; (b) T/T0 = 0.5;  
(c) T/T0 = 1.0; (d) T/T0 = 2.0. 

Figure 7. Estimated probability distribution of the number of firing neurons under different temperatures. 
The results are obtained by repeating the experiments with a different fixed T for each training process.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:19133 | DOI: 10.1038/srep19133

recognition results will become worse. In conclusion, for a relatively lower temperature, the distributions moves 
to the left side with a higher kurtosis, which implies that a lower temperature leads to a lower particle activity but 
a higher entropy. This is consistent with the observations on the neuron activity distribution in real-life physical 
systems in Fig. 1.

Conclusions and Discussions
In this work, we propose a temperature based restricted Boltzmann machines which reveals that temperature is 
an essential parameter for controlling the selectivity of the firing neurons in the hidden layers. The two theorems 
we have established reveal the simplicity and applicability when implementing the proposed TRBM, because the 
effect of temperature can be efficiently adjusted by setting the sharpness of the logistic function, and the error 
propagated from the output layer only needs to be multiplied by 

T
1  in every layer during the back propagation 

process. Clearly, our work brings more benefits to RBMs by bringing temperature into the model, such as more 
flexible choices, more completed and accurate modelling and results.

On the other hand, the work in this paper allows us to understand how temperature affects the performance 
of the TRBMs. It also stimulates our curiosity and opens our mind to think deeply about whether temperature 
affects the cognitive performance of real-life neural systems. An interesting study on cognitive performance of 
human beings in different seasons was conducted66, where tested subjects are required to respond to a visual 
stimulus with a key press as quickly as possible. Researchers found that the reaction of the subjects is faster in 
winter than in Summer, as they are more focused in cold weather. This interesting phenomenon consists with our 
observations in this paper, namely, relatively lower temperature improves the performance of a neural systems. 
Because the neural activity becomes thinner (higher kurtosis) in a relatively lower temperature environment, and 
thinner neural activity distribution makes the system have more feature selectivity ability. However, we know that 
more and more neurons will be inactive as the temperature decreases continually. Therefore, the performance 
improvement only exists in a narrow interval. The biological evolution has adjusted the neural systems to work 
well in a proper temperature range, which may have small fluctuations with respect to temperature. This provides 
a more comprehensive understanding on the artificial neural systems from a physical point of view, and may be 
essential for investigating the biological and artificial intelligence.

References
1. Xu, J., Li, H. & Zhou, S. An overview of deep generative models. IETE Tech. Rev. 32, 131–139 (2015).
2. Langkvist, M. & Loutfi, A. Learning feature representations with a cost-relevant sparse autoencoder. Int. J. Neural Syst. 25, 1450034 

(2015).
3. Zhang, G. et al. An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. 

Neural Syst. 24, 1440006 (2014).
4. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Networks 117, 85–117 (2015).
5. Schneider, R. & Card, H. C. Instabilities and oscillation in the deterministic Boltzmann machine. Int. J. Neural Syst. 10, 321–330 

(2000).
6. Chen, L. H. et al. Voice conversion using deep neural networks with layer-wise generative training. IEEE/ACM Trans. Audio, Speech, 

and Language Process. 22, 1859–1872 (2014).
7. Fischer, A. & Igel, C. Training restricted Boltzmann machines: an introduction. Pattern Recogn. 25, 25–39 (2014).
8. Smolensky, P. Information processing in dynamical systems: foundations of harmony theory. Parallel Distributed Processing 1, 

194–281 (MIT-Press 1986).
9. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks, Science 313, 504–507 (2006).

10. Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).
11. Hinton, G. E. & Salakhutdinov, R. R. Discovering binary codes for documents by learning deep generative models. Top. Cogn. Sci. 3, 

74–91 (2011).
12. Fischer, A. & Igel, C. An introduction to restricted Boltzmann machines. Progress in Pattern Recognition, Image Analysis, Computer 

Vision, and Applications 7441, 14–36, Buenos Aires, Argentina. Springer Berlin Heidelberg. (doi: 10.1007978-3-642-33275-3_2) 
(2012).

13. Larochelle, H. & Bengio, Y. Classification using discriminative restricted Boltzmann machines. Proc. 25th International Conference 
on Machine Learning 536–543, Helsinki, Finland. ACM New York, NY, USA. (doi: 10.1145/1390156.1390224) (2008).

14. Zhang, C. X. Learning ensemble classifiers via restricted Boltzmann machines. Pattern Recogn. Lett. 36, 161–170 (2014).
15. Hayat, M., Bennamoun, M. & An, S. Deep reconstruction models for image set classification. IEEE Trans. Pattern Anal. Mach. Intell. 

37, 713–727 (2015).
16. Li, Q. et al. Credit risk classification using discriminative restricted Boltzmann machines. Proc. 17th International Conference on 

Computational Science and Engineering 1697–1700, Chengdu, China. (doi: 10.1109/CSE.2014.312) (2014).
17. An, X. et al. A deep learning method for classification of EEG data based on motor imagery. Proc. 10th International Conference on 

Intelligent Computing: Intelligent Computing in Bioinformatics 203–210, Taiyuan, China. Springer International Publishing. (doi: 
10.1007/978-3-319-09330-7_25) (2014).

18. Chen, F. et al. Spectral classification using restricted Boltzmann machine. Publ. Astron. Soc. Aust. 31, e001 (2014).
19. Coates, A., Ng, A. Y. & Lee, H. An analysis of single-layer networks in unsupervised feature learning. Proc. 14th International 

Conference on Artificial Intelligence and Statistics 215–223, Fort Lauderdale, FL, USA. (2011).
20. Suk, H. I. et al. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 

101, 569–582 (2014).
21. Xie, J. Learning features from high speed train vibration signals with deep belief networks. International Joint Conference on Neural 

Networks 2205–2210, Beijing, China. (doi: 10.1109/IJCNN.2014.6889729) (2014).
22. Nie, L., Kumar, A. & Zhan, S. Periocular recognition using unsupervised convolutional RBM feature learning. IEEE 22nd 

International Conference on Pattern Recognition 399–404, Stockholm, Sweden. (doi: 10.1109/ICPR.2014.77) (2014).
23. Huang, Z. et al. Speech emotion recognitionwith unsupervised feature learning. Front. Inform. Technol. Electron. Eng. 16, 358–366 

(2015).
24. Huynh, T., He, Y. & Rger, S. Learning higher-level features with convolutional restricted Boltzmann machines for sentiment analysis. 

Proc. 37th European Conference on IR Research 447–452, Vienna, Austria. (doi: 10.1007/978-3-319-16354-3_49) (2015).
25. Campbell, A., Ciesielksi, V. & Qin, A. K. Feature discovery by deep learning for aesthetic analysis of evolved abstract images. Proc. 

4th International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design 27–38, Copenhagen, Denmark. 
(doi: 10.1007/978-3-319-16498-4_3) (2015).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:19133 | DOI: 10.1038/srep19133

26. Ji, N. et al. Discriminative restricted Boltzmann machine for invariant pattern recognition with linear transformations. Pattern 
Recogn. Lett. 45, 172–180 (2014).

27. Chen, G. & Srihari, S. N. A noisy-or discriminative restricted Boltzmann machine for recognizing handwriting style development. 
IEEE 14th International Conference on Frontiers in Handwriting Recognition 714–719, Heraklion, Greece. (doi: 10.1109/
ICFHR.2014.125) (2014).

28. Li, G. et al. Behind the magical numbers: hierarchical chunking and the human working memory capacity. Int. J. Neural Syst. 24, 
1350019 (2013).

29. Jia, X. et al. A novel semi-supervised deep learning framework for affective state recognition on EEG signals. IEEE 14th International 
Conference on Bioinformatics and Bioengineering 30–37, Boca Raton, FL, USA. (doi: 10.1109/BIBE.2014.26) (2014).

30. Hinton, G. E. & Salakhutdinov, R. R. Replicated softmax: an undirected topic model. Advances in Neural Information Processing 
Systems 1607–1614 (2009).

31. Zieba, M., Tomczak, J. M. & Gonczarek, A. RBM-SMOTE: restricted Boltzmann machines for synthetic minority oversampling 
technique. Proc. 7th Asian Conference: Intelligent Information and Database Systems 377–386, Bali, Indonesia. (doi: 10.1007/978-3-
319-15702-3_37) (2015).

32. Kuremoto, T. et al. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137, 
47–56 (2014).

33. Hjelm, R. D. et al. Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks. NeuroImage 
96, 245–260 (2014).

34. Sakai, Y. & Yamanishi, K. Data fusion using restricted Boltzmann machines. IEEE International Conference on Data Mining 2014, 
953–958 (2014).

35. Jian, S. L. et al. SEU-tolerant restricted Boltzmann machine learning on DSP-based fault detection. IEEE 12th International 
Conference on Signal Processing 1503–1506, Hangzhou, China. (doi: 10.1109/ICOSP.2014.7015250) (2014).

36. Sheri, A. M. et al. Contrastive divergence for memristor-based restricted Boltzmann machine. Eng. Appl. Artif. Intel. 37, 336–342 
(2015).

37. Goh, H. et al. Unsupervised and supervised visual codes with restricted Boltzmann machines. Proc. 12th European Conference on 
Computer Vision 298–311, Florence, Italy. (doi: 10.1007/978-3-642-33715-4_22) (2012).

38. Plis, S. M. et al. Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014).
39. Pedroni, B. U. et al. Neuromorphic adaptations of restricted Boltzmann machines and deep belief networks, IEEE International Joint 

Conference on Neural Networks 1–6, Dallas, TX, USA. (doi: 10.1109/IJCNN.2013.6707067) (2013).
40. Landau, L. D. & Lifshitz, E. M. Statistical physics. Course of Theoretical Physics 5, 468 (1980).
41. Mendes, G. A. et al. Nonlinear Kramers equation associated with nonextensive statistical mechanics. Phys. Rev. E 91, 052106 (2015).
42. e Silva, L. B. et al. Statistical mechanics of self-gravitating systems: mixing as a criterion for indistinguishability. Phys. Rev. D 90, 

123004 (2014).
43. Gadjiev, B. & Progulova, T. Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal 

systems. International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering 1641, 595–602 
(2015).

44. Boozer, A. D. Thermodynamic time asymmetry and the Boltzmann equation. Am. J. Phys. 83, 223 (2015).
45. Tang, H. Y., Wang, J. H. & Ma, Y. L. A mew approach for the statistical thermodynamic theory of the nonextensive systems confined 

in different finite traps. J. Phys. Soc. Jpn. 83, 064004 (2014).
46. Shim, J. W. & Gatignol, R. Robust thermal boundary condition using Maxwell-Boltzmann statistics and its application. AIP 

Conference Proceedings-American Institute of Physics 1333, 980 (2011).
47. Gordon, B. L. Maxwell-Boltzmann statistics and the metaphysics of modality. Synthese 133, 393–417 (2002).
48. Niven, R. K. Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Phys. Lett. A 342, 286–293 (2005).
49. Lin, H. et al. Curvelet domain denoising based on kurtosis characteristics. J. Geophys. Eng. 12, 419–426 (2015).
50. Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333 (1973).
51. Rrnyi, A. On measures of entropy and information. Fourth Berkeley Symposium on Mathematical Statistics and Probability 1, 

547–561 (1961).
52. Li, J., Li, J. & Yan, S. Multi-instance learning using information entropy theory for image retrieval. 17th IEEE International 

Conference on Computational Science and Engineering 1727–1733, Chengdu, China. (doi: 10.1109/CSE.2014.317) (2014).
53. Reed, L. J. & Berkson, J. The application of the logistic function to experimental data. The Journal of Physical Chemistry 33, 760–779 

(1929).
54. Chen, Z., Cao, F. & Hu, J. Approximation by network operators with logistic activation functions. Appl. Math. Comput. 256, 565–571 

(2015).
55. Hastings, W. K. Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97–109 (1970).
56. Green, P. J. Reversible jump Markov Chain Monte Carlo computation and bayesian model determination. Biometrika 82, 711–732 

(1995).
57. Derin, H. & Kelly, P. Discrete-index Markov-type random processes. Proc. IEEE 77, 1485–1510 (1989).
58. Keiding, N. & Gill, R. D. Random truncation models and Markov processes. Ann. Stat. 18, 582–602 (1990).
59. Bengio, Y. & Delalleau, O. Justifying and generalizing contrastive divergence. Neural Comput. 21, 1601–1621 (2009).
60. Neftci, E. et al. Event-driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 7, 272 (2014).
61. Sanger, T. D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2, 459–473 

(1989).
62. Kolmogorov, V. & Zabih, R. What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 

147–159 (2004).
63. Elfwing, S., Uchibe, E. & Doya, K. Expected energy-based restricted Boltzmann machine for classification. Neural Networks 64, 

29–38 (2015).
64. Boureau, Y. & Cun, Y. L. Sparse feature learning for deep belief networks. Advances in Neural Information Processing Systems 

1185–1192 (2008).
65. Kenney, J. F. & Keeping, E. S. Mathematics of Statistics. (Princeton, NJ: Van Nostrand 1951).
66. Brennen, T. et al. Arctic cognition: a study of cognitive performance in summer and winter at 69°N. Appl. Cognitive Psych. 13, 

561–580 (1999).

Acknowledgements
This work was supported in part by the Independent research plan of Tsinghua University (Grant No. 
20141080934 and No. 20151080467), and the National Natural Science Foundation of China (Grant No. 
61475080), and the Science and Technology Plan of Beijing, China (Grant No. Z151100000915071).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:19133 | DOI: 10.1038/srep19133

Author Contributions
G.L., L.D., Y.X. and C.W. proposed the model. L.D., W.W., J.P. and L.S. designed the experiments and simulations. 
G.L. and C.W. proved the Theorems. All authors write the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Li, G. et al. Temperature based Restricted Boltzmann Machines. Sci. Rep. 6, 19133; doi: 
10.1038/srep19133 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Temperature based Restricted Boltzmann Machines
	Introduction
	Results
	Temperature based Restricted Boltzmann Machines
	Contrastive divergence for pre-training a TRBM
	Back propagation for fine-tuning a TRBM

	Simulations
	Conclusions and Discussions
	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Temperature based Restricted Boltzmann Machines
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19133
            
         
          
             
                Guoqi Li
                Lei Deng
                Yi Xu
                Changyun Wen
                Wei Wang
                Jing Pei
                Luping Shi
            
         
          doi:10.1038/srep19133
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep19133
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep19133
            
         
      
       
          
          
          
             
                doi:10.1038/srep19133
            
         
          
             
                srep ,  (2015). doi:10.1038/srep19133
            
         
          
          
      
       
       
          True
      
   




