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Liquid crystal phases of two-
dimensional dipolar gases and 
Berezinskii-Kosterlitz-Thouless 
melting
Zhigang Wu, Jens K. Block & Georg M. Bruun

Liquid crystals are phases of matter intermediate between crystals and liquids. Whereas classical liquid 
crystals have been known for a long time and are used in electro-optical displays, much less is known 
about their quantum counterparts. There is growing evidence that quantum liquid crystals play a 
central role in many electron systems including high temperature superconductors, but a quantitative 
understanding is lacking due to disorder and other complications. Here, we analyse the quantum phase 
diagram of a two-dimensional dipolar gas, which exhibits stripe, nematic and supersolid phases. We 
calculate the stiffness constants determining the stability of the nematic and stripe phases, and the 
melting of the stripes set by the proliferation of topological defects is analysed microscopically. Our 
results for the critical temperatures of these phases demonstrate that a controlled study of the interplay 
between quantum liquid and superfluid phases is within experimental reach for the first time, using 
dipolar gases.

With the impressive experimental progress in trapping and cooling gases consisting of dipolar atoms and mol-
ecules, a new and very promising research field is emerging. Since the early experiments trapping bosonic Cr 
atoms with a large magnetic dipole moment1, fermionic Dy and Er atoms2,3 are now being trapped and cooled to 
degeneracy, and one has already observed Fermi surface deformation due to the dipolar interaction4. Following 
the ground breaking experiments trapping KRb molecules with an electric dipole moment5–7, fermionic LiCs8, 
NaLi9, and NaK10 molecules with a large electric dipole moment are now being trapped. The reason for this 
intense experimental activity is that the anisotropic and long range nature of the dipole-dipole interaction is pre-
dicted to give rise to several exotic forms of matter, many of which have never been realised before in nature11–13.

A system of particular focus in this research field is a two-dimensional (2D) dipolar Fermi gas. This system is 
predicted to exhibit a range of intriguing phases at zero temperature =T 0, including striped (smectic)14–19, 
p-wave superfluid20, supersolid21, hexatic22,23, and Wigner crystal phases24,25. Here, we analyse the properties of 
this system for >T 0. This includes the melting of the striped phase, whose low energy degrees of freedom are 
described by an anisotropic XY model. We determine the stiffness constants of this effective model microscopi-
cally. The melting is driven by the proliferation of topological defects called dislocations, and the corresponding 
Berezinskii-Kosterlitz-Thouless (BKT) critical temperature is determined by the well-known renormalisation 
group equations. For large tilting angles of the dipoles, the system can have additional superfluid pairing which 
coexists with the stripe order, and we calculate the critical temperature of the superfluid transition. When the 
dipoles are perpendicular to the 2D plane, the critical temperature of the stripe phase is shown to vanish, and the 
system exhibits a nematic phase characterised by long range orientational order but no translational order.

Our results demonstrate that it is within experimental reach to realise quantum liquid crystal and superfluid 
phases with dipolar gases. This makes it possible to systematically investigate the interplay between spontaneously 
broken translational, rotational, and gauge symmetries, which is believed to play an important role in many of the 
most interesting electronic materials discovered in recent decades26–30. Moreover, our results show that one can 
confirm the microscopic mechanism behind the BKT transition, namely the proliferation of topological defects, 
simply by observing the proliferation of dislocation defects in the stripe pattern. Whereas early experiments 
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reported only indirect evidence of BKT physics in the bulk properties31–38, tremendous progress has recently been 
achieved in probing the microscopic aspects of the BKT transition using cold atoms39–41.

Results
We consider fermionic dipoles of mass m and average areal density n0, which are restricted to move in the xy 
plane by a tight harmonic trapping potential ω /m z 2z

2 2  along the z-direction. In the limit ω εz F , where 
ε π= / = /k m n m2 2F F

2
0  is the Fermi energy of a 2D non-interacting gas with areal density n0, the system is effec-

tively 2D with the dipoles frozen in the harmonic oscillator ground state in the z direction. An external field aligns 
the dipoles so that their dipole moment d is perpendicular to the y-axis and forms an angle Θ with the z-axis. The 
dipole-dipole interaction is θ( , ) = ( − )/( + ) /V r z D r z1 3 cos rdd

2 2 2 2 3 2, where θrd is the angle between the rela-
tive displacement vector of the two dipoles  ( , )r z  with = ( , )r x y  and the dipole moment d, and πε= /D d 42 2

0 for 
electric dipoles and µ π= /D d 42 2

0  for magnetic ones.
The strength of the interaction is determined by the dimensionless parameter π= /g mD k4 3F

2 , and the 
degree of anisotropy is controlled by the tilting angle Θ. The system is rotationally symmetric for Θ = 0 and 
becomes more anisotropic with increasing Θ. Above a critical interaction strength (Θ)gc , it is predicted to form 
density stripes at =T 0, where the density exhibits periodic modulations of the form

( ) = + ( ⋅ − ). ( )n n n ur q rcos 1c0 1

Here, 
q ec y is the wave vector of the stripes, and /n 21  and u are, respectively, the amplitude and the phase of 

the complex stripe order parameter ψ = ( )/n iuexp 21 1 . The density modulation is formed along the y-direction 
so as to minimise the interaction energy. The system thus exhibits liquid-like correlations along the x-direction 
and crystalline correlations along the y-direction. This phase has been predicted by Hartree-Fock theory14–17,42, 
density-functional theory19, and by a variant of the so-called STLS method18. Remarkably, Hartree-Fock and 
density-functional theory predict essentially the same critical coupling strength ( ) .g 0 0 6c  for stripe formation 
at Θ = 0, whereas the STLS method obtains a somewhat higher value. In general, since the formation of stripes 
occurs at relatively strong coupling it is difficult to make quantitatively accurate predictions, and one will probably 
have to wait for experiments to sort out the precise physics. For  πΘ .0 23 , the system is predicted to become a 
p-wave superfluid20, which for strong enough coupling can coexist with the stripe order forming a supersolid21. 
Quantum Monte Carlo simulations also predict the dipoles to form a triangular Wigner crystal at very large val-
ues of g 10 for Θ = 024,25 in analogy with the case of bosonic dipoles43–45. This very strong coupling regime is 
outside the scope of the present paper.

Stripe phase at finite T and effective XY model. Since the stripe phase breaks translational invariance 
along the y-direction, it is a quantum analog of a classical smectic liquid crystal46,47. Indeed, the system has a 
manifold of equivalent ground states distinguished only by a constant factor u, which specifies the position of the 
stripes along the y-direction. Consequently, there are low energy collective excitations associated with a spatially 
dependent phase ( , )u x y . Moreover, since a change from u to π+u 2  returns the system to the same ground state, 
it follows that the low energy degrees of freedom of the stripe phase are described by a 2D anisotropic XY model. 
Specifically, the simplest form of the elastic free energy congruent with the symmetry of the system is given by

∫ ∫( )= 

 (∂ ) + ∂ 


 = (∇ ) ( )⊥F d r B u B u B d r u1

2 2 2x yel
2 2 2 2 2

for Θ ≠ 0. Here, ⊥B  and B  are the perpendicular and parallel elastic coefficients describing respectively the 
energy cost of small rotations and compressions/expansions the stripes. In the second equality, we have used the 
rescaling → / ⊥x B B x to obtain an isotropic XY model with the effective elastic constant = ⊥B B B .

Berezinskii-Kosterlitz-Thouless melting. As the stripe phase is described by the XY model, it exhibits 
algebraic long-range order at sufficiently low temperatures and it melts via the Berezinskii-Kosterlitz-Thouless 
mechanism due to the proliferation of topological defects48–51. In the case of the stripe phase, the topological 
defects are dislocations. The phase field for a single dislocation of charge = ± , ± …Q 1 2  satisfies 

π∇ ( ) ⋅ =∮ u dl Qr 2 , where the path of the integration encloses the core of the dislocation. The presence of such 
a dislocation corresponds to inserting Q extra stripes to the left (right) of the dislocation for >Q 0 ( < )Q 0 . The 
energy of a single dislocation consists of a core part Ec, and a part that scales logarithmically with the size of the 
system. Pairs of bound dislocations with opposite charges = ±Q 1 ( >Q 1 are energetically suppressed), how-
ever, have a finite energy even for an infinite system size and can be thermally excited in the stripe phase. This is 
due to the fact that the phase fields of the oppositely-charged dislocations cancel at large distances, which results 
in merely a local disturbance of the density. In Fig. 1, we illustrate dislocation pairs with opposite charges = ±Q 1 
centered at ( , )x y1 1  and ( , )x y2 2  respectively. The stripe amplitude is suppressed in the core regions of the defects 
due to the large energy cost associated with ∇ ∝ /u r1 , where r is the distance to the core. From the rescaling 
→ / ⊥x B B x it follows that the energy of a vertically displaced dislocation pair distance δ apart is the same as 

that of a pair displaced horizontally by the distance δ/⊥B B . Since > ⊥B B  as we will demonstrate below, this 
shows that the dislocation pairs along the x-direction are more tightly bound than those along the y-direction.

The spontaneous thermal excitation of bound dislocation pairs decreases the elastic coefficients at a macro-
scopic scale. The softening of the effective stiffness constant B can be calculated from the well-known renormali-
sation group equations as described in the methods section. At a critical temperature Tc

st, the renormalised elastic 
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coefficient BR drops to zero by a sudden jump of magnitude π/T2 c
st . This disappearance of elastic rigidity signals 

the melting of the density stripes.

Calculation of bare stiffness constants. We now turn to a microscopic calculation of the “bare” stiffness 
constants B  and ⊥B  unrenormalised by dislocation pairs. The relevant thermodynamic quantity is the free energy 
of the system ( )F q , which depends on the stripe wave vector q. Any non-uniform phase fluctuation increases the 
free energy by an amount given by (2) for long wave lengths. To extract the elastic coefficients ⊥B  and B , we con-
sider two specific distortions: an infinitesimal rotation and an infinitesimal compression/expansion of the stripes 
away from the equilibrium configuration, as illustrated in Fig. 2.

These distortions are described by the phase field δ( ) = − ⋅u r q r, where δ δ= ⋅qq ey for the compression 
and δ δ= ⋅⊥qq ex for the rotation. They are thus equivalent to a variation of the stripe vector δ= +q q qc . 
Inserting the phase fluctuations into Eq. (2), we obtain the increment of the free energy

( )δ δ δ= ( + ) − ( ) = + , ( )⊥ ⊥F F F A B q B qq q q
2 3c cel

2 2

where A is the area of the system, and we have used the equilibrium condition ∇ ( ) | =F q 0qc
. We thus find

=
∂ ( )
∂

, =
∂ ( )
∂

.

( )
⊥

⊥

B
A

F
q

B
A

F
q

q q1 1

4q q

2

2

2

2

c c

The interaction energy per particle due to stripe formation scales as ( / )− /D n n n2
0

3 2
1 0

2. Assuming that the 
interaction energy is dominant, we find that the elastic coefficient B scales as ε( / )~ n n g F1 0

2  for a fixed Θ. The 
magnitude of B can be further reduced by a geometrical factor depending on Θ, since the system becomes rota-
tionally symmetric for Θ = 0, as we shall discuss below.

Figure 1. Dislocation pairs in the stripe phase. The dislocations are centered at ( , )x y1 1  and ( , )x y2 2  so that the 
phase field is ( ) = ( − )/( − ) − ( − )/( − )u r y y x x y y x xarctan[ ] arctan[ ]1 1 2 2 . Left: A =Q 1 dislocation 
centered at π( , − . / )q0 2 7 c  and a = −Q 1 dislocation centered at π( , . / )q0 2 7 c . Right: A =Q 1 dislocation 
centered at π(− / , )q3 0c  and a = −Q 1 dislocation centered at π( / , )q3 0c . The dashed lines indicate the position 
of the density maxima.

Figure 2. Elementary distortions of the stripes. Rotation (left) and compression (right) of the stripes away 
from their equilibrium positions indicated by the solid lines.
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In order to microscopically calculate the bare stiffness constants, we employ Hartree-Fock mean-field theory 
for the free energy, writing µ( ) ( ) = Ω +F F Nq qMF MF , where ΩMF is the mean-field thermodynamic potential 
given by

∑Ω = − − + ,
( )

β ε µ

,

− ( − )E T eln[1 ]
5j k

MF int
jk

μ is the chemical potential and N is the total number of particles. The quasiparticle energies are ε jk , where 
= , ,j 1 2  is the band index and k is restricted to the first Brillouin zone of the 1D periodic potential set up by the 

stripes. We subtract the interaction energy Eint to avoid double counting. The details of this calculation are given 
in the methods section.

In Fig. 3, we plot the bare elastic coefficients obtained from this approach as a function of temperature for 
=g 1 and πΘ = .0 28 , for which the system has a large stripe amplitude / .n n 0 61 0  at low temperatures. In order 

to minimize finite size effects, we determine the elastic coefficients by fitting a parabolic curve to the free energy 
in the vicinity of =q qc in accordance with (3), instead of performing a numerical differentiation following (4). 
This is illustrated in the insets of Fig. 3. This procedure allows us to obtain numerically accurate values for the 
elastic coefficients. From Fig. 3, we see that both elastic coefficients decrease with increased temperature. This is 
expected since thermal excitations of quasi-particles reduce the stripe amplitude and thus their rigidity. We also 
find that ⊥ B B , which suggests that compressing/expanding the stripes costs more energy than a rotation. This 
difference in magnitude becomes even more profound for small Θ when ⊥B  is strongly suppressed by the weak 
anisotropy of the system. Finally we note that for =g 1 and Θ π= .0 28 , the system is in fact predicted to have 
additional superfluid pairing at =T 021. However, as demonstrated in ref. 21, the superfluid order has negligible 
effects on the stripe formation, and it can thus be safely neglected when analysing the elastic properties of the 
stripes.

In Fig. 4, we plot the bare elastic constants as a function of the tilting angle Θ for =g 1 and ε= .T 0 01 F. The 
elastic constant B  depends non-monotonically on Θ, first decreasing and then increasing exhibiting a minimum 
at πΘ . 0 24 . This is consistent with the mean-field phase diagram, which shows that the stripe formation is 

Figure 3. Bare stiffness constants as a function of temperature. Upper curve gives B  and lower curve ⊥B  for 
=g 1 and πΘ = .0 28 . The blue circles in the insets are elastic free energy plotted as a function of q at 

ε= .T 0 01 F, and the red solid curves are parabolic fits to several data points in the vicinity of =q qc.

Figure 4. Bare stiffness constants as a function of tilting angle. Upper curve gives B  and lower curve ⊥B  for 
=g 1 and ε= .T 0 01 F. For ⊥B , the red dashed line is an extrapolation for πΘ < .0 13 , where the coefficient is 

too small to be accurately determined with our numerical method. The upper inset is a plot of the relative stripe 
amplitude as a function of Θ. The lower inset is an expanded view of the ⊥B  for small values of Θ.
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somewhat suppressed for intermediate values of Θ21,42. To illustrate this, we plot as an inset the stripe amplitude 
n1 as a function of Θ; we see that it exhibits the same non-monotonic behaviour as B . It is an intriguing question 
whether this non-monotonic behaviour is an artifact of the Hartree-Fock approximation or whether it is a real 
physical effect. In comparison to this behaviour, Fig. 4 shows that ⊥B  increases monotonically in Θ. In particular, 
we have →⊥B 0 for Θ → 0 as shown in detail in the inset. This reflects that the system is rotationally symmetric 
for Θ = 0 such that a rotation of the stripes costs no energy.

Renormalised stiffness constants and stripe melting. The bare elastic constants obtained from the 
mean-field theory can now be used as initial values in the RG equations to determined the renormalised elastic 
constants. We also need the dislocation core energy, which must scale as ~B. Therefore, we write κ=E Bc , where 
κ is a constant of order unity. In Fig. 5, we plot the renormalised elastic coefficient BR as a function of temperature, 
obtained by solving (16) with the initial mean-field values of = ⊥B B B  and κ=E Bc  for various coupling 
strengths g and tilting angles Θ. To examine the dependence on the core energy, we have chosen different values 
of κ. We see that the thermal excitation of dislocation pairs soften the elastic coefficients as expected. This soften-
ing is negligible for low T where the core energy prohibits the excitation of dislocations. The softening increases 
with decreasing core energy and increasing T. At the critical temperature Tc

st determined by the solution to 
π/ = ( )T B T2 R , the elastic coefficient drops to zero discontinuously and the density stripes melt.

The temperature dependence of renormalised elastic coefficient BR shown in Fig. 5 can be probed experimen-
tally by a measurement of correlation function ( ) = ( ) − ( )G u ur rcos[ 0 ]  for the fluctuations in the stripe posi-
tions. This correlation function exhibits the characteristic scale invariant algebraic decay below the BKT transition 
temperature46

( ) , ( )η− ( )~G r r 6T

where η π( ) = / ( )T T B T2 R . We have η ≤ /1 4, and it tends to the universal value of  /1 4 when →T Tc
st.

The resulting melting temperature Tc
st is plotted in Fig. 6 as a function of Θ for =g 1 and κ = 3. It increases 

rapidly with Θ, indicating that the degree of anisotropy of the system increases such that the stripes become more 
rigid. An extrapolation of our calculation for =g 1 and κ = 3 shows that ε.~T 0 06c F

st  for πΘ . 0 3 . The critical 
temperature also increases with the coupling strength, scaling as ε( / )~ ~T B n n gc F

st
1 0

2 0. We note that in addition 
to the explicit linear dependence on g, the Tc

st can further increase with the coupling strength through the depend-
ence on n1. Our results show that in order to observe the stripe phase and the associated BKT physics with dipoles, 
it is preferable to choose a large tilting angle in addition to having a large dipole moment. However, the tilting 
angle cannot exceed πΘ . 0 3  above which the system exhibits a density collapse for large coupling strengths20,21.

We note that the critical temperature increases with increasing core energy κ, since it becomes more energet-
ically costly to create dislocation pairs. A microscopic determination of κ for the stripe phase is unfortunately very 
complicated and beyond the scope of the present paper. We have therefore adopted a pragmatic approach simply 
choosing the value κ = 3 in Fig. 6, which is intermediate between the values of two microscopic models: for the 
XY model on a lattice one has κ π= /22 52, whereas BCS theory yields κ π= /3  for the 2D superfluid transition, if 
one equates the core energy with the loss of condensation energy inside a radius given by the BCS coherence 
length53,54.

Melting of supersolid phase. The system exhibits p-wave pairing for Θ > ( / )arcsin 2 3 20, which can coexist 
with stripe order for > (Θ)g gc  at =T 021. We now determine the critical temperature Tc

sf  for the superfluid tran-
sition. The 2D superfluid transition is in principle also determined by the BKT mechanism, where the topological 
defects are now vortices. For weak pairing, however, the mean-field BCS theory in fact gives a good estimate of 
the transition temperature. We thus determine the critical temperature by solving the linearised gap equation

Figure 5. Renormalised stiffness constants as a function of temperature. The three groups of curves for 
( )B TR  for =g 1 correspond to, in the order from bottom to up, πΘ = .0 2 , πΘ = .0 26  and πΘ = .0 28  

respectively. In each of the group, the four curves, in the order from bottom to up, correspond to κ = , ,2 3 4 and 
∞ (mean-field result) respectively. The slope of the dashed diagonal line is π/2 .
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Here ∆k is the gap parameter and ( , − ′)VV k k  is the effective interaction between the quasiparticles in the stripe 
phase with energy dispersion ξk measured from the Fermi surface. The details of this calculation are given in the 
methods section. The critical temperature obtained from this calculation is shown in Fig. 6 for =g 1 and for 
several tilting angles. This mean-field result gives an upper bound to the critical temperature, but since εTc F

sf  
we expect that a more detailed BKT calculation yield only slightly smaller values. This should be contrasted with 
the melting of the stripes, where an estimate of the critical temperature from a vanishing stripe order would give 
a much higher value compared to the BKT calculation. This can be seen from Fig. 3, which shows that the 
mean-field elastic coefficients remain large up to ε= .T 0 12 F. Thus, it is crucial to use the BKT theory to analyse 
the stripe melting.

Using a simple p-wave ansatz for the gap parameter φ∆ ∆ cosk , where φ is the polar angle of the wave 
vector k, one can obtain an approximate solution for the critical temperature as

)(ε , ( )− /

 Θ− 




T C e 8c F
gsf 1 9

4 sin 12

where C is a constant related to an effective momentum cutoff in the integral in (7). We find that the data obtained 
from solving (7) numerically are in fact very well described by (8) with .C 0 4.

Quantum nematic phase for Θ = 0. Figure 6 shows that the critical temperature for the stripe phase 
vanishes as Θ → 0. This is a direct consequence of the rotational symmetry rendering =⊥B 0 for Θ = 0. In this 
case, the system is no longer described by the XY model. Instead, an appropriate expression for the elastic energy 
of stripe fluctuations is55

∫ ( )λ= 

 (∂ ) + ∂



, ( )F B d r u u1

2 9x yel
2 2 2 2 2

where λ is a length comparable to the stripe spacing. Dislocations again play an important role in determining the 
finite temperature properties of the system described by (9). In contrast to the Θ > 0 case, however, single dislo-
cations now have a finite energy and can be thermally excited. When the presence of the free dislocations is taken 
into account, a system described by (9) is predicted to be in a nematic phase for < <T T0 c

n, and in an isotropic 
liquid phase for >T Tc

n55. In the nematic phase, the translational order exists only within a length scale ξD, which 
is determined by the density of the free dislocations. The stripe orientations, averaged over the length scale ξD, are 
however algebraically correlated. As a crude physical picture, one can think of the nematic phase as blobs of stripe 
order of area ξ~ D

2, which are all oriented more or less in the same direction, but which are not positionally corre-
lated with each other. The nematic phase is in this sense analogous to the 2D hexatic phase of a crystal, which 
exhibits bond orientational order but no long-range translational order47,56,57. A quantum hexatic phase was 
recently predicted to exist in 2D dipolar gases for very strong coupling  g 2722,23. The results presented here 
point out the intriguing possibility to realise a quantum version of the nematic phase with dipoles for smaller 
coupling strengths. We expect the critical temperature Tc

n for the melting of the quantum nematic phase to scale 
as B . However, a quantitative calculation of the critical temperature for the dipolar system requires knowledge of 

Figure 6. Phase diagram for g = 1. The system is in the stripe phase below the Kosterlitz-Thouless melting 
temperature which is calculated taking κ = 3 for the core energy. For Θ = 0, the striped phase melts at = +T 0  
into a nematic phase with long range orientational order but no translational order. The nematic phase melts 
into an isotropic liquid at a temperature 

T Bc
n  indicated by the blue cross. For Θ ( / )arcsin 2 3  the system is 

in a supersolid phase at =T 0 with both stripe and superfluid order. The transition temperatures of this phase 
calculated for various tilting angles are indicated by the diamonds. The dashed curve is a fit to the data by (8). 
The system collapses for  πΘ .0 3 .
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the parameter λ, whose determination is beyond our current theoretical framework. In Fig. 6, we have indicated 
the critical temperature Tc

n using a somewhat smaller value than the bare B  due to renormalisation effects. We 
note that Fermi surface deformation58 leading to a nematic phase59 has been predicted for fermionic dipoles in 
3D.

Discussions
An important question concerns whether the critical temperature for the predicted quantum liquid crystal phases 
is within experimental reach. As an example, let us consider a recent experiment reporting the trapping of chem-
ically stable 23Na40K molecules in their ground state close to quantum degeneracy. The group obtained an induced 
dipole moment of = .d 0 8 Debye and a maximum 3D density of = . ×n 2 5 103D

11 cm−3 10. Estimating a corre-
sponding 2D areal density as = /n n0 3D

2 3, these values correspond to .g 0 57. This coupling strength can be 
increased by reaching a larger fraction of the permanent electric dipole moment of 23Na40K, which is 2.72 Debye60, 
or by increasing the density of the gas. Since the critical temperature for the nematic and the stripe phases both 
scale as ε( / )~ n n g F1 0

2 , this indicates that the quantum liquid crystal physics discussed in this paper is within 
experimental reach, once dipolar gases can be cooled down significantly below their Fermi temperature.

The formation of stripe and superfluid order can be observed as correlation peaks in time-of-flight (TOF) 
experiments21,42. One can also detect the stripes directly as density modulations, either after TOF or in situ, pro-
vided that the experimental resolution is sufficiently high. Observing the proliferation of dislocations would 
directly confirm the microscopic mechanism behind the BKT transition.

An interesting question is how the presence of a harmonic trapping potential in the xy plane will influence the 
results presented here. In the case of a 2D superfluid Fermi gas, recent experiments combined with Monte-Carlo 
simulations show that the BKT transition survives the presence of a harmonic potential41. The exponent η describ-
ing the power law decay of the correlation function ( )G r  was however found to be significantly larger than its 
value for a homogenous system. We speculate that the same will be the case for the striped system considered 
here, since the elastic constants scale as ε~g F and therefore decrease with decreasing density, so that a trap average 
will lead to a larger η. We note that the present system allows for the measurement of the local stiffness constants 
near the centre of the trap where the system is nearly homogenous, simply by observing the local stripe fluctua-
tions if the experimental resolution is sufficiently high. Alternatively, one can avoid the complications due to a 
harmonic trapping potential altogether by implementing the box shaped potentials, which have recently been 
realised experimentally61,62.

Finally, we would like to mention a recent fixed note Monte-Carlo calculation which suggests that the stripe 
phase is not the ground state for Θ = 0 for any coupling strength24. We speculate that this result, which contra-
dicts that of refs 14–18,19,42, is due to the approximate nature of the calculation combined with the fragility of 
the striped phase, which melts at any non-zero temperature for Θ = 0, as shown by our results.

In summary, we analysed the phase diagram of a 2D dipolar gases, which exhibits stripe, nematic and super-
solid phases corresponding to the breaking of translational, rotational and gauge symmetry. For a non-zero tilting 
angle Θ, the low energy degrees of freedom of the striped phase are described by an anisotropic 2D XY model. We 
calculated the stiffness constants corresponding to a rotation and a compression/expansion of the stripes micro-
scopically. This should be contrasted with electron systems, where such stiffness constants are often simply 
unknown parameters of the theory. The stripes were shown to melt via the Berezinskii-Kosterlitz-Thouless mech-
anism due to the proliferation of dislocations, and we obtained the melting temperature by solving the relevant 
renormalisation group equations. We also calculated the critical temperature of the supersolid phase. For Θ = 0, 
the striped phase is stable only at =T 0, which melts into a nematic phase for arbitrarily small temperatures. Our 
analysis of the melting temperatures demonstrated that these phases should be within experimental reach. An 
observation of them would constitute a major breakthrough in our understanding of the interplay between liquid 
crystal and superfluid order in low-dimensional many-body systems.

Methods
Mean-field theory of stripe formation. The mean-field Hamiltonian that takes into account the possibil-
ity of stripe formation with a wave vector q is given by42

∑ ∑ε= + 
 + . ., ( )+

ˆ ˆ ˆ ˆ ˆ† †HH c c h c c h c
10MF

k
k k k

k
k k q k

where ˆ†ck creates a dipole with momentum k, εk is the single particle Hartree-Fock energy

∑ε = + ( ) − ( − ′) ,
( )′

′ ′ˆ ˆ†k
m A

V V c ck k
2

1 [ 0 ]
11k

k
k k

2

and hk is a real off-diagonal element defined by

∑= ( ) − ( − ′) .
( )′

′ ′+ˆ ˆ†h
A

V q V k k c c1 [ ]
12k q

k
k k

The quasi-2D interaction in Fourier space is obtained by averaging the interaction over the harmonic oscilla-
tor ground state in the z direction. This gives (up to an irrelevant constant term)63
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π ϕ( ) − ( Θ − Θ ),
( )

V g k
mk

k 3
2

cos sin cos
13F

2

0
2 2 2

where Θ is the orientation angle of the dipole (see Fig. 7) and φ is the polar angle of k. We diagonalise the 
mean-field Hamiltonian by generalising the method described in refs 21,42 to an arbitrary stripe vector q. This 
yields the Hamiltonian

∑ε γ γ= .
( )

ˆ ˆ ˆ†HH
14

MF
j

j j j
k

k k k

Here γ = ∑ , + +ˆ ˆU cjk jG k G k G annihilates a quasiparticle with energy ε jk, where = , ,j 1 2  is the band index, 
= , = , ± ,l lG q 0 1  is the reciprocal lattice vector and k is restricted to the first Brillouin zone of the 1D peri-

odic potential set up by the stripes. We can then calculate the mean-field free energy as µ( ) = Ω +F NqMF MF , 
where ΩMF  is the mean-f ield thermodynamic potential  given by (5) and = ∑ ,N fj jk k  with 

β ε µ=  ( − ) + 

−

f exp 1j jk k
1
. The interaction energy is most easily calculated using

∑ε= = +
( ),

E f E E2
15j

j j
k

k kMF kin int

where = ∑ /ˆ ˆ†E c c k m2k k kkin
2  the kinetic energy.

Renormalisation group equations. We calculate the softening of the effective stiffness constant 
= ⊥B B B  due to the excitations of dislocation pairs using the well-known renormalisation group equations

π

π

( )
= ( )

( )
= − ( ) ( ).

( )

−dK l
dl

y l

dy l
dl

K l y l

2

[2 ] 16

1
3 2

Here ( ) = ( )/K l B l T  and ( ) = − ( )/y l E l Texp[ ]c  are the scale-dependent stiffness constant and dislocation 
fugacity respectively. They both decrease with increasing l as the renormalisation due to dislocation pairs at larger 
length scales are included via the solution of (16). The initial values of ( )K 0  and ( )y 0  are the bare (local) values 
unrenormalised by dislocation pairs, which we calculate microscopically as described in the text. At a critical 
temperature Tc

st, the long range renormalised elastic coefficient ≡ ( )→∞B B llimR l  drops to zero by a sudden jump 
of π/T2 c

st . This disappearance of elastic rigidity signals the melting of the stripes.

BCS theory of the superfluid transition. To explore superfluid pairing within the stripe phase, we use 
BCS theory with the quasiparticle Hamiltonian = +ˆ ˆ ˆHH HH HHBCS MF P. Here,

∑ γ γ γ γ=
( ′, − )

+ . .
′ ′

′
′ ′ ′,− ′ ′ ,−

ˆ ˆ ˆ ˆ ˆ† †HH
VV k k

2
h c

jj

j j
j j j j

kk
k k k kP

describes pairing between the time-reversed quasiparticles, interacting via

Figure 7. Orientation of the dipole moment. The dipole moment d, aligned by the external E field, is 
perpendicular to the y-axis and forms an angle Θ with the z-axis.
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∑ δ( ′, − ) =

× ( − ′ + − ′). ( )

′
′ ′

− ′, ′− ′, ′+ ′ ′,− ′+ ′

,− + , +

∼∼
∼ ∼ ∼

∼

⁎ ⁎VV U U

U U V

k k

k k G G 17

j j j j

j j

GG GG
G G G G k G k G

k G k G

To derive a gap equation that is amenable to a partial wave expansion, we switch to the “extended zone 
scheme", whereby a single particle state ψ ρ( )jk  in the j’th band in the first BZ is mapped onto a state ψ ρ( )k  in the 
j’th BZ in the standard way21, where the vector k is now unrestricted. The effective pairing interaction 
( ′, − )′VV k kj j  shall be denoted by ′( , − )VV k k  and quasi-particle dispersion ε jk  by εk . Pairing between 

time-reversed quasiparticles gives rise to the gap parameter γ γ∆ ≡ ∑ ( , − ′)′ − ′ ′ˆ ˆVV k kk k k k , which satisfies the 
finite temperature gap equation

∫ π ξ
∆ = −

′
( )

( , − ′)∆








( / )
−








.

( )
′

′

′ ′

VV
PPd E T

E
k k k

2
tan h 2

2 2 18
k k

k

k k
2

Here ξ ε µ= −k k  and ξ= + ∆Ek k k
2 2 , where the chemical potential μ is approximated by the value in the 

stripe phase. The Cauchy principal value term  ξ/ ′2 k  in (18) renders the gap equation well defined with no need 
for a high momentum cut-off. At temperatures in the vicinity of the superfluid transition, the linearisation of the 
above gap equation yields (7) we use in the main text. Equation (7) can be solved by the method of partial wave 
expansion described in ref. 21. Finally we determine the transition temperature by gradually increasing T in the 
gap equation until it ceases to admit finite solutions.
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