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Ratchet transport powered by 
chiral active particles
Bao-quan Ai

We numerically investigate the ratchet transport of mixtures of active and passive particles in a 
transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due 
to the chirality of active particles, the longitudinal directed transport is induced by the transversal 
asymmetry. For the active particles, the chirality completely determines the direction of the ratchet 
transport, the counterclockwise and clockwise particles move to the opposite directions and can 
be separated. However, for the passive particle, the transport behavior becomes complicated, the 
direction is determined by competitions among the chirality, the self-propulsion speed, and the packing 
fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active 
particles move to the right. In addition, there exist optimal parameters (the chirality, the height of 
the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes 
its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport 
powered by chiral active particles.

Active matter is a rapidly growing branch of nonequilibrium soft matter physics with relevance to chemistry, 
biology, and complex systems1,2. Self-propelled particles are assumed to have an internal propulsion mechanism, 
which may use energy from an external source and transform it under non-equilibrium conditions into the directed 
motion. Compared with passive particles, active particles moving in confined structures could exhibit peculiar 
behaviors3–45, resulting for example in collective motion in complex systems3,4, spontaneous rectified transport5–17, 
separation of active particles based on their swimming properties18–25, phase separation of self-propelled parti-
cles26–30, trapping of particles in the microwedge31, spiral vortex formation in the circular confinement32, depletion 
of elongated particles from low-shear regions33, and the other interesting transport phenomena34–45.

More recently, ratchet effects have been observed in the absence of an external drive for systems of self-propelled 
particles5. Experimental studies6–8 show the key role of self-propulsion for rectifying cell motion in an array of 
asymmetric funnels6 or for driving a nano-sized ratchet-shaped wheel7. There also has been increasing interest in 
theoretical work on the rectification of self-propelled particles9–17. The rectification phenomenon of overdamped 
swimming bacteria was theoretically observed in a system with an array of asymmetric barriers 9. In a compartmen-
talized channel, Ghosh and co-workers10,11 studied the transport of Janus particles and found that the rectification 
can be orders of magnitude stronger than that for ordinary thermal potential ratchets. Angelani and co-workers12 
studied the run-and tumble particles in periodic potentials and found that the asymmetric potential produces a 
net drift speed. Potosky and co-workers14 found that the spatially modulated self-propelled velocity can induce 
the directed transport.

In nature and technology, many systems are mixtures of different particle types. Studying and comparing the 
passive and active motions can provide insight into out-of-equilibrium phenomena46,47. In this paper, we numer-
ically study the directed transport of mixtures of active and passive particles in a transversal asymmetric channel, 
where the big passive is immersed in the ‘sea’ of active particles. We emphasize on finding how the transversal 
asymmetry induces the longitudinal directed transport and how interactions from the ‘sea’ of active particles trigger 
the ratchet transport of the passive particle.

Model and Methods
We consider the mixtures of the passive and active particles moving in a two-dimensional channel with hard walls 
(the height Ly) in the y-direction and periodic boundary conditions (the period Lx) in the x-direction (shown in 
Fig. 1). A M-shape barrier with the height h is regularly arrayed at the bottom of the channel. A big passive particle 
(blue ball) is immersed in a ‘sea’ of clockwise (or counterclockwise) particles (gold balls). The dynamics of particle 
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i are described by the position ≡ ( , )x yri i i  of its center and the orientation θi of the polar axis θ θ≡ ( , )n cos sini i i . 
The i-th particle has radius ai (ai =  a0 for active particles and ai =  ap for the passive particle). The particle i obeys 
the following overdamped Langevin equations24,38

∑µ ξ∂ = + + ( ),
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v D tr n F 2
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t i i i
j i

ij i
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0

θ ξ∂ = Ω + ( ), ( )θD t2 2t i i

with μ the mobility and vi
0 the self-propulsion speed ( =v vi

0
0 for active particles and =v 0i

0  for the passive particle). 
The translational and rotational noise terms, ξ ( )ti

T  and ξi(t) are Gaussian white noises with zero mean and corre-
lations ξ ξ δ δ δ〈 ( ) ( )〉 = ( − )α β αβt s t si
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ij  (α, β labels denote Cartesian coordinates) and ξ ξ δ δ〈 ( ) ( )〉 = ( − )t s t si j ij . 
…  denotes an ensemble average over the distribution of noise and δ the Dirac delta function. D0 and Dθ denote 

the translational and rotational diffusion coefficients, respectively. Ω  is the angular velocity and its sign determines 
the chirality of active particles. We define particles as the clockwise particles for negative Ω  and the counterclock-
wise particles for positive Ω .

The force Fij between particles i and j is assumed to be of the linear spring form with the stiffness constant k: 
= ^FF rij ij ij, with = ( − )/^ rr r rij i j ij, = | − |r r rij i j , and = ( + − )F k a a rij i j ij   if < +r a aij i j and Fij =  0 otherwise. 

The interactions between particles are radially symmetric and do not directly coupled to angular dynamics. We 
define the ratio between the area occupied by particles and the total available area as the packing fraction 

( )φ π= ∑ / −= a L L L hi
N

i x y x1
2 1

2
, where N is the total number of particles. For the high packing fraction φ in excess 

of 1, particles of either species overlap on average.
Eqs. (1, 2) can be rewritten in the dimensionless forms by introducing characteristic length scale and time scale: 
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. From now on, we will use only dimensionless variables and shall omit the hat for all quantities occurring 
in the above equations.

The behaviors of quantities of interest can be corroborated by Brownian dynamic simulations performed by 
the integration of Langevin equations (3,4). We only consider the x-direction average velocity because particles 
are confined in the y-direction. The average velocity along the x-direction in the asymptotic long-time regime can 
be obtained from the formula = ∑ = →∞

( ) − ( )V limx N i
N

t
x t x

t
1

1
[ 0 ]i i . We define the scaled average velocity 

= /V V vs x 0 for convenience.

Results and Discussion
For numerical simulations, the total integration time was more than 107 and the transient effects were estimated 
and subtracted. The integration step time Δ t was chosen to be smaller than 10−4. With these parameters, the 
simulation results are robust. Unless otherwise noted, our simulations are under the parameter sets: D0 =  10−4, 
Dθ =  5 ×  10−4, Lx =  40.0, Ly =  20.0, and ap =  3.0.

Figure 1. Schematic of chirality-powered motor. A M-shaped barrier is regularly arrayed at the bottom of 
the channel. Periodic boundary conditions are imposed in the x-direction, and hard wall boundaries in the y-
direction. The small gold balls denote active particles and the big blue ball denotes the passive particle.
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As we know, in nonlinear systems, the ratchet setup demands two key ingredients48 which are (a) Fluctuating 
input zero-mean force: it should break the thermodynamical equilibrium, which forbids appearance of the directed 
transport due to the Second Law of Thermodynamics. (b) Asymmetry (temporal and/or spatial): it can violate the 
left-right symmetry of the response. For our system, the term v0cos θ in Eq. (1) can be seen as the fluctuating input 
zero-mean force and the asymmetry comes from the upper-lower asymmetry of the channel. Now we will discuss 
how the chirality of active particles breaks the thermodynamical equilibrium and induces the ratchet transport.

Figure 2 shows the average velocity Vs as a function of the angular velocity Ω  for different values of φ. For active 
particles (denoted by the red lines), Vs is negative for Ω  >  0, zero at Ω  =  0, and positive for Ω  <  0. The movement 
direction of active particles is completely determined by the sign of Ω . In other words, active particles with different 
chiralities move to different directions and can be separated. In addition, when Ω → ∞, the self-propelled angle 
changes very fast, particles will experience a zero averaged force, so Vs tends to zero. Therefore, there exists an 
optimal value of  Ω  at which Vs  takes its maximal value.

Now we explain the rectified mechanism of chiral active particles in the upper-lower asymmetric channel (see 
Fig. 3). In a wide channel, if the channel cell is large enough and no external perturbations, chiral active particles 
will perform the circular motion and repeat it and the radius of the circular trajectory is about / Ωv0 . However, 
in our system, the radius of the circular trajectory is much larger than the channel cell and chiral particles can not 
perform circular motion. Due to the confinement of the channel, particles slide along the walls. For the clockwise 
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Figure 2. Average velocity Vs as a function of the angular velocity Ω. (a) φ =  0.3. (b) φ =  0.46. (c) φ =  0.85. 
(d) φ =  1.24. The other parameters are v0 =  0.5 and h =  10.0.

Figure 3. Sketch of the rectified mechanism of clockwise particles in the upper-lower asymmetric channel. 
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particles (Ω  <  0) shown in Fig. 3, due to the upper-lower asymmetry of the channel, the motion time along the 
lower wall is significantly larger than along the upper wall, therefore, the clockwise particles on average move to 
the right. In a similar way, the counterclockwise particles (Ω  >  0) will on average move to the left.

For the single passive particle, the ratchet effect disappears (Vs =  0) due to the absence of the fluctuating input 
zero-mean force. However, when the passive particle was immersed in the ‘sea’ of active particles, the interactions 
from active particles can break the thermodynamical equilibrium and make the passive particle move directionally. 
At the high packing fraction (e.g. φ =  1.24 shown in Fig. 2(d)), the passive and active particles have the similar 
transport behaviors. This is because the passive particle is completely controlled by chiral active particles at the 
high packing fraction. However, when φ <  1.0, the ratchet behaviors of the passive particle (blue lines) are different 
from those of active particles (red lines). Interestingly, for very small values of  Ω  (e.g. Ω = .0 01), the passive and 
active particles move to the opposite directions. Since the transport behavior powered by the counterclockwise 
particles is completely opposite to that powered by the clockwise particles, we only consider the case of the clock-
wise particles (Ω  <  0) in the following discussion.

In Fig. 4 we present the average velocity Vs as a function of the self-propulsion speed v0 for both active and 
passive particles. For the case of active particles (see the red lines in Fig. 4), all curves are observed to be bell shaped, 
and there exists an optimal value of v0 at which Vs takes its maximal value. When v0 tends to zero, the fluctuating 
input disappears and the ratchet effect disappears, thus Vs is nearly equal to zero. For very large values of v0, the 
chirality of the particle can be negligible, the left-right symmetry can not be broken and the directed transport 
gradually disappears. Therefore, the optimal self-propulsion speed can facilitate the rectification of active particles. 
As Ω  increases, the position of the peak shifts to the large values of v0.

For the case of the passive particle (see the blue lines in Fig. 4), the transport behavior becomes complicated. 
Similar to Fig. 2(a–c), current reversals occur for the case of very small value of  Ω  (e.g. Ω  =  − 0.01). The average 
velocity is always positive for the case of Ω  =  − 0.08. Interestingly, for the case of Ω  =  − 0.05, the passive particle 
moves to the right for v0 <  1.0 and the left for v0 >  1.0. Therefore, the self-propulsion speed can also determine the 
movement direction of the passive particle.

The dependence of the average velocity Vs on the height h of the M-shaped barrier is shown Fig. 5. For both 
passive and active particles, all curves are observed to be bell shaped, and there exists an optimal value of h at which 
Vs  takes its maximal value. When h → 0, the asymmetry will disappear and no directed transport occurs. For very 
large values of h, the channel is blocked, particles cannot pass through the M-shape barrier, thus vs tends to zero. 
Therefore, the optimal height can facilitate the ratchet transport.

Figure 6 shows the average velocity Vs as a function of the packing fraction φ for both active and passive 
particles. For the case of active particles (see the red lines in Fig. 6), the average velocity Vs is a peaked function 
of φ. We will then explain this behavior. The interactions between particles can cause two results: (A) reducing 
the self-propelled driving, which blocks the ratchet transport and (B)activating motion in an analogy with the 
thermal noise activated motion for a single stochastically driven ratchet, which facilitates the ratchet transport. 
When the packing fraction increases from zero, the factor B first dominates the transport, so the average velocity 
increases with the packing fraction. However, when the packing faction become large, the factor A dominates the 
transport, thus the average velocity decreases with increasing φ. Therefore, there exists an optimal value of φ at 
which the average velocity is maximal.

For the passive particle ((see the blue lines in Fig. 6), the transport behavior (Vs vs φ) becomes more compli-
cated. When Ω > .0 05 (e.g. Ω  =  − 0.08), Vs is positive and there exist two peaks in the curve. For very small values 
of Ω  (e.g. Ω  =  − 0.01), Vs is negative for φ <  φc, zero at φ =  φc, and positive for φ >  φc. Therefore, we can also have 
current reversals by changing the packing fraction.
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Figure 4. Average velocity Vs as a function of the self-propulsion speed v0 for both active and passive 
particles. (a) Ω  =  − 0.01. (b) Ω  =  − 0.05. (c) Ω  =  − 0.08. The other parameters are φ =  0.46 and h =  10.0.
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Concluding remarks
In conclusion, we numerically studied the transport of mixtures of active and passive particles moving in a periodic 
channel with a M-shaped barrier. A big passive particle was immersed in the ‘sea’ of active particles. The longi-
tudinal ratchet transport of particles can be induced by the transversal asymmetry. The interactions from chiral 
active particles can make the passive particle move directionally. For active particles, the direction of the ratchet 
transport is completely determined by the chirality of active particles, the average velocity is positive for Ω  <  0, 
zero at Ω  =  0 and negative for Ω  >  0. In other words, the counterclockwise and clockwise particles move to the 
opposite directions and can be separated. However, the transport behavior of the passive particle becomes compli-
cated, the direction of the ratchet transport is determined by competitions among the chirality, the self-propulsion 
speed, and the packing fraction. Remarkably, within certain parameters, the passive and active particles move to 
the opposite directions, for example, the big passive particle moves to the left, while active particles move to the 
right when Ω  =  − 0.01 and φ <  1.0. We also found that there exist optimal parameters (the chirality, the height of 
the barrier, the self-propulsion speed and the packing fraction) at which the average velocity takes its maximal 
value. Our results should be of considerable practical and theoretical interest, because they provide new insights 
into active matter and non-equilibrium systems. Applications of these results can be envisioned for ion mixtures 
traveling through cell membranes or moving through artificial nanopores, for the controlling transport in colloidal 
suspensions, and for the particle separation.
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