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Hybrid Toffoli gate on photons and 
quantum spins
Ming-Xing Luo1, Song-Ya Ma2, Xiu-Bo Chen3 & Xiaojun Wang4

Quantum computation offers potential advantages in solving a number of interesting and difficult 
problems. Several controlled logic gates, the elemental building blocks of quantum computer, 
have been realized with various physical systems. A general technique was recently proposed that 
significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-
level information carriers. We present implementations of a key quantum circuit: the three-qubit 
Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli 
gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three 
general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. 
Our results show that photons and quantum spins may be used alternatively in quantum information 
processing.

Quantum computing is an active area of research because of its ability to efficiently solve difficult prob-
lems without efficient classical algorithms1–4. The quantum computer, the elementary quantum element 
in quantum applications, is still difficult to realize with the methods of modern science. Based on the 
qubit system in two-dimensional Hilbert space, most quantum algorithms1–4 require a large number of 
qubits to encode information5–7. These quantum algorithms may be realized by special quantum circuits 
consisting of basic gates corresponding to unitary matrices. In other words, the design of quantum 
algorithms is equivalent to the decomposition of a unitary matrix into a product of matrices chosen 
from a basic set8,9. From classical matrix decomposition, such as cosine-sine decomposition9, multiple 
controlling logic gates have been fundamental to the multiple-qubit evolution. Finding efficient ways to 
synthesize these controlling logic gates may allow large-scale quantum computing tasks to be performed 
on a shorter time-scale.

Because classical computing is designed around irreversible gates, it is impossible to directly translate 
this expertise into the quantum world. The Gottesman-Knill Theorem says that Clifford gates (CNOT, 
Hadamard, S) can be classically simulated efficiently, so they are probably not sufficiently universal for 
quantum computation. These gates, together with other one-qubit gates, not generated by the gates in 
the Clifford group, form a universal set of gates for quantum computation10. Based on classical reversible 
logic11, the Toffoli gate8,9 has played a central role in this field; it is a controlled controlled-NOT acting 
on three bits. The Toffoli gate is also of interest in other quantum applications, for example, as a building 
block in phase estimation12, error correction13, and fault tolerant quantum circuits14. Much progress has 
been made, and various physical architectures have been used, including NMR systems13, ion traps15,16, 
linear optics17, superconductors18 and atoms19,20. These experiments may create opportunities to investi-
gate efficient quantum circuits for synthesizing quantum operations.

Qubit-based quantum applications require a two-level structure on atom, ion or photon systems 
that naturally have many accessible degrees of freedom (DOFs). These DOFs may be regarded as 
high-dimensional systems. In fact, high-dimensional systems may provide different quantum correla-
tions and may be useful in quantum information processing21–29. High-dimensional systems are flexible 
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in terms of improvements to the channel capacity21,22 and communication security24,25. Moreover, they 
also provide an alternate way of scaling quantum computation. By extending a proposal29, Lanyon et al.30 
recently demonstrated a general technique that harnesses multi-level information carriers to significantly 
reduce the realization complexity of multiple-control logic gates. By making use of a multiple-level target 
system, they showed that the Toffoli gate and general two-qubit controlled-unitary gates may be realized 
with linear optics. Regrettably, their multiple-level target system is unscalable for large-scale applications 
such as Shor’s algorithm. This flaw is then addressed by using multiple-level auxiliary states31, which may 
result in a high-dimensional quantum Fourier transformation.

Motivated by their scheme23,29–31, in this paper, we propose modified proposals of the Toffoli gate 
by using auxiliary photons with two DOFs as an auxiliary four-dimensional quantum state. Previous 
results have shown that two DOFs of photons may be used to fuse hybrid quantum information32, 
reduce quantum resources33–35, and construct a universal ququart quantum computer36. Our application 
using two DOFs of photons is for the scalability of qubit-based quantum computations23,30 and to avoid 
high-dimensional quantum Fourier transformations31. Moreover, from the strong field provided by a 
Fabry-Perot-type cavity, cavity QED may have a very strong effect even at the single photon level. This 
effect is very useful for large-scale quantum computation. In fact, by exploring the giant optical circular 
birefringence induced by quantum-dot spins in one-sided optical microcavities32,33,37–45, a spin may be 
interacted with a linearly circularly polarized photon. Based on the cavity QED, the Toffoli gate can be 
deterministically implemented on all combinations of photons and spins using an auxiliary photon with 
the polarization DOF and the spatial mode DOF. Our schemes extend previous schemes13–17,19,20,34,35 
with six CNOT gates, recent proposals29–31 with three CNOT gates and the multiple-level logic state. 
All of our input quantum systems are qubits. The multiple-dimensional system, i.e., one photon with 
two DOFs, is used as an auxiliary system to carry the control information30. With these constructions, 
the multiple DOFs will not cause confusion in quantum information processing due to different dimen-
sions of encoded quantum systems31. The disentangling operations only involve single photon opera-
tions and detectors31. Furthermore, our Toffoli gate may be realized on all combinations of photons and 
quantum spins. Thus they may be very useful for hybrid quantum information processing from recent 
experiments44–54.

Results
The Toffoli gate is an important three-qubit entangling gate in quantum logic gates11–13. It will flip the 
target qubit conditional on the two control qubits. Combined with the one-qubit Hadamard, the  
Toffoli gate offers a simple universal quantum gate set in comparison to the CNOT gate and one-qubit 
rotations10,55. Generally, a Toffoli requires at least five two-qubit gates or six CNOT gates11,54. If an addi-
tional logic state is permitted for the target, a reduced decomposition requires only three  
two-qubit gates29–31. The enhanced decomposition is achieved by harnessing a third level of the target 
information carrier, i.e., a qutrit with logical states ,0 1  and 2 . Motivated by this idea29–31, two  
DOFs of one photon as a multiple-dimensional system will be used as the control information  
carrier but not the target information carrier. Four logic states , , ,0 1 2 3  are encoded with 

= , = , = , =Rd R d Ld L d Rd R d Ld L d: : : :1 1 1 1 2 2 2 2 , respectively. | 〉, | 〉R L{ } and 
| 〉, | 〉d d{ }1 2  denote bases of the polarization DOF and spatial mode DOF of one photon respectively, 

where R  and L  denote right and left circularly polarizing photons, respectively, and di denotes the 
spatial modes of one photon. In the following, we also denote =XY X Y:AB A B

 with | 〉, | 〉 ∈ | 〉, | 〉X Y R L{ } 
or | 〉, | 〉 ∈ | ↑ 〉, | ↓ 〉X Y { } for convenience. By exploring the interaction of quantum-dot spins and a 
circularly polarized photon32,33,37–45, a Toffoli gate may be realized on the spins and photons regardless of 
the type of control and target qubits, using three general CNOT gates. These hybrid CNOT gates are 
typical controlling flip operations on the different DOFs of one photon or different types of quantum 
systems. These schemes show hybrid implementations of the Toffoli gate with photons and quantum 
spins using a reduced number of controlling qubit gates.

QD-cavity system.  Consider a singly charged GaAs/InAs quantum dot (QD) inside a micropillar 
cavity37–39, which consists of a λ-cavity between two GaAs/Al(Ga)As distributed Bragg reflectors. The QD 
is located in the center of the cavity to achieve maximal light-matter coupling. If the QD is neutral, 
optical excitation generates a neutral exciton. If the QD is singly charged, i.e., a single excess electron is 
injected, optical excitation can create a negatively-charged exciton (X−), which consists of two electrons 
bound to one hole37–39. Due to Pauli’s exclusion principle, for the spin state ↑ ≡ + 1

2
, X− in the state 

↑ ↓  with the two electron spins antiparallel is created by resonantly absorbing a left circularly polar-
ized photon L , where the heavy-hole spin state ≡ + 3

2
; for the spin state ↓ ≡ − 1

2
, X− in the 

state ↓ ↑  with the two electron spins antiparallel is created by resonantly absorbing a right circularly 
polarization photon R , where heavy-hole spin state ≡ − 3

2
, as shown in Fig.  1. In the limit of a 

weak incoming field40–42, the spin cavity system behaves like a beam splitter. Based on the transmission 
and reflection rules of the cavity for an incident circular polarization photon conditioned on the QD-spin 
state, the dynamics of the interaction between the photon and spin in a QD-microcavity coupled system 
is described as below32,33,43–45



www.nature.com/scientificreports/

3Scientific Reports | 5:16716 | DOI: 10.1038/srep16716

↑ → − ↑ , ↓ → ↓ , ↑ → ↑ , ↓ → − ↓ . ( )R R R R L L L L 1

under ideal conditions. In the following, this ideal spin-cavity unit is used to realize the Toffoli gate on 
photons and quantum-dot spins for efficient quantum information processing. Then, the experimental 
spin-cavity unit will be discussed in the last section.

Toffoli gate on a three-photon system.  Consider three linearly circularly polarized photons A, B 
and C in the states

φ α β= ( + ) ( ),( , )
R L 2i i i A B C

Our goal is to realize the Toffoli gate with the following form

= ( + + ) ( + )

+ ( + ) , ( )

,T RR RR RL RL LR LR R R L L

LL LL R L L R 3
AB C AB C

AB C

where the photons A and B are the controlling qubits while the photon C is the target photon. The 
detailed circuit is shown in Fig. 2. This construction is completed with three auxiliary quantum electron 
spins ei in the state + = ( ↑ + ↓ )/ 2  and an auxiliary photon D in the state Rd1 . The Toffoli 
gate TAB,C is completed with the following three controlled gates.

First, from the subcircuit S1 shown in Fig. 2(a), the photon A as an input pulse passes through the 
cPS1, cavity Cy1, cPS2, sequentially. Then W1 is performed on the spin e1. Now, the pulse D from the 
spatial mode d1 passes through the H1, cPS3, cavity Cy1, cPS4, H2, sequentially. After these operations, the 
joint system consisting of the photons A and D, and the spin e1 is changed from φ +RdA D e1

1
 into 

α β↑ + ↓R Rd L LdA D e A D e1 1 1 1
1 1

; the detailed computations are shown in SI. This joint state 
may collapse into

α βΦ = + ( )R Rd L Ld 4AD A D A D1 1 1 1 1

after the measurement of the electron spin e1 under the basis | ± 〉 = (| ↑ 〉 ± | ↓ 〉)/{ : 2 }, where a 
Pauli phase flip σ = −R R L LZ

p  is performed on the photon A for the measurement outcome 
− e1

. This circuit has realized the controlled-NOT gate ,CNOT A DP
 on the input photon A and the 

polarization DOF of the auxiliary photon D, which is different from previous CNOT gate on the same 
type of input system.

Second, from the subcircuit S2 shown in Fig.  2(b), the photon B passes through the cPS5, cavity  
Cy2, cPS6, sequentially. Then W2 is performed on the spin e2. Now, the photon D passes through the  
BS1, cPS7, X1, cavity Cy2, X2, cPS8, BS2, sequentially. After these operations, the joint system consisting  
of the photons A, B and D, and the spin e2 is changed from φ Φ +

B AD e2 1
2
 into 

α β α β( | 〉 + | 〉) ( | 〉 | 〉 | ↑ 〉 + | 〉 | 〉 | ↓ 〉 )RR LL R d L dAD B D e B D e1 1 2 1 2 22 2
; the detailed computations are shown 

in the SI. This state may collapse into

α α α β

β α β β

Φ = +

+ + ( )

RR Rd RL Rd

LR Ld LL Ld 5
ABD AB D AB D

AB D AB D

2 1 2 1 1 2 2

1 2 1 1 2 2

Figure 1.  Schematic energy level and optical selection rules due to Pauli’s exclusion principle. âin and 
âout are the input and output field operators of the waveguide, respectively. L  and R  represent the left 
circularly and right circularly polarized photons, respectively.  ↑  and ↓  represent the spins of the excess 
electron.  ↑ ↓  and ↓ ↑  represent the negatively charged exciton X−1.
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after the measurement of the electron spin e2 under the basis | ± 〉{ }, where a Pauli phase flip σZ
p is per-

formed on the photon B for the measurement outcome − e2
. This circuit has realized the controlled-NOT 

gate ,CNOT B DS
 on the input photon B and the spatial mode DOF of the auxiliary photon D.

Third, from the subcircuit S3 shown in Fig. 2(c), the pulse D from the spatial mode d2 passes through 
the cPS9, cavity Cy3, cPS10, sequentially. Then W3 is performed on the spin e3 Now, the photon C passes 
through the H3, cPS11, cavity Cy3, cPS12, H2, sequentially. After these operations, the joint system consist-
ing of the photons A, B, C and D, and the spin e3 is changed from φΦ ADB C2 3  into

(
) ( )

α α β α

α β φ β β σ φ

Φ = ↑ + ↑

+ ↑ + ↓ ( )

RR Rd LR Ld

RL Rd LL Ld 6

AB D e AB D e

AB D e C AB D e X
p

C

3 1 2 1 1 2 1

1 2 2 3 1 2 2 3

3 3

3 3

where a Pauli flip σ = +R L L RX
p . This state may collapse into

Figure 2.  Toffoli gate on a three-photon system assisted by one photon with two DOFs. di denote spatial 
modes of the auxiliary photon D. ei denote auxiliary electron spins in the state + = ( ↑ + ↓ )/ 2. 
Hi denote half waveplates to perform the Hadamard transformation → ( + )R R L1

2
 and 

→ ( − )L R L1
2

. Xi denote wave plates to perform the polarization flip transformation +R L L R . 
Zi denote waveplates to perform the phase flip transformation −R R L L . cPSi represent circularly 
polarizing beamsplitters that transmit R  and reflect L . cBSi represent 50%50 circularly polarizing 
beamsplitters to perform the Hadamard operation → ( + )d d d1

1
2 1 2  and → ( − )d d d2

1
2 1 2 . Cyi 

denote the QD-cavity charged the electron spin ei. If there are two input lines of one cavity, the photon 
represented with red lines passes through the cavity firstly, and then the photon represented with black lines 
passes through the cavity.



www.nature.com/scientificreports/

5Scientific Reports | 5:16716 | DOI: 10.1038/srep16716

( )
(

)
α α β α

α β φ β β σ φ

Φ = +

+ + ( )

RR Rd LR Ld

RL Rd LL Ld 7

ABCD AB D AB D

AB D C AB D X
p

C

4 1 2 1 1 2 1

1 2 2 3 1 2 2 3

after the measurement of the spin e3 under the basis | ± 〉{ }, where a phase flip σZ
p is performed on the 

photon D from the spatial mode a2 for the measurement outcome − e1
. This circuit may be viewed as 

the controlled-NOT gate CNOTD,C performed on the auxiliary photon D and the input photon C as 
follows

= ( + + ) ( + )

+ ( + ) ( )

,CNOT Rd Rd Ld Ld Rd Rd R R L L

Ld Ld R L L R 8
D C D C

D C

1 1 1 1 2 2

2 2

which is an essential three-qubit operation.
Finally, by performing the single qubit measurements on the photon D under the basis 
(| 〉 ± | 〉)(| 〉 ± | 〉)/R L d d{ 2}1 2 . In the experiment, this measurement may be completed with the 50%50 

circularly polarizing beamsplitter cBS3, two circularly polarizing beamsplitters cPS13 and cPS14, two half 
waveplates H5 and H6, and four single photon detectors , ,D D DRd Ld Rd1 1 2

 and DLd2
. The recovery opera-

tions are shown in Table 1. The entanglement Φ ABCD4  shown in equation (7) may collapse into

( )α α β α α β φ β β σ φΦ = ( + + ) + ( )RR LR RL LL 9ABC AB C AB X
p

C5 1 2 1 2 1 2 3 1 2 3

Thus, the Toffoli gate TAB,C shown in equation (3) has been deterministically realized with three general 
controlled gates ,, ,CNOT CNOTA D B DP S

 and CNOTD,C.

Toffoli gate on a three-spin system.  Consider three electron spins ei in the states

ψ α β= ( ↑ + ↓ ) , = , , ( )i 1 2 3 10i i i ei

This section is to realize the Toffoli gate

= ( ↑↑ ↑↑ + ↑↓ ↑↓ + ↓↑ ↓↑ ) ( ↑ ↑ + ↓ ↓ )

+ ↓↓ ↓↓ ( ↑ ↓ + ↓ ↑ ) ( )

,T

11

e e e e e e

e e e

1 2 3 1 2 3

1 2 3

where the electron spins e1 and e2 are the controlling qubits, while the electron spin e3 is the target qubit. 
The detailed circuit is shown in Fig. 3 by using an auxiliary photon D in the state Rd1 . This Toffoli gate 
is realized with the following three controlled gates on electron spins.

First, the auxiliary photon D from the spatial mode d1 passes through the half waveplate H1 to H2 
sequentially. The joint system consisting of the photon D and the electron spin e1 changes from ψ Rde D1

1
 

into

α βΨ = ↑ + ↓ ( )Rd Ld 12e D e D1 1 1 1 1
1 1

This subcircuit (denoted as S4) has realized the controlled-NOT gate ,CNOT e DP1
 on the spin e1 and the 

polarization DOF of the auxiliary photon D under the joint basis | ↑ 〉| 〉, | ↑ 〉| 〉, | ↓ 〉| 〉, | ↓ 〉| 〉R L R L{ }.
Moreover, by letting the photon D pass the cBS1 to cBS2 sequentially, the joint system ψΨ e1 2

2
 may 

be changed into

Qubit

Feed-forward

Photon A Photon B

DRd1 Ip Ip

DLd1 σZ
p Ip

DRd2 Ip σZ
p

DLd2 σZ
p σZ

p

Table 1.   The relations between the measurement outcomes of the auxiliary photon D and the feed-
forward operations for implementing the Toffoli gate on three photons A, B and C. σ = −R R L Lz

p  
and = +I R R L Lp .
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α α β α α β

β β

Ψ = ↑↑ + ↓↑ + ↑↓

+ ↓↓ ( )

Rd Ld Rd

Ld 13

e e D e e D e e D

e e D

2 1 2 1 1 2 1 1 2 2

1 2 2

1 2 1 2 1 2

1 2

This subcircuit (denoted as S5) has realized the controlled-NOT gate ,CNOT e DS2
 on the spin e2 and the 

spatial mode DOF of the photon D under the joint basis | ↑ 〉| 〉, | ↑ 〉| 〉, | ↓ 〉| 〉, | ↓ 〉| 〉d d d d{ }1 1 1 2 .
Furthermore, let the photon D pass the W1 to W2 sequentially. The joint system ψΨ e2 3

3
 may be 

changed into

( )
( )

α α α β α β ψ

β β σ ψ

Ψ = ↑↑ + ↓↑ + ↑↓

+ ↓↓ ( )

Rd Ld Rd

Ld 14

e e e e e e e

e e X
e

e

3 1 2 1 2 1 1 1 2 2 3

1 2 2 3

1 2 1 2 1 2 3

1 2 3

where the Pauli flip σ = ↑ ↓ + ↓ ↑X
e . This subcircuit (denoted as S6) has realized the 

controlled-NOT gate ,CNOT A e3
 on the auxiliary photon D and the input spin e3 under the joint basis 

| 〉 | ↑ 〉, | 〉 | ↓ 〉, | 〉 | ↑ 〉, | 〉 | ↓ 〉, | 〉 | ↑ 〉, | 〉 | ↓ 〉, | 〉 | ↑ 〉, | 〉 | ↓ 〉Rd Rd Ld Ld Rd Rd Ld Ld{ }1 1 1 1 2 2 2 2 .
Finally, the joint system Ψ3  shown in the equation (14) may collapse into

( ) ( )α α α β α β ψ β β σ ψΨ = ↑↑ + ↓↑ + ↑↓ + ↓↓ ( )15e e e e e e e e e X
e

e4 1 2 2 1 1 2 3 1 2 3
1 2 1 2 1 2 3 1 2 3

by measuring the auxiliary photon D under the basis (| 〉 ± | 〉)(| 〉 ± | 〉)/R L d d{ 2}1 2 . Similarly, this meas-
urement may be implemented in the experiment with the 50%50 circularly polarizing beamsplitter cBS3, 
two circularly polarizing beamsplitters cPS7 and cPS8, two half waveplates H3 and H4, and four single 
photon detectors , ,D D DRd Ld Rd1 1 2

 and DLd2
. The recovery operations are shown in Table  2. Thus, the 

three-spin Toffoli gate ,T e e e1 2 3
 shown in the equation (13) has been deterministically realized with three 

control gates ,, ,CNOT CNOTe D e DP S1 2
 and ,CNOT D e3

.

Figure 3.  Toffoli gate on a three-spin system assisted by one photon with two DOFs. cPSi, cBSi, Xi, Hi 
and Wi are the same as those defined in Fig. 2. ei denote input electron spins. di denote spatial modes of an 
auxiliary photon D in the state Rd1 .

Qubit

Feed-forward

Spin e1 Spin e2

DRd1 Ie Ie

DLd1 σZ
e Ie

DRd2 Ie σZ
e

DLd2 σZ
e σZ

e

Table 2.   The relations between the measurement outcomes of the auxiliary photon D and the feed-
forward operations for implementing the Toffoli gate on three electron spins e1, e2 and e3. 
σ = ↑ ↑ − ↓ ↓Z

e  and = ↑ ↑ + ↓ ↓I e .
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Toffoli gate on hybrid three-qubit systems.  The present Toffoli gate on a three-photon system 
shown in the Fig. 2 and a three-spin system shown in Fig. 3 may be combined to realize Toffoli gate on 
hybrid three-qubit systems. Thus, the three input qubits may be an arbitrary combination of photons and 
quantum spins. Because of the symmetry of two control qubits, four different cases are to be considered, 
as shown in Fig. 4.

First, let two photons A and B jointly control an electron spin e; their initial states are φ
A1 , φ

B2  and 
ψ e3 , respectively. The detailed circuit is shown in Fig. 4(a). From the ,CNOT A DP

 realized with the sub-
circuit S1, the joint system consisting of three qubits and an auxiliary photon D changes from 
φ φ ψ Rd

A B e D1 2 3 1  into

( )φ ψ α βΩ = + ( )R Rd L Ld 16B e A D A D1 2 3 1 1 1 1

Moreover, from the CNOT gate realized with the subcircuit S2, Ω1  may change into

(
)

ψ α α α β

β α β β

Ω = +

+ + ( )

RR Rd RL Rd

LR Ld LL Ld 17

e AB D AB D

AB D AB D

2 3 1 2 1 1 2 2

1 2 1 1 2 2

Figure 4.  Toffoli gate on hybrid three-qubit systems assisted by one photon with two DOFs. (a) Two 
photons A and B jointly control an electron spin e. (b) Two electron spins e1 and e2 jointly control a photon 
A. (c) One photon A and one electron spin e jointly control a photon B. (d) One photon A and one electron 
spin e1 jointly control an electron spin e2. S1, S2 and S3 denote the subcircuits shown in Fig. 2(a–c), 
respectively. S4, S5 and S6 are shown in Fig. 3. The bule lines denote the controlling qubits while the red lines 
denote the target qubits. The black lines denote an auxiliary photon D in the state Rd1 . MD denotes the 
measurement of the photon D shown in Fig. 2(c).



www.nature.com/scientificreports/

8Scientific Reports | 5:16716 | DOI: 10.1038/srep16716

Furthermore, from the CNOT gate realized with the subciruit S6, the joint system Ω2  shown in the 
equation (17) changes into

( )
( )

α α α β α β ψ

β β σ ψ

Ω = + +

+ , ( )

RR Rd LR Ld RL Rd

LL Ld 18

AB AB AB e

AB X
e

e

3 1 2 1 2 1 1 1 2 2 3

1 2 2 3

which may collapse into

( ) ( )α α α β α β ψ β β σ ψΩ = + + + ( )RR LR RL LL 19AB AB AB e AB X e4 1 2 2 1 1 2 3 1 2 3

by performing the single qubit measurement MD on the photon D under the basis 
(| 〉 ± | 〉)(| 〉 ± | 〉)/R L d d{ 2}1 2 . In the experiment, this measurement may be implemented in experi-

ments with a 50%50 circularly polarizing beamsplitter, two circularly polarizing beamsplitters, two half 
waveplates, and four single photon detectors, as shown in Fig. 2(c). The recovery operations are similar 
to these shown in Table 1. Thus, a Toffoli gate has been realized on the two photons and one spin using 
three CNOT gates.

Second, consider two electron spins e1 and e2 in the states ψi ei
 that jointly control one photon A in 

the state φ α β= +R L
A3 3 3 . The detailed circuit is shown in Fig. 4(b). From the CNOT gates real-

ized with the subcircuit S4 and S5 in Fig.  3, the joint system consisting of three input qubits and the 
auxiliary photon D changes from ψ ψ φ Rde e A D1 2 3 1

1 2
 into

(
)

φ α α α β

β α β β

Π = ↑↑ + ↑↓

+ ↓↑ + ↓↓ ( )

Rd Rd

Ld Ld 20

A e e D e e D

e e D e e D

1 3 1 2 1 1 2 1

1 2 1 1 2 1

1 2 1 2

1 2 1 2

Moreover, from the CNOT realized with the subcircuit S3 in Fig. 2(c), the joint system Π1  changes into

( )
( )

α α β α α β φ

β β σ φ

Π = ↑↑ + ↓↑ + ↑↓

+ ↓↓ , ( )

Rd Ld Rd

Ld 21

e e D e e D e e D A

e e D X
p

A

2 1 2 1 1 2 1 1 2 2 3

1 2 2 3

1 2 1 2 1 2

1 2

which may collapse into

( ) ( )α α β α α β φ β β σ φΠ = ↑↑ + ↓↑ + ↑↓ + ↓↓ ( )22e e e e e e A e e X
p

A3 1 2 1 2 1 2 3 1 2 31 2 1 2 1 2 1 2

after performing the measurement MD of the photon D under the basis ( ± )( ± )/R L d d{ 2}1 2 . 
The recovery operations are shown in Table 2. Thus, a Toffoli gate has been realized on two electron spins 
and one photon.

Third, consider one photon A in the state φ α β= +R L
A1 1 1 , and one spin e in the state 

ψ α β= ↑ + ↓e2 2 2  that jointly control one photon B in the state φ α β= +R L
B3 3 3 . The 

detailed circuit is shown in Fig.  4(c). Similar to the subcircuits shown in Fig.  4(a,b), from the CNOT 
gates realized with the subcircuits S1 in Fig. 2(a), S5 in Fig. 3 and S3 in Fig. 2(c), the joint system of the 
three input qubits and the auxiliary photon D changes from φ ψ φ Rd

A e B D1 2 3 1  into

( )
( )α α β α α β φ

β β σ φ

ϒ = ↑ + ↑ + ↓

+ ↓ ( )

R Rd L Ld R Rd

L Ld 23

A e D A e D A e D B

A e D X
p

B

1 1 2 1 1 2 1 1 2 2 3

1 2 2 3

which may collapse into

( )
( )α α β α α β φ

β β σ φ

ϒ = ↑ + ↑ + ↓

+ ↓ ( )

R L R

L 24

A e A e A e B

A e X
p

B

2 1 2 1 2 1 2 3

1 2 3

after the measurement MD of the photon D under the basis (| 〉 ± | 〉)(| 〉 ± | 〉)/R L d d{ 2}1 2 . The recovery 
operations are shown in Table 2. The difference is that the Pauli phase flip σ↑Z is performed on the con-
trolling spin e. Thus, a Toffoli gate has been realized on two electron spins and one photon.

Finally, consider one photon A in the state φ α β= +R L
A1 1 1  and one electron spin e1 in the state 

ψ α β= ↑ + ↓e2 2 2
1

 that jointly control the other electron spin e2 in the state 
ψ α β= ↑ + ↓e3 3 3

2
. The detailed circuit is shown in Fig. 4(d). Similar to the subcircuit shown in 
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Fig. 4(c), from the CNOT gates realized with the subcircuits S1 in Fig. 2(a), S5 in Fig. 3 and S6 in Fig. 3, 
the joint system consisting of three input qubits and the auxiliary photon D changes from 
φ ψ ψ Rd

A e e D1 2 3 1
1 2

 into

(
) ( )

α α β α

α β ψ β β σ ψ

Ξ = ↑ + ↑

+ ↓ + ↓ ( )

R Rd L Ld

R Rd L Ld 25

A e D A e D

A e D e A e D X
e

e

1 1 2 1 1 2 1

1 2 2 3 1 2 2 3

1 1

1 2 1 2

which may collapse into

( )
( )

α α β α α β ψ

β β σ ψ

Ξ = ↑ + ↑ + ↓

+ ↓ ( )

R L R

L 26

A e A e A e e

A e X
e

e

2 1 2 1 2 1 2 3

1 2 3

1 1 1 2

1 2

by performing the measurement MD of the photon D under the basis (| 〉 ± | 〉)/R L{ 2 } and 
(| 〉 ± | 〉)/d d{ 2 }1 2  for the polarization DOF and spatial mode, respectively. The recovery operations 

are the same as those in Fig. 4(c). Thus, the spin qubit may be jointly controlled by one photon and one 
spin.

Discussion
The optical selection rules of a QD-cavity system shown in equation (1) play core roles in the present 
Toffoli gates. In the resonance conditions Δ ωx =  Δ ωc =  0, if one neglects the cavity side leakage κs ≈  0, 
it easily follows that |r0| →  1 and |r| →  1 when the cooperativity parameter g2/(κγ) of cavity QED is large 
enough. Thus, our six Toffoli gates are deterministic and faithful. However, the side leakage from the 
cavity is unavoidable in the experiment44,45,47–54. In the following, consider two kinds of transition chan-
nels for the cavity photon. The first is the cavity decay due to transmission through the cavity mirror, 
whose rate is κ. Every other unwanted photon loss, such as cavity absorption and scattering, are charac-
terized by the overall loss rate κs. Taking into account the coupling through the cavity decay channel and 
neglecting the spatial dependence, the relation of the input field operator âin and output operator âout 
may be approximated with an experimental reflection coefficient37–39

ω
κ ω

ω ω
( ) = −


 ∆ + 



 ∆ + 



 ∆ + + 

 + ( )

γ

γ κ κr
i

i i g
1

27

x

x c

2

2 2 2
2s

where Δ ωc and Δ ωx are the frequency detunings of the cavity mode and dipole transition, respectively, 
in relation to the input probe light (See Method). When the quantum dot is uncoupled from the cavity 
(g =  0), r(ω) is reduced to37–39

ω
κ

ω
( ) = −

∆ + + ( )
κ κr

i
1

28c
0

2 2
s

These complex coefficients indicate that the reflected light may experience a phase shift32–36,44–46. Under 
resonant conditions Δ ωc =  Δ ωx =  0, the reflection coefficients |r| and |r0| are evaluated in Fig. 5, and the 
phase shifts θ and θ0 are evaluated in Fig. 6 inrelation to the decay ratios of cavity κs/κ and the cooper-
ativity parameter C =  g2/(κγ) of cavity QED56,57, which is a geometric parameter that characterizes the 
absorptive, emissive, or dispersive coupling of an atom to the cavity mode. Based on Fig. 5, the reflection 
coefficients will satisfy |r| ≈  1 and |r0| ≈  1 when C ≫  10 and κs/κ →  0, and these additional conditions 
are not required for relative phase shifts θ0 =  π and θ =  π because r and r0 are real under the resonant 
conditions Δ ωc =  Δ ωx =  0. Hence, the real reflection coefficients r and r0 will be considered under the 
resonant conditions.

In fact, the ideal optical selection rules shown in equation (1) are changed into

↑ − ↑ , ↓ ↓ , ↑ ↑ , ↓

− ↓ , ( )

  



R r R R r R L r L L
r L 29

0

0

in the experiment. Based on these general optical selection rules, one can also complete the Toffoli gate 
from our schemes.

For our first Toffoli gate on the three photons shown in Fig. 2, three auxiliary electron spins e1, e2 and 
e3 in the state +  are used, and four photons A, B, C, and D are involved; the success of this protocol 
is heralded by the instance in which the detector , ,D D DRd Ld Rd1 1 2

 or DLd2
 click. The efficiency of our 

Toffoli gate is defined by = ∏, ∈E Ppp p j j, where Pj is a successful reflection probability of the j-th pho-
ton from a micropillar cavity37,50,54,57, and   denotes the index set of photons involved in each scheme. 
Its efficiency is evaluated in Fig. 7(a). To detail the influence of the practical input-output process on the 
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fidelity of the final joint system after this Toffoli gate, we take the case in which the detector DRd1
 clicks 

as an example and obtain the average fidelity Fpp,p, as evaluated in Fig.  8(a). Here, ∫= Ψ ΨF f i
2
, 

where the integral is evaluated over all possible input states, Ψi  and Ψ f  are the ideal final state and the 
experimental final state with side leakages, respectively. For our second Toffoli gate on three electron 
spins shown in Fig. 3, three electron spins e1, e2 and e3 are involved, and one photon D is used; its success 
is determined by the photon D, which is detected at the detector , ,D D DRd Ld Rd1 1 2

 or DLd2
 click. The 

practical efficiency Ess,s is evaluated in Fig. 7(b) whereas the average fidelity Fpp,p is evaluated in Fig. 8(b) 
for the photon D detected at the detector DRd1

 as an example. For the other four cases, one can obtain 
similar results.

Typically, the cavity side leakage may greatly affect the efficiency and fidelity of the Toffoli gate. As 
shown in the Figs  7 and 8, high efficiency and fidelity may be achieved even in the weakly coupling 
regime when κ κs . Otherwise, the strong coupling defined by g ≫  (κ, γ) is necessary39–41,48–54. The 
classical strong-coupling condition corresponds to the single-photon Rabi frequency 2g being larger than 
the geometric mean of the atomic and cavity line widths. In general, the system can be parameterized in 
terms of two dimensionless parameters, namely, the ratios g/κ and g/γ in the cavity QED description or, 
in the classical description, the cooperativity parameter C and the line width ratio κ/γ. The cavity QED 
strong-coupling condition 2g >  (κ, γ) corresponds to a normal-mode splitting that is much larger than 

Figure 5.  Reflection coefficients versus the cavity leakage ratio κs/κ and the cooperativity C under 
resonant conditions. (a) Reflectance |r| and (b) reflectance |r0| under resonant conditions.

Figure 6.  Phase shifts versus the cavity leakage ratio κs/κ and the cooperativity C under resonant 
conditions. Here, the scale of the phase shift is π.
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the line widths of the normal modes. The cooperativity parameter of cavity QED is shown to play a 
central role and is given a geometrical interpretation. The cooperativity has been realized up to 2758. 
Under this cooperativity, the efficiencies EPP,P and ESS,S are greater than 91.24% for κs/κ ≈  0.248,54; the 
average fidelities FPP,P and FSS,S are greater than 93.47% for κs/κ ≈  0.248,54. If one hopes to achieve a fault 
tolerance threshold of 7.5 ×  10−3 on a two-dimensional lattice of qubits59, the cavity leakage ratio should 
be κs/κ <  0.04 and the cooperativity should be C >  28 for a photonic Toffoli gate, whereas the cavity 
leakage ratio should be κs/κ <  0.03 and the cooperativity should be C >  34 for a Toffoli gate on a 
three-spin system. When the fault tolerance threshold is reduced to 1 ×  10−3 using controlled phase gates 
based on dipole-induced transparency60, the cavity leakage ratio should be reduced to 0.02, and the 
cooperativity should be improved to C >  38 for a photonic Toffoli gate, whereas the cavity leakage ratio 
should be reduced to 0.015 and the relative coupling strength should be improved to 4.2 for a Toffoli gate 
on a three-spin system. κs/κ =  0.05 has been reported, which could be achieved by taking a pillar 

Figure 7.  Efficiencies of Toffoli gate versus the cavity leakage ratio κs/κ and the cooperativity C.  
(a) Efficiency Epp,p of Toffoli gate on a three-photon system. (b) Efficiency Ess,s of Toffoli gate on a three-spin 
system.

Figure 8.  Average fidelities of Toffoli gate versus the cavity leakage ratio κs/κ and the cooperativity C. 
(a) The average fidelity Fpp,p of Toffoli gate on a three-photon system. (b) The average fidelity Fss,s of Toffoli 
gate on a three-spin system.
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microcavity with the quality factor of Q =  165000 demonstrated in ref. 54 and decreasing the reflection 
of the top mirror to reduce the quality factor to Q =  9000, which is still in the strong-coupling regime48.

If the experimental electron spin decoherence and trion dephasing41,42 are considered, the real effi-
ciency and fidelity are slightly decreased when the hole spin coherence time is longer than three orders 
of the cavity photon lifetime44,50,51. Moreover, by using the spin echo technique57,61 and the nanosecond 
spin resonance microwave pulse47 to protect the electron spin coherence, faithful Hadamard transforma-
tions may be implemented on the electron spin for our six Toffoli gates. The heavy-light hole mixing may 
be reduced by engineering the shape, size and type of the charged exciton61. The optical selection rule 
has been experimentally realized with the spin state of a single trapped atom and the polarization 
state44,45. To achieve weak excitation, some adiabatic conditions are used to ensure that the X− stays in 
the ground state for the most time. With a first-order approximation, we can adiabatically eliminate â 
from the third subequation of equation (31) by substituting the steady-state solution to the first two 
subequations of equation (31). Under the adiabatic condition ∆E EdE

dt1 10
0 , the system may be 

unchanged between the ground state E0  and excite state E1  under the first-order approximation. Here, 
Δ E10 =  E1 −  E0. If the dephasing is considered for the atomic system, it may be modeled by introducing 
phenomenological decay terms or noise operators , ,ˆ ˆ ˆf g h into three subequations of equation (31). 
Because the output modes are initially in a vacuum, the =f̂ 0. By substituting the steady-state solution 
to the third subequation of equation (31), the only difference is one noise operator ′( , , )ˆ ˆ ˆ ˆh f h h  and the 
modified spontaneous emission rate of the dipole γ κ κ ωΓ = + /( + ∆ )g4 4 c

2 2 2 62. Of course, the present 
Toffoli schemes are also conditional on the perfect overlap of the cavity mode with the two spatially 
separated optical beams, the phase stability of the interferometer composed of the cBS, and the perfect 
time overlap of two beams passing through several interferometers.

In conclusion, we have investigated the possibility of hybrid quantum computation assisted by the 
quantum spins and photons with two DOFs. Six deterministic Toffoli gates are realized on the joint 
system of all combinations of the photon or the quantum spin systems. Compared with previous Toffoli 
gates13–17,19,20, our Toffoli gates may be realized with three general control-NOT gates, which are similar 
to the schemes in ref. 29–31. Unlike the multiple dimensional quantum target state of the photonic 
Toffoli gate18,30, all the input systems are qubit systems, whereas the additional multiple-dimension logic 
state is used as the auxiliary system. With the modification, one does not need to consider the different 
dimensional quantum systems to encode information in quantum applications. This method is similar to 
that in ref. 31. However, their disentangling operations are necessary and essential controlled operations 
or high-dimensional operations on the auxiliary system. If our photon with two DOFs is considered, 
their Fourier disentangling operations require two controlled operations. However, with our schemes, 
even if the photon with two DOFs is used as an auxiliary system, we do not need to implement controlled 
operations or high-dimensional operations on the auxiliary system. Our disentangling operations are 
only single-qubit operations. Moreover, the Toffoli gate may be realized on different quantum systems, 
which may be very useful depending on the specific requirements. Different from the Toffoli gate34 on 
the three-atom system, our Toffoli gate may be implemented on a hybrid photon and spin system. Our 
optical cavity system is easier than the Toffoli gate35 using the double-side cavity system. Compared 
with their six controlled qubit operations34,35,63, our circuits are also compact by as a result of the aux-
iliary high-dimensional system and cost only three controlled qubit operations. Our theoretical results 
show that photons and quantum spins may be used alternatively in quantum information processing. Of 
course, the optical selection rules may be affected by the cavity leakage and spin coherence in quantum 
dots or the exciton coherence in the experiment. With the recent experiments regarding QD-cavity sys-
tem47–54 and the quantum gate between a flying optical photon and a single trapped atom32, our results 
are expected to be applicable for large-scale quantum computation.

Method
Optical selection rules.  A singly charged GaAs/InAs QD32,33,37–45 has four relevant electronic levels 
↑ , ↓ , ↑ ↓ , and ↓ ↑ . An exciton consisting of two electrons bound to one hole with negative 

charges can be created by the optical excitation of a photon and an electron spin. In theory, consider the 
interaction between a single cavity mode and a single two-level spin interacting with a single cavity mode 
at optical frequencies. By neglecting the spatial dependence37,44,45, taking into account the coupling 
through the cavity decay channel and neglecting the spatial dependence, the master equation of the 
whole system can be expressed by the Lindblad form

 ρ ρ ρ ρ= , + + ( ) i H[ ] 301 2

where H =  H1 +  H2 +  H3. ρ is an arbitrary system operator. ω= ˆ ˆ†a aH1  is the Hamiltonian of the input 
photon pulse. σ σ= ( + )+ −ˆ ˆ †g a aH2  is the standard Jaynes-Cummings Hamiltonian for a two-level sys-
tem interacting with a single electromagnetic mode by applying the rotating wave approximation and 
dropping the energy nonconserving terms. ( )â t  are cavity input operators with the standard commuta-
tion relations δ( ), ( ′) = ( − ′)ˆ ˆa t a t t t[ ] . σ− and σ+ are the Pauli raising and lowering operators respec-
tively. σ= ωħH z3 2

c  is the system Hamiltonian for the dipole, ωc is the resonant frequency of the dipole, 
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and σz is the Pauli operator for the population inversion. κ is the decay rate of the cavity field due to 
ohmic losses in the metal.  ρ ρ ρ ρ= − ( + − )

κ κ+ ˆ ˆ ˆ ˆ ˆ ˆ† † †a a a a a a21 2
s  accounts for the damping of the input 

photon pulse. κs is the decay rate of the cavity side leakage mode due to scattering into free-space modes. 
The scattering rate κs may be calculated classically from the Larmor formula. 
 ρ σ ρσ σ σ ρ ρσ σ= ( − − )γ

− + + − + −22 2
 accounts for spontaneous emission of the dipole. Using this 

Hamiltonian, the Heisenberg equations for first order field/spin moments easily follow

ω
κ κ

σ κ

σ
ω

γ
σ σ

σ
γ σ σ σ

= −


 ∆ + +



 − − ,

= −


 ∆ +



 + ,

= − ( + ) − ( − ) ( )

−

−
−

+ −

ˆ ˆ ˆ

ˆ

ˆ ˆ †

da
dt

i a ig a

d
dt

i ig a

d
dt

I ig a a

2 2

2

2 31

c
s

in

x z

z
z

where Δ ωc =  ωc −  ω and ω ω ω∆ = −−x X , ω −X  is the frequency dipole transition. The classical bound-
ary condition is defined as κ= +ˆ ˆ ˆa a aout in

37–39 with the input and output field operators âin and âout, 
respectively. In the approximation of weak excitation (X− stays in the ground state for the most time39–43), 
i.e., σ = −ˆ 1z , âin and âout are approximately related with the reflection coefficient

ω≈ ( ) ( )ˆ ˆa r a 32out in

where r(ω) is defined in equation (27). If the quantum dot is uncoupled from the cavity (g =  0), r(ω) is 
reduced to r0(ω) as shown in equation (28). For the strong coupling regime g ≫  (κ, γ), one can get |r| ≈  1 
and |r0| ≈  1 under resonant conditions by adjusting ω, ωx and ωc. Thus, if the excess electron spin lies in 
the spin state ↑ , the input light ( )L R  acquires a phase shift of θ =  arg[r(ω)](θ0 =  arg[r0(ω)]) by 
passing through the cavity. Conversely, if the excess electron spin lies in the spin state ↓ , the input 
light ( )R L  acquires a phase shift of θ =  arg[r(ω)](θ0 =  arg[r0(ω)]) by passing through the cavity. Thus, 
two phase shifts may be obtained as37–39

↑ → ↑ , ↓ → ↓ , ↑ → ↑ , ↓ → ↓ ( )θ θ θ θR e R R e R L e L L e L 33i i i i0 0

When the side leakage and cavity loss are ignored, the optical selection rules shown in equation (1) are 
followed by adjusting frequencies to achieve the phase shifts θ0 =  π and θ =  032,33,44,45.

Measurement of the entangled excess electron spin in a QD-cavity.  To complete our Toffoli 
gates, the entangled excess electron spins have to be measured under the basis | ± 〉{ }. Generally, an 
auxiliary photon ϕ = ( + )R L1

2
 is used32–35,44,45. Consider a generally entangled system 

( )Γ ↑ + Γ ↓e e
1
2 1 2 , where Γi  are orthogonal states of other systems except the electron spin e. 

The joint state is first represented by one Hadamard transformation W, i.e., ( )Γ + + Γ −e e
1
2 1 2 . 

Then, let the auxiliary photon pass through one circularly polarizing beamsplitter, the QD-cavity, and the 
other circularly polarizing beamsplitter. This joint system becomes 

(|Γ 〉 + |Γ 〉)(| 〉 + | 〉)| ↑ 〉 + (|Γ 〉 − |Γ 〉)(| 〉 − | 〉)| ↓ 〉R L R L[ ]1
2 2 1 2 1 2 . Thus, by measuring the photon 
under the orthogonal basis ( ± ){ }R L1

2
 with one half waveplate, one circularly polarizing beam-

splitter and two single photon detectors, the electron spin e can be faithfully disentangled. The experi-
mental performances depend on the experimental optical selection rules shown in equation (1).
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