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Digital quantum simulators in a 
scalable architecture of hybrid 
spin-photon qubits
Alessandro Chiesa1, Paolo Santini1, Dario Gerace2, James Raftery3, Andrew A. Houck3 & 
Stefano Carretta1

Resolving quantum many-body problems represents one of the greatest challenges in physics and 
physical chemistry, due to the prohibitively large computational resources that would be required 
by using classical computers. A solution has been foreseen by directly simulating the time evolution 
through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital 
quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising 
platform for quantum computation architectures, but a digital quantum simulator proposal that is 
straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently 
lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid 
spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and 
allows for local control. As representative examples we consider the transverse-field Ising model, 
a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the 
scheme by including the main sources of decoherence.

There is a large number of problems that are well known to be hardly tractable with standard compu-
tational approaches and resources, mainly due to the many-body nature of strongly correlated many 
particle systems. To overcome this limitation, the idea of a quantum simulator was originally proposed by 
Feynman1: any arbitrary complex quantum system could in fact be simulated by another quantum system 
mimicking its dynamical evolution, but under the experimenter control. This idea was later refined and 
mathematically formalized in quantum information perspectives by Lloyd2.

Over the past twenty years, different approaches have been proposed to realize quantum simulators of 
the most relevant models in condensed matter physics, quantum field theories, and quantum chemistry3. 
Most efficient protocols have been proposed and experimentally realized with trapped ions4,5. Generally 
speaking, quantum simulators can be broadly classified into two main categories: in digital simulators 
the state of the target system is encoded in qubits and its Trotter-decomposed time evolution is imple-
mented by a sequence of elementary quantum gates2, whereas in analog simulators a certain quantum 
system directly emulates another one. Digital architectures are usually able to simulate broad classes of 
Hamiltonians, whereas analog ones are restricted to specific target Hamiltonians. For a recent review on 
these different approaches, we refer to ref. 3 and references therein.

Lately, superconducting circuits and resonators have emerged as an extremely promising platform for 
quantum information and quantum simulation architectures6–12. The first and unique theoretical pro-
posal for a general-purpose digital simulator has been put forward only very recently8. In this proposal 
qubits encoded in transmons are dispersively coupled through a photon mode of a single resonator, and 
such coupling is externally tuned by controlling the transmon energies. However, the reported fidelities 
and the intrinsic serial nature of this setup (i.e., the need of addressing each pair of qubits sequentially), 
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may hinder the scalability to a sizeable number of qubits. In addition, superconducting units are not 
ideal for encoding qubits owing to their relatively short coherence times. Indeed, spin-ensembles13–15 
or even photons16,17 have been proposed as memories to temporarily store the state of superconducting 
computational qubits.

Here we consider an array of superconducting resonators as the main technological platform, on which 
hybrid spin-photon qubits are defined by introducing strongly coupled spin ensembles (SEs) in each res-
onator18,19. One- and two-qubit quantum gates can be implemented by individually and independently 
tuning the resonators modes through external magnetic fields. This setup can realize a universal digital 
quantum simulator, whose scalability to a large array is naturally fulfilled by the inherent definition of 
the single qubits, represented by each coupled SE-resonator device. The possibility to perform a large 
number of two-qubit gates in parallel makes the manipulation of such large arrays much faster than in a 
serial implementation, thus making the simulation of complex target Hamiltonians possible in practice.

A novelty of the present proposal is that ensembles of effective S =  1 spins are used in the hybrid 
encoding, which allows to exploit the mobility of photons across different resonators to perform two-qubit 
gates between physically distant qubits. This is done much more efficiently than by the straightforward 
approach of moving the states of the two qubits close to each other by sequences of SWAP gates, and 
makes the class of Hamiltonians which can be realistically addressed much larger. Long-distance oper-
ations arise whenever mapping the target system of the simulation onto the register implies two-body 
terms between distant qubits. Besides the obvious case of Hamiltonians with long-range interactions, 
this occurs with any two-dimensional model mapped onto a linear register, or with models containing 
N-body terms, including the many-spin terms which implement the antisymmetric nature of fermion 
wavefunctions.

The time evolution of a generic Hamiltonian is decomposed into a sequence of local unitary opera-
tors, which can be implemented by means of elementary single- and two-qubits gates. Then we combine 
the elementary gates of our setup in order to mimic the dynamics of spin and Hubbard-like Hamiltonians 
for fermions. We explicitly report our results for the digital quantum simulation of the transverse-field 
Ising model on 3 qubits, the tunneling dynamics of a spin one in a rhombic crystal field and the Hubbard 
Hamiltonian. We use a time-dependent Hamiltonian for this hardware including the effects of decoher-
ence in a Lindblad formalism, thus performing extensive numerical experiments on our specific device, 
directly showing the feasibility of the proposed digital quantum simulation.

Results
A scalable architecture for quantum simulation.  The proposed quantum simulator is schemati-
cally shown in Fig.  1. It consists of a one- or two-dimensional (1D or 2D) lattice of superconducting 
resonators where hybrid spin-photon qubits are defined. We notice that large arrays of such resonators 
have already been shown experimentally7,20. In this schematic implementation, qubits are encoded within 
square boxes. Each box represents a coplanar resonator containing an ensemble of (effective) S =  1 spins, 
whose collective excitations correspond to the transitions from the m =  0 single-spin ground state to the 
m =  ± 1 excited states, and can be modeled by two independent harmonic oscillators. Red lines represent 
the transition energies (continuous m =  − 1, dashed m =  1 transitions, respectively), while the blue line 
indicates the resonator frequency. This can be varied within a nanosecond time-scale by means of SQUID 
devices properly connected to the resonator21–23, in order to match the spin transition frequencies. In the 
hybrid qubit encoding, a dual-rail representation of the logical units is introduced where the 

µ0  and 
µ1  

states of qubit μ are defined in the single-excitation subspace of each resonator. The logical state 
µ0  

(| 〉 )µ1  corresponds to zero (one) photons and a single (zero) quantum in the m =  − 1 oscillator in cavity 
μ. This encoding has been introduced in previous works18,19, and it is detailed in Methods for complete-
ness. The m =  1 oscillator represents an auxiliary degree of freedom that is exploited to store the photonic 
component of the qubit, if needed (e.g., to perform two-qubit gates between distant qubits, see Methods).

The basic unit of the scalable array is represented by a pair of qubits connected through an interposed 
auxiliary resonator containing a superconducting transmon device (circular box), which is employed to 
perform two-qubit gates. It should be emphasized that this nonlinear superconducting element is not 
used to encode information, and it is left in its ground state always except during the implementation 
of the two-qubit gates. Consequently, its possibly short coherence times affect the quantum simulation 
only marginally. Other types of superconductor based qubits24, such as flux25 or Xmon26 qubits, can be 
exploited as well. Here we focus on transmon qubits27, which are commonly used thanks to their low 
sensitivity to charge noise.

In the following, we shall refer to the square boxes as the logical cavities labelled with Greek letters, 
while the circular ones are the auxiliary cavities labeled by Latin letters. Photon hopping between neigh-
boring resonators is allowed by capacitive coupling. Formally, such a complex system can be described 
by the total Hamiltonian

= + + + + . ( )−
ˆ ˆ ˆ ˆ ˆ ˆH H H H H H 1spin tr ph int ph ph

The first term describes the SEs as independent harmonic oscillators28 (ħ ≡  1):
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where µ,
ˆ†
bm  creates a spin excitation in level m =  ± 1 of resonator μ. The transmons are treated as effective 

three-level systems, with transition energies Ω 01 and Ω 12, and described by

∑ ψ ψ ψ ψ= Ω + (Ω + Ω ) .
( )

, , , ,Ĥ
3

tr
j

j j j j01 1 1 12 01 2 2

The time-dependent photonic term is entirely responsible for the manipulation of the qubits. It can 
be expressed as:

Figure 1.  (a) Elementary unit of the scalable setup, consisting of an auxiliary and a logical resonator. The 
latter includes an ensemble of S =  1 spins, placed at the antinodes of the magnetic field (rotational lines) of 
the cavity mode. The auxiliary resonator contains a nonlinear element (transmon) coupled to the electric 
field of the fundamental mode. (b) Detailed sequence of time steps required to produce controlled-ϕ two-
qubit gate between qubits μ =  2 and μ =  3 (see Methods for details). Logical cavities are represented by 
square boxes, whereas auxiliary resonators are depicted as circular boxes. Blue lines represent photon 
frequencies in the idle configuration (ω ( )µ 0c  in the logical and ω ( )


0c

j  in the auxiliary cavities). The transmon 
(Ω 01 and Ω 12) and spin (ω−1, continuous, and ω1, dashed) transition energies are indicated by red lines. (I) 
qubits are initially into state 1 12 3 , with the excitations (red arrows) stored into the photonic degrees of 
freedom (blue lines); (II) logical cavity 3 is brought into resonance with the auxiliary resonator j =  2, thus 
(III) bringing the photon to the auxiliary cavity. In the meantime auxiliary resonator 3 is detuned from the 
others to avoid unwanted photon hoppings. In (IV) the photon is absorbed by the transmon 
ψ ψ(| 〉 → | 〉, = , =j j0 2 1 2  transition). The same hopping process (V) is repeated for the photon originally in cavity 

2, which is brought to the auxiliary resonator (VI) and then absorbed and emitted by the transmon 
ψ ψ( →, ,1 2 2 2  transition) in a semi-resonant Rabi process (VII). The procedure is then repeated to bring 

photons back to logical cavities 2 and 3, leading the state back to 1 12 3  with an additional phase ϕ acquired 
during the semi-resonant process.
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where ω ω δ( ) = ( ) + ( )µ µ µt t0c c c  and a similar expression holds for ω ( )


tc
j ; µˆ

†a  ( )µâ  creates (destroys) a 
single photon in the logical resonator μ, while 

̂

†
aj  ( )̂aj  creates (destroys) a single photon in the auxiliary 

cavity j. Hereafter, we will use the interaction picture, with = + + ( = )ˆ ˆ ˆ ˆH H H H t 0spin tr ph0 . Hence, 
within the rotating-wave approximation the spin-photon and transmon-photon coupling Hamiltonian 
takes the form:
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Here, the coupling constants Gm for the SE are enhanced with respect to their single-spin counterparts 
by a factor N , N being the number of spins in the SE29.

Finally, the last term in Eq. (1) describes the photon-hopping processes induced by the capacitive 
coupling between the modes in neighboring cavities20:

∑κ= − + . .
( )µ

µ
ω ω

−
,

( − )µ


ˆ ˆ ˆ†H a a e h c
6

ph ph
j

j
i tc c

j

Single- and two-qubit gates are efficiently implemented by tuning individual resonator modes, as shown 
in previous works18,19. Arbitrary single-qubit rotations within the Bloch sphere as well as controlled-phase 
(Cϕ) gates can be realized (see Methods for a summary).

The present setup offers two remarkable benefits: the first is that using the hybrid encoding with an 
ensemble of effective S =  1 spins ensures the possibility of implementing Cϕ gates between distant qubits, 
with no need of performing highly demanding and error-prone sequences of SWAP gates. This is done 
by bringing the photon components of the two qubits into neighboring logical resonators by a series of 
hopping processes (see Methods for details). Transferring the photons with no corruption and without 
perturbing the qubits encoded in the interposed logical cavities is made possible by temporarily storing 
the photon component of these interposed qubits into the m =  1 spin oscillator.

In addition, quantum simulations can be performed in parallel to a large degree, with resulting 
reduction of simulation times. This is made possible by the definitions of the single qubits, represented 
by each coupled SE-resonator device, and by the local control of each logical or auxiliary resonator. 
Non-overlapping parts of the register can then be manipulated in parallel. For instance, in simulating 
a Heisenberg chain of N spins s =  1/2, the N two-qubits evolutions which appear at each time-step in 
the Trotter decomposition are performed first simultaneously on all N/2 “even” bonds and then simul-
taneously on the remaining N/2 “odd” bonds. Thus the simulation time of each Trotter step does not 
increase with N.

Numerical experiments.  While it is obvious that a universal quantum computer can be used in 
principle to simulate any Hamiltonian, the actual feasibility of such simulations needs to be quantitatively 
assessed by testing whether the complex sequences of gates needed are robust with respect to errors due 
to decoherence. Here we numerically solve the density matrix master equation for the model in Eq. (1) 
with the inclusion of the main decoherence processes, i.e., photon loss and dephasing of the transmons19 
(see Methods for details).

In the following, we will consider the fidelity

ψ ρ ψ= , ( )ˆF 7

as a valuable figure of merit for the target Hamiltonians to be simulated, where ρ̂ is the final density 
matrix and ψ  the target state. For the simulations shown in the following, we have chosen these oper-
ational parameters: ω1/2π =  37 GHz, ω−1/2π =  35 GHz, ωc(0)/2π =  31 GHz, ω π( )/ =


0 2 28c  GHz and 

Ω 01/2π =  21.7 GHz, Ω 12/2π =  19.6 GHz (see the level scheme inside each cavity in Fig. 1). We also assume 
realistic values of the SE-resonator π/ =±G 2 401  MHz, transmon-resonator G01/2π =  30 MHz, 
G12/2π =  40 MHz and photon-photon κ/2π =  30 MHz couplings, respectively20,30. The transmon parame-
ters correspond to a ratio between Josephson and charge energies EJ/EC =  2524. In this regime the dephas-
ing time T tr

2  exceeds several μs while keeping a 10% anharmonicity. The two chosen spin gaps can easily 
be achieved with several diluted magnetic ions possessing a S >  1/2 ground multiplet, just by applying a 
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small magnetic field along a properly chosen direction. We have chosen resonator frequencies ωc and ω
c 

larger than usual experiments (e.g., twice the typical frequencies reported in ref. 30) since this helps 
improving the maximal fidelity of gates. However, we emphasize that the results do not qualitatively 
depend on these specific numbers. Indeed, high fidelities are also obtained by using resonator frequencies 
smaller than in ref. 30 (see Table 1).

Digital simulation of spin Hamiltonians.  Since most Hamiltonians of physical interest can be written as 
the sum of L local terms, our quantum computing architecture can be employed to efficiently simulate 
the time-evolution induced by any target Hamiltonian of the type = ∑ˆ ˆH Hk

L
k. The system dynamics 

can be approximated by a sequence of unitary operators according to the Trotter-Suzuki formula (ħ =  1):

( ) = ≈ ( ) , ( )τ τ− − −


ˆ ˆ ˆ ˆH H HU t e e e 8i t i i nL1

where τ =  t/n and the total digital error of the present approximation can be made as small as desired 
by choosing n sufficiently large2. In this way the simulation reduces to the sequential implementation of 
local unitaries, each one corresponding to a small time interval t/n. The set of local unitary operators 
can be implemented by a proper sequence of single- and two-qubit gates.

The mapping of s =  1/2 models onto an array of qubits is straightforward. We consider here two kinds 
of significant local terms in the target Hamiltonian, namely one- ( )α( )

Ĥ
1  and two-body ( )αβ( )

Ĥ
2  terms, 

with α, β =  x, y, z. The unitary time evolution corresponding to one-body terms =α α
( )ˆ ˆH bs
1

 is directly 
implemented by single-qubit rotations τ( )αR̂ b . Conversely, two-body terms describe a generic spin-spin 

interaction of the form λ=αβ α β
( )ˆ ˆ ˆH s s
2

1 2 , for any choice of α, β =  x, y, z. The evolution operator, τ− αβ
( )

Ĥe i
2

, 
can be decomposed as31

= ⊗ ⊗ , ( )λ τ
α β

Λτ
α β

− −α β ˆ ˆ ˆ ˆˆ ˆ ˆ †e u u e u u[ ] [ ] 9i s s i
1 2 1 2

1 2

with λΛ =ˆ ˆ ˆs sz z1 2 , π= ( / )ˆ ˆu R 2x y , π= ( / )ˆ ˆu R 3 2y x , =ˆ ˆu Iz . The Ising evolution operator, λ τ− ˆ ˆe i s sz z1 2 , can be 
obtained starting from the two-qubit Cϕ gate and exploiting the identity (apart from an overall phase)

ϕ ϕ= Φ (− / ) ⊗ ⊗ Φ (− / ) , ( )
λ τ

ϕ
− ˆ ˆ ˆ ˆ ˆˆ ˆe I U I[ 2 ] [ 2 ] 10i s s

C1 2 1 2
z z1 2

where ϕ =  λτ. Here ϕΦ( )ˆ  is a phase gate (see Methods). The time required and the fidelity for the sim-
ulation of each term of a generic spin Hamiltonian are calculated by using a Lindblad master equation 
formalism and are listed in Table 1. We notice that the predicted fidelities are very high, even after the 
inclusion of realistic values for the main decoherence channels, especially for the photon loss rate Γ μ, 
which is related to the resonators quality factor (Q) by ωΓ = /µ

µ Qc . The high fidelity obtained for these 
elementary steps allows us to combine many of them to simulate multi-spin models.

As a prototypical example we report the digital quantum simulation of the transverse field Ising model 
(TIM) on a chain of 3 qubits:

λ= ( + ) + ( + + ) , ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH s s s s b s s s 11TIM z z z z x x x1 2 2 3 1 2 3

Time FI FD FD
L

( )H x
1 6.4 ns 99.99% 99.94% 99.79%

( )H z
1  0.5 ns 99.99% 99.98% 99.90%

( )H yy
2  85.8 ns 99.87% 99.24% 98.96%

( )H zz
2  61 ns 99.91% 99.45% 99.20%

( )H yz
2  85.8 ns 99.79% 99.13% 98.87%

Table 1.   Simulation of the elementary terms of the Hamiltonian. Fidelity and time required to simulate 
the elementary terms of the Spin Hamiltonian. The fidelity has been calculated by assuming a random initial 
state. The second and third column show a comparison between the ideal fidelity (calculated in the absence 
of decoherence) and the real one (calculated assuming a Lindblad dynamics, with Q =  106 and µ=T s10tr

2 ). 
The implemented evolution is τ= 


− 

αβ
( , )ˆ HU iexp 1 2 , with bτ =  λτ =  π/2. The last column reports the fidelities 

corresponding to a setup operating at lower frequencies, ω1/2π =  16.05 GHz, ω−1/2π =  15.7 GHz, 
ωc(0)/2π =  14 GHz, ω π( )/ = .


0 2 11 85c  GHz and Ω 01/2π =  9.2 GHz, Ω 12/2π =  8.3 GHz.
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where αŝ i  are spin-1/2 operators. Figure 2 shows the oscillations of the magnetization, Tr ρ( + + )ˆ ˆ ˆ ˆs s s[ ]z z z1 2 3 , 
for a spin system initialized in a ferromagnetic configuration. Here ρ̂ is the three-qubit density matrix 
obtained at the end of the n =  10 Trotter steps of the simulation. The exact Trotter evolution (continuous 
line) is compared to the simulated one (points). In particular, red circles represent the ideal evolution, 
without including any source of decoherence. Errors are, in that case, only due to a non-ideal implemen-
tation of the quantum gates (see discussion below). Conversely, green and black circles are calculated 
including the most important decoherence channels, namely photon loss (timescale 1/Γ μ) and pure 
dephasing of the transmon (timescale T tr

2 ). It turns out that photon loss is the most important environ-
mental source of errors19, while µ≈T s10tr

2
32 is sufficient to obtain high fidelities at the end of the 

simulation. Indeed, the transmon is only excited during the implementation of two-qubit gates. The 
simulation has been performed for different values of the resonators quality factor. By decreasing Q the 
average fidelity decreases from 96.5% (infinite Q) to 94.6% (Q =  107) and 84.6% (Q =  106). For high but 
realistic33 values of Q =  107 the calculated points are close to the ones obtained in the ideal case (with 
infinite Q): in that case the gating errors still dominate the dynamics. Finally, by exploiting the auxiliary 
m =  1 oscillator to store the photon component of the hybrid qubits when these are idle, the effects of 
photon loss are reduced and the fidelity significantly increases. The improvement is evident in Fig. 2, by 
comparing black circular and square points; the final fidelity raises from 84.6% to 92% thanks to this 
storage. We stress again that the simulation time of each Trotter step does not increase for larger systems 
containing more than 3 spins. Indeed, even if more gates are needed, these can be applied in parallel to 
the whole array, independently of the system size. Below we shall also discuss the extension to a larger 
number of qubits.

The simulation of Hamiltonians involving S >  1/2 spin ensembles can be performed by encoding 
the state of each spin-S onto that of 2S qubits. As an explicit example, we consider a chain of S =  1 
spins, labelled Si, with nearest-neighbor exchange interactions and single-spin crystal-field anisotropy, 
described by the Hamiltonian

( )∑ ∑λ= ⋅ +





+ −




,

( )+
ˆ ˆˆ ˆ ˆ ˆH DS E S SS S

12s
i

i i
i

iz ix iy1 1
2 2 2

which reduces to the paradigmatic Haldane case for D =  E =  0 and λ > 0. By rewriting each spin-1 oper-
ator as the sum of two spin-1/2 ones ( = + )α α α

ˆ ˆ ˆS s si iA iB , Ĥ s1 can be mapped onto a s =  1/2 Hamiltonian, 
∼̂
H s1, with twice the number of spins. Indeed, if each A-B pair of qubits is initialized into a state with 
total spin equal to one, the dynamics of ∼̂

H s1 coincides with that of Ĥ s1 and can be simulated along the 
lines traced above. A proof-of-principle experiment, which could be implemented even by the non-scalable 
single-resonator setup described in ref. 19 would be the simulation of a single spin S =  1 experiencing 
tunneling of the magnetization. In this simple case we find (apart from a constant term):

∼
= + ( − ). ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆH Ds s E s s s s2 2 13s zA zB xA xB yA yB1

Figure 3 reports the comparison between the exact and the simulated evolution of the magnetization, 
assuming D <  0 and |D/E| =  12, for different values of Q and T tr

2 . Interestingly, quantum oscillations of 
Ŝz  are well captured by the simulation even for Q =  105, and the fidelity is practically unaffected by a 

reduction of transmon coherence time to =T 1tr
2  μs.

Figure 2.  Oscillations of the magnetization in the transverse-field Ising model. The simulation is 
performed on a chain of 3 qubits, in the case b =  λ/2. The plot reports the expectation value of the total 
magnetization =Ŝz  tr ρ( + + )ˆ ˆ ˆ ˆs s s[ ]z z z1 2 3  on the final state of the system, simulated for different values of 
the resonator quality factor (points) and compared with the exact evolution (line).
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The simulation of many-spin models with S >  1 typically requires two-qubit gates involving 
non-nearest-neighbor qubits. These can be handled with no need of SWAP gates as outlined in Methods.

Digital simulation of Fermi-Hubbard models.  The numerical simulation of many-body fermionic sys-
tems is a notoriously difficult problem in theoretical condensed matter. In particular, quantum Monte 
Carlo algorithms usually fail due to the so-called sign-problem34. Our digital quantum simulator setup 
enables to efficiently compute the quantum dynamics of interacting fermions, even on an arbitrary 
two-dimensional lattice. Although we focus on the paradigmatic Fermi-Hubbard Hamiltonian, the pro-
posed scheme can be generalized to the quantum simulation of several other fermionic models, such as 
the Anderson impurity model.

The target Hamiltonian describing a two-dimensional N ×  M lattice of Wannier orbitals is

∑ ∑λ= − + ,
( )µ ν σ

µ σ ν σ
µ
µ µ µ µ

, ,
, , ,↑ ,↑ ,↓ ,↓

ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †H c c U c c c c
14

Hub

where 〈 μ,ν〉  are nearest neighbors (ν =  μ ±  1, ν =  μ ±  M) and µ σ,ĉ  are fermionic operators. In order to 
simulate this Hamiltonian with our setup, we exploit the Jordan-Wigner transformation to map fermion 
operators µĉ  onto spin ones µŝ 35–37. However, if such a transformation is applied to the Hubbard model 
(14) in more than one dimension, the hopping (first) term results into XY spin couplings whose sign 
depends on the parity of the number of occupied states that are between μ and ν in the chosen ordering 
of the Wannier orbitals38. This aspect makes the simulation of a fermionic system much more demanding 
than any typical spin system, because the resulting effective spin Hamiltonian contains many-spin terms. 
To illustrate how we address this key issue, here we consider the simpler case of the hopping of spinless 
fermions on a lattice (the general case of interacting spin fermions is discussed in Methods). The target 
Hamiltonian can be mapped into the following spin model:

∑λ= − (− ) + . .,
( )

λ
µ ν

α
µ ν

<

+ −ˆ ˆ ˆˆH s s1 h c
15

where ( )α = ∑ ≡ ∑ +γ µ
ν

γ γ γ µ
ν

γ= +
−

= +
−ˆ ˆ ˆ ˆ†c c sz

1
1

1
1 1

2
. We simulate this n-body interaction by taking care of the 

state-dependent phase, similarly to refs 39,40. The sign factor in (15) is obtained by performing a con-
ditional evolution of the qubits interposed between the specifically addressed sites, μ and ν, depending 
on the state of μ. This corresponds to a series of controlled-Z (CZ) gates between qubit μ and each of 
the qubits γ interposed between μ and ν. Hence, the sequence of gates to be implemented at each Trotter 
step is the following:

∏ ∏ .
( )

( )
µ γ ν

λτ

µ γ ν< <

− +

< <
µ γ

µ ν ν µ
µ γ,

+ − + −

,
ˆ ˆˆ ˆ ˆ ˆU e U

16
C Z

i s s s s
C Z

For instance, in Fig. 4 we show the quantum circuit for the implementation of λ= − ( + )λ
,ˆ ˆ ˆ ˆ ˆ† †H c c c c

1 5
1 5 5 1 : 

controlled-phase gates (with ϕ =  π) between qubit ψ1  and each of the qubits interposed between ψ1  
and ψ5 , namely ψ2 , ψ3  and ψ4 , are sequentially performed before and after the central block (dashed 
boxes), which implements the XY evolution: ϕ= − ( + )ˆ ˆ ˆ ˆ ˆU i s s s sexp{ }XY x x y y1 5 1 5 . The latter consists of two 

Figure 3.  Tunneling of the magnetization in a spin-1 system. Line: exact time evolution of Ŝz  for a single 
S =  1 spin with |D/E| =  12, after Eq. (13). As it is well known, the system oscillates between states with 
opposite magnetization due to quantum tunneling across the anisotropy barrier. Points: digital quantum 
simulation obtained by the time evolution of two hybrid qubits for different values of the resonator quality 
factor, Q, and of the transmon coherence time, T tr

2 , respectively.
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controlled-ϕ gates (with ϕ =  2λτ), preceded and followed by proper single-qubit rotations, implementing 
respectively ˆ ˆs sx x and ˆ ˆs sy y terms of the interaction, as schematically explained in Fig. 4. By exploiting the 
high mobility of the photons entering into the hybrid encoding, Hamiltonian terms involving distant 
qubits can be simulated straightforwardly. In fact, this is a remarkable advantage with respect to alterna-
tive solid-state platforms for quantum information processing. We stress that, in spite of the increment 
in the number of gates required to address the sign issue, a large number of hopping terms can still be 
implemented in parallel.

Discussion
We have proposed a digital quantum simulator based on hybrid spin-photon qubits, encoded in an 
array of superconducting resonators strongly coupled to spin ensembles. Within this quantum comput-
ing architecture, quantum gates are implemented by a single operational tool, namely by tuning the res-
onators frequencies. We have shown the feasibility of the scheme with state-of the-art superconducting 
arrays technology, which allows the high fidelity simulation of a large class of multi-qubits spin and fer-
mionic models. To test our predictions, we have performed numerical simulations of the master equation 
for the system density matrix, including the most important decoherence channels such as photon loss 
and pure-dephasing of the transmon involved in two-qubit entangling gates.

Sources of errors.  We analyze here the sources of error that affect the quantum simulation, and 
point out possible solutions. Three main simulation errors can be found: digital errors (arising from the 
Trotter-Suzuki approximation), gating errors (due to imperfect implementation of the desired unitar-
ies), and decoherence errors (due to the interaction of the quantum simulator with the environment). 
While digital errors can obviously be reduced by increasing the number of Trotter steps or by using 
higher-order decompositions, gating errors are accumulated by repeating a large number of quantum 
operations. Similarly, the interaction of the system with the environment becomes much more pro-
nounced if the simulation time increases.

As far as decoherence mechanisms are concerned, we first notice that the present setup limits the role 
of the transmon, which is not involved in the definition of the qubits. All transmons are kept in their 
ground states apart from the specific transmons involved in two-qubit gates, which are excited only for 
a short time. Thus, typical state-of-the-art technology, which ensures transmon dephasing times of the 
order of tens of microseconds, is sufficient to obtain high fidelity quantum simulations of relatively large 
systems. Coherence times of single spins are so long that their effect on quantum simulations can be 
disregarded. However, a potential drawback of spin ensembles is the presence of disorder which spreads 
the transition frequencies within the ensemble (inhomogeneous broadening). This eventually results in 
an irreversible population leakage from the superradiant mode (our logical 

µ0 , strongly coupled to the 
resonator) into dark modes out of the computational basis. In the absence of cavity-spin coupling, this 
leakage effect depends crucially on the width Δ  of the distribution in the emitter’s bare frequencies ρ(ω), 
and takes place on a timescale ~1/Δ . However, a strong spin-cavity coupling provides a protection mech-
anism41, by inducing an energy gap between the superradiant and the dark modes42. If this gap is large 
enough, the system is efficiently protected from decoherence and the excitation can be stored in 

µ0  for 
times much longer than 1/Δ . This mechanism, which has been experimentally demonstrated in resonant 
conditions43, also acts in the dispersive regime, provided that the SE-cavity detuning (δ) is not too large, 
i.e. δ/ ∆G2 . A detailed treatment of how to process hybrid qubits in a cavity protected regime is 
beyond the aim of this work and will be given elsewhere. An alternative possibility is that of using refo-
cusing techniques15,44 in order to increase the coherence time of the inhomogeneously broadened spin 
ensemble.

Figure 4.  Quantum circuit description for the simulation of the hopping part of the Fermi-Hubbard 
model on a two-dimensional lattice. Here we explicitly show the case of λ= − ( + )λ

ˆ ˆ ˆ ˆ ˆ† †H c c c c1 5 5 1 , with 
ϕ =  2λτ. θ( )R̂x  and θ( )R̂y  indicate single-qubit rotations about x or y axis of the Bloch sphere, while Φ φ( )ˆ  is 
the single-qubit phase gate.
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Photon loss represents the main source of decoherence in our hybrid dual-rail encoding. Its effect 
monotonically increases with the overall computational time, since both idle and manipulated qubits are 
influenced by it. We stress that the proposed platform allows us to manipulate simultaneously 
non-overlapping parts of the register, thus drastically reducing the overall computation time and 
decoherence-induced errors with respect to a serial implementation. Indeed, a pessimistic estimate of the 
decoherence error ε( = − )F1 2  on N qubits subject to photon loss is given by − ≈ ω− ω

e NT1 NT
Q

c
Q c , 

where T is the total time of the simulation. This is obtained by considering the probability for the system 
prepared in the state with the maximum number of photons ( ⊗ ... ⊗ )1 1 N1

 to be still in the same 
state after time T. For simple Hamiltonians (e.g. the TIM or the Heisenberg model), in a serial imple-
mentation T scales with N, whereas in a parallel scheme T is independent of N. For example, the 
three-spins transverse Ising model reported above can immediately be extended to simulate longer spin 
chains, by addressing simultaneously first the “odd-bonded” and then the “even-bonded” qubits. Hence, 
the parallel implementation proposed here leads to a gain in the fidelity scaling as ( − )

eCN N 2 , with 
respect to an analogous serial scheme. This makes the present architecture very competitive, in view of 
scaling it to a relatively large array.

In this parallel implementation, for simulation times much smaller than the characteristic photon loss 
damping time ( )∼

ω
Q

Nc
, errors are mainly due to gate imperfections. Using the numbers reported in the 

third column ( )FI  of Table 1, we can heuristically estimate the number of gates allowed by the proposed 
platform. For simplicity, we follow ref. 8 and assume single-gate errors as independent and add them. As 
a threshold, we require the overall fidelity after the implementation of the full sequence to be above 90%. 
This would allow us to perform more than 1000 single-qubit rotations or ~120 controlled-Z two-qubit 
gates. For instance, in the extension of the simulation of the transverse field Ising model to N =  10 qubits, 
the estimated gating error εg for each Trotter step is still very small, below 0.02 (corresponding to a 
fidelity of 99%). In the case of the more demanding N =  10 Heisenberg model we find εg =  0.07.

We note that gating errors are mainly due to the relatively small difference δ( )  between the photon 
frequency and transmonic gaps in the auxiliary cavities, which induces a residual interaction that is never 
completely switched off. This leads to a leakage of a fraction δ/ G  of the wave-function, which decreases 
the fidelity. Here we use the tunability of the resonator frequency as the only tool to process quantum 
information, but the flux control of the Josephson energy of the transmons27,45 can also be exploited to 
increase the detuning, thus leading to even larger fidelities. This additional degree of freedom would in 
turn allow us to employ larger values of the transmon-resonator couplings (commonly reported in liter-
ature), thus reducing the time required to implement two-qubit gates and hence the effect of decoher-
ence. To keep the experimental demonstration of the proposed scheme as easy as possible, in the above 
simulations we have employed the tunability of the resonators as the only manipulation tool, using 
parameters which are a trade-off between the two effects of reducing the gating time and increasing the 
leakage.

We finally remark that quantum error correction (QEC) would also represent a powerful tool to 
improve the performance of the digital simulator. QEC schemes can be embedded in the present setup. 
For instance we could introduce ancillae qubits to implement the three qubit bit-flip and phase-flip 
codes46. These consist of single qubit rotations, two qubit gates between each ancilla and the logical 
qubit and a three qubit Toffoli gate (or equivalently a controlled-controlled-Z gate). In a one-dimensional 
logical array, the ancillae can be placed just above and below each logical qubit, connected to a common 
auxiliary resonator. In this way the ancillae can directly interact with the logical qubit, allowing us to 
implement two-qubit gates between them. The controlled-controlled-Z gate can be obtained without 
decomposing it into a more demanding sequence of two qubit gates, in a way similar to that proposed 
for the controlled-Z gate, by exploiting the fourth level of the transmon to induce a 3-step Rabi flop. 
The detailed description of this scheme is beyond the scope of this work and will be given elsewhere.

Two-dimensional arrays.  While any model can be implemented onto a one-dimensional register 
(e.g., the one schematically illustrated in Fig.  1) at the cost of requiring long-range two-qubit gates, it 
is clear that a register topology directly mimicking the target Hamiltonian would greatly reduce the 
simulation effort. In particular, there are several important Hamiltonians defined on two-dimensional 
lattices whose simulation would greatly benefit from a two-dimensional register. Here, we point out that 
our scheme is straightforwardly usable on such a register, but its experimental realization necessarily 
requires the implementation of two sub-lattices of cavities, alternatively coupled to spin and transmon 
qubits, respectively. Fortunately, resonator arrays with complex network topologies are realistically pos-
sible, already, as each cavity can easily couple to multiple other resonators. Figure 5 displays the sche-
matic drawing of a potential two-dimensional layout showing how such sub-lattices could feasibly realize 
a two-dimensional simulator. From a technological point of view, we notice that similar lattices with 
transmon qubits have been fabricated with more than 200 coupled cavities7. While local tuning in such 
a lattice would require local flux bias on a separate layer, this need for local control lines applies to any 
adjustable quantum simulator. On the other hand, we notice that a recent technology has shown prom-
ising results to bring flux lines to the interior part of a lattice made of a small number of nodes, e.g. by 
using Aluminum airbridge crossovers to route microwave signals into a target resonator47.
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Summary.  In conclusion, the proposed setup exploits the best characteristics of distinct physical sys-
tems: the long coherence times of the spins, which can encode quantum information and protect it from 
decoherence, and the mobility of photons entering this hybrid encoding of qubits. In the end, this allows 
to realize long-range two-body interactions between distant qubits without the need for much more 
demanding SWAP gates. Moreover, on-site tunability and scalability make this architecture extremely 
appealing and competitive with respect to alternative proposals, either based on superconducting arrays 
or on different technologies.

Methods
Hybrid dual-rail encoding.  We consider a coplanar waveguide resonator containing a single photon 
in a mode of frequency ωc, and an ensemble of N non-interacting and equally oriented s =  1 spins. In 
the low-excitation regime, the SE can be modeled by two independent harmonic oscillators, related to 
two different magnetic-dipole transitions from the m =  0 ground state of the single spin, to the m =  − 1 
and m =  1 states, with excitation frequencies ω−1 and ω1. This can be achieved by properly choosing a 
system with easy-plane magnetic anisotropy, which provides a zero-field splitting between the m =  0 
ground state and the excited m =  ± 1 doublet, and in the presence of a small static magnetic field. We 
suppose to initialize the system by preparing each spin in its ground state: φ ≡ ... N0 00 1 .

If the resonator frequency is tuned to match the spin gap ω1, the SE can absorb the photon and col-
lectively evolve into the state φ| 〉 = ∑ | ... ... 〉=N

N
N0 1 0q q1

1
1 1 . Transitions between φ0  and φ1  are 

described (in the limit of low number of excitations) by the bosonic operators b̂1 and ˆ†
b1, where 

= ∑ =
ˆ

N

Nb 0 1q q1
1

1  and , =ˆ ˆ†
b b[ ] 11 1

13,29. Conversely, if the resonator frequency is tuned to ω−1, the SE 
can evolve into the state φ| 〉 = ∑ | ... − ... 〉− =N

N
N0 1 0q q1

1
1 1 , the transition being described by the oper-

ators −b̂ 1 and −
ˆ†
b 1, where = ∑ −− =

ˆ
N

Nb 0 1q q1
1

1 .
Within the single-excitation subspace of the system formed by the cavity mode and the SE, we intro-

duce the hybrid dual-rail encoding of the qubit μ:

φ

φ

≡ ∅ = , = ,

≡ ∅ = , = , ( )

µ µ
µ

µ

µ µ
µ

µ

− , −
ˆ

ˆ

†

†

b n

a n

0 0

1 1 17

1 1

0

where µˆ
†a  is the photon creation operator and φ∅ = , =µn 00  is the vacuum state.

Single- and two-qubit gates.  Single-qubit rotations.  Resonant processes involving the absorption 
(emission) of the photons entering the hybrid encoding in (Eq. 17) are exploited to perform one- and 
two-qubit gates. These processes are induced by “shift pulses”, in which the frequency of cavity μ is varied 
by a quantity δ µc  for a suitable amount of time. In the idle mode, the photon frequencies are largely 
detuned from the spin energy gaps, and Ĥ int is ineffective. In addition, the modes ωµc  and ω

c
j of neigh-

Figure 5.  Schematic representation of a two-dimensional implementation of the digital quantum 
simulator. Dark lines show superconducting coplanar resonators routed such that each resonator is coupled 
to four adjacent resonators. Yellow boxes indicate logical resonators containing ensembles of S =  1 spins 
near the magnetic field antinodes, while green boxes indicate auxiliary resonators containing transmons 
near voltage antinodes. Flux biasing of the resonator SQUIDs could be accomplished using microwave lines 
placed on another layer.
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boring cavities are far-detuned and the effect of −Ĥ ph ph is negligible. Single-qubit gates can thus be 
performed independently on each qubit, which can be individually addressed.

Off-resonance pulses are employed to obtain a rotation by an arbitrary angle about the z axis of the 
Bloch sphere. These induce a phase difference between the 0  and 1  states of the hybrid qubits (Eq. 17) 
and performs the well-known phase gate:

δΦ( ) =






.

( )
µ

δ− µT
e

1 0
0 18c i Tc

where we have assumed step-like pulses of amplitude δ µc  and duration T.
Conversely, resonant pulses are employed to transfer the excitation between SEs and resonators. This 

produces a generic rotation in the x-y plane of the Bloch sphere:

θ
θ θ

θ θ
( ) =







( / ) − ( / )

− ( / ) ( / )






,

( )

δ

δ

− µ

µR
i e

ie

cos 2 sin 2

sin 2 cos 2 19
xy

i t

i t

c

c

0

0

with θ = −G T1 . By properly tuning the initial time we can obtain rotations about x δ π( = )µ t k2c 0  or y 
δ π( = ( + ) / )µ t k4 1 2c 0  axis, while the pulse duration controls the rotation angle. See ref. 19 for a detailed 

derivation.

Controlled-phase gate.  The Controlled-phase (Cϕ) two-qubit gate is represented by the matrix:

=













.

( )

ϕ

ϕ−

U

e

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 20

C

i

It can be implemented by means of two-step semi-resonant Rabi oscillations of the transmon state 
between ψ| 〉,j0  and ψ| 〉,j2 . We describe here the Cϕ multi-step pulse sequence on two qubits initialized in 
the state | 〉µ ν1 1 , as schematically shown in Fig. 1(b) for μ =  2, ν =  3 and j =  2:

1.	 The first step corresponds to the hopping of the photon from logical cavity 3 to the auxiliary res-
onator 2 (interposed between qubits 2 and 3), by means of a π-pulse that brings the two cavities 
into resonance.

2.	 As a second step, the frequency of resonator μ =  2 ω( )c
2  is tuned to Ω 01 by means of a π-pulse, 

which transfers the excitation to the intermediate level ψ| 〉, =j1 2  of the transmon.
3.	 A π-pulse is exploited to induce the hopping of a second photon from logical cavity 2 to the auxil-

iary resonator.
4.	 Then, a semi-resonant process (during which the resonator is detuned from the transmon gap by a 

small amount δ12) is exploited to induce an arbitrary phase on the 1 12 3  component of the 
wavefunction16. A pulse of duration ∆ = π

δ+ /
t

G 412
2

12
2

, where δ ω= Ω −
c12 12

2 is the detuning 

between the resonator mode and the ψ ψ→, ,1 2 2 2  transition of the transmon, adds a phase 
ϕ π π= − δ

δ + G4
12

12
2

12
2

 to the system wavefunction.

5.	 Finally, the repetition of the first three steps brings the state back to 1 12 3 , with an overall phase 
ϕ. By properly setting the delay between the two π pulses corresponding to the previous steps (or 
by performing single-qubit phase shifts), the associated absorption and emission processes yield a 
zero additional phase.

Conversely, the other basis states do not acquire any phase, as required for the Cϕ gate, due to the 
absence of at least one of the two photons (see ref. 19). For δ12 =  0 we obtain the usual full Rabi process, 
which implements a Controlled-Z (CZ).

The setup is simplified with respect to our previous proposal18, as each resonator contains a single 
photonic mode.

It is also important to note that here we are using an ensemble of effective spins S =  1 as this ensures 
the possibility of implementing Controlled-phase gates between distant qubits, with no need of perform-
ing highly demanding and error-prone sequences of two-qubit SWAP gates. Long-distance two-qubit 
interactions are a key-resource for the digital simulation of many interesting physical Hamiltonians. They 
appear each time that a multi-dimensional target system is mapped onto a linear chain of qubits or in 
models with N-body terms. Among these, as discussed in the main text, a particular interest is assumed 
by problems involving interacting fermions in two or higher spatial dimensions, which are often intracta-
ble for classical computers. For instance, solving the two-dimensional Hubbard model is considered by 
many as the ultimate goal of the theory of strongly correlated systems. In these cases the Jordan-Wigner 
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mapping induces many-spin interactions40 which can be handled as outlined in Fig.  4, provided the 
ability to efficiently implementing long-range two-qubit couplings. These are obtained by bringing the 
photon components of the two qubits into neighboring logical resonators by a series of hoppings. The 
operations outlined in Fig. 1(b) are then performed to implement a Cϕ gate between neighboring qubits, 
and the photon components are finally brought back to the starting position by reverting the series of 
hoppings. The photons can be transferred with negligible leakage and without perturbing the interposed 
qubits by temporarily storing the photon component of these qubits into the m =  1 spin oscillator. We 
stress that a large number of these long-range two-qubit gates can be implemented in parallel in the 
actual setup.

Density Matrix Master Equation.  The time evolution of the system density matrix ρ̂ is described 
within a Markovian approximation and a Lindblad-type dynamics, with the Liouville-von Neumann 
equation of motion48:

∑ ∑ρ ρ ρ γ ρ= − , + Γ + ,
( )

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ†L L
d
dt

i H[ ] [ ] [ ]
21i

i x
i

i x xi i i

being Γ j and γj respectively the damping and pure-dephasing rates of the field x̂ j. The Lindblad term for 
an arbitrary operator, x̂, is given by

ρ ρ ρ ρ= − ( + ) + . ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
† † †L x x x x x x[ ] 1

2 22x

If the operator x̂ i destroys an excitation in the system, terms like ρ̂ˆL [ ]xi
 account for energy losses, while 

pure dephasing processes are described by ρ̂ˆ ˆ†L [ ]x xi i
. We note19 that the former ones provide the most 

important contribution for photons49 (with = µˆ ˆx ai , )â j , while the latter are very important for the trans-
mons ( ψ ψ= | 〉〈 |, + ,x̂ i k j k j1 , k =  0, 1). We represent each field as a matrix in the Fock-states basis, and 
truncate it at a number of total excitations previously checked for convergence. The total Hamiltonian, 
Eq. (1), and the density matrix master equation of the whole system, Eq. (21), are built by tensor products 
of these operators. Then, the equation of motion for ρ̂ is numerically integrated, in the interaction pic-
ture, by using a standard Runge-Kutta approximation.

Interacting spin fermions.  To extend the quantum simulation of two-dimensional Hubbard models 
to the case of fermionic systems with spin, we need to encode each fermion operator into a pair of qubits, 
corresponding to spin up and spin down. To achieve this, we exploit a generalization of the Jordan-Wigner 
transformation50. For this mapping we need to introduce two different spin 1/2 operators 
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It can be shown that these operators satisfy the usual angular momentum commutator algebra, and that 

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, 


=µ
α

ν
α

−
ˆ ˆS T 02 1 2 . We assume that the fermion variables are ordered by rows in the Hamiltonian. The 

efficiency of the scheme would be increased by using a 2-dimensional setup consisting of N rows and 
2M columns. We can write the Hubbard Hamiltonian in terms of the spin variables introduced above
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where μ and ν are nearest neighbors on the two-dimensional fermionic lattice, such that ν =  μ +  1 (hori-
zontal neighbors) or ν =  μ +  M (vertical neighbors) with the present labeling. Odd (even) qubits encode 
spin up (spin down) variables. Since the hopping term does not act if 〈 〉 =µσ µσˆ ˆ†c c 1 (i.e. =µσˆ†c 02 ), we can 
start directly with γ =  μ +  1, and the exponential in expressions like ( )π∑ +µ γ µ

ν
γ ν

+
= +
− −ˆ ˆ ˆ{ }S i S Sexp

z
1

1 1
2

 can 
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be factorized. We note that in the case of horizontal neighbors the phase factor cancels out and that in 
Ĥ Hub

s
 do not appear terms µ ν−

+ −ˆ ˆS T2 1 2 , as we are not considering spin-flip processes.
To simulate such evolution we can proceed in a way analogous to the spinless case. Here, however, 

two different series of CZμ,γ should be carried out, depending if we are considering the hopping of spin 
↑  or spin ↓  fermions. The former involves only odd values of γ, the second only even. Notice that, in a 
2-dimensional register, we need to transfer photons to implement µ ν−

+
−

−ˆ ˆS S2 1 2 1 or µ ν
+ −ˆ ˆT T2 2  each time we 

have to couple a pair of fermions belonging to the same row (due to the alternating ↑ -↓  mapping), but 
in that case ’ 

µ γ,
ÛCZ  is not required. The term ’ 

µ γ,
ÛCZ , needed to correct the sign problem, is necessary 

only if ν =  μ +  M (no photon transfer in that case is needed).
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