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  NEFI: Network Extraction From 
Images
M. Dirnberger, T. Kehl & A. Neumann

Networks are amongst the central building blocks of many systems. Given a graph of a network, 
methods from graph theory enable a precise investigation of its properties. Software for the analysis 
of graphs is widely available and has been applied to study various types of networks. In some 
applications, graph acquisition is relatively simple. However, for many networks data collection relies 
on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool 
that extracts graphs from images of networks originating in various domains. Regarding previous 
work on graph extraction, theoretical results are fully accessible only to an expert audience and 
ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI 
provides a novel platform allowing practitioners to easily extract graphs from images by combining 
basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an 
alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to 
enable time-efficient collection of large datasets. The analysis of these novel datasets may open up 
the possibility to gain new insights into the structure and function of various networks. NEFI is open 
source and available at http://nefi.mpi-inf.mpg.de.

The study of complex network-like objects is of increasing importance for many scientific domains. The 
mathematical study of networks, Graph Theory, formalizes a network’s structure by modeling the con-
stituents of a network as vertices and the pairwise relations between them as edges. Some communities 
traditionally refer to vertices as nodes or sites and to edges as arcs or links. Networks are ubiquitous in 
everyday life. Examples are as diverse as the Internet, social networks, transportation networks, meta-
bolic networks, blood vessels or the vein networks of leaves. For a comprehensive review see1.

In situations where the extraction of a mathematical graph from a physical network is easy, the size 
of graphs that can be analyzed quickly increased from hundreds to millions of vertices. At the same time 
it became feasible to build large databases of various types of networks. This enabled the application of 
software incorporating methods from statistics and graph theory to obtain many results that changed our 
understanding of large scale network structures. However, digitization remains difficult for many types 
of networks, e.g. leaf venations, blood vessels or food webs, and therefore ready-to-analyze datasets are 
often not available. In these cases, investigation on a larger scale requires tedious and sometimes error 
prone data acquisition.

In many experimental settings networks are initially available as high quality images obtained under 
laboratory control. Before any analysis can take place, it is necessary to extract the associated graphs 
from these images. This requires the identification of vertices and edges within the depicted structure. 
This process can quickly become very work-intensive even for smaller networks, which makes automated 
solutions indispensable.

Leveraging advances in computer vision, several authors have proposed and successfully implemented 
solutions for domain specific graph extraction applications. The authors of2,3 consider the mycelial net-
works of P. impudicus. They use watershed segmentation in combination with a novel enhancement step 
designed to highlight curvilinear features in the input networks. Based on the segmented image a skele-
ton is computed and used to extract the graph representing the input network. The resulting method is 
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designed to be brightness and contrast invariant in order to correctly extract the networks grown by P. 
impudicus from challenging noisy or low contrast images.

Baumgarten et al.4,5 investigate the vein networks of P. polycephalum. For segmenting the input image 
they rely on careful constant thresholding followed by a sequence of restoration algorithms that try to 
repair the network in the segmented image. Next, the restored segmented image is used to compute a 
skeleton. After applying another sequence of correction steps, the skeleton is scanned to extract the graph 
of the input network.

In6 a more general algorithm applicable to a variety of problems is proposed. Based on an original 
stochastic model, the authors use Monte Carlo sampling to obtain junction-points in the input image. 
This technically involved solution guarantees structural coherence for the resulting graph representation. 
Further examples include the extraction of road networks7, retinal blood vessel analysis8 and the extrac-
tion of plane graphs9.

The three above mentioned algorithmic solutions for the network extraction problem exhibit one or 
more of the following limitations:

•	 They do not build on top of well-established computer vision methods and tend to rely on ad-hoc 
algorithms. As a result the quality of the method and its implementation could likely be improved. 
In addition, a lot of time is spent on reimplementing algorithms that are already available.

•	 They are not implemented or only available as pseudo-code.
•	 They are implemented but not designed for easy of use, distribution and extendability.

We are aware that the primary objective of the work cited above is not the production of reusable 
software, but of algorithms and tools for solving a concrete research question. As a result, the above 
authors have limited time for researching advances in computer vision, following best software engineer-
ing practice or writing documentation respectively.

From experience we know that when producing an easy-to-use software, a large part of the required 
work consists of specifying and improving the user-interface as well as working out minor bugs and 
annoyances. This type of work, while time consuming, is essential for any software aiming to reach a 
non-negligible audience. However, efforts like these are hardly attractive to researchers whose focus is 
on obtaining the next result. While we understand that under these circumstances the aforementioned 
limitations arise naturally, we strongly believe that it is necessary to overcome those limitations in order 
to increase the value and the impact of scientific software in general and network extraction software 
in particular.

To this end, we introduce NEFI, a lightweight piece of ready-to-go software intended to enable the 
non-expert to automatically extract networks from images. NEFI constitutes an extensible framework of 
interchangeable algorithms accessible through an intuitive graphical user interface.

We emphasize at this point that we do not claim to introduce novel techniques for image processing 
or computer vision. Instead, our contribution consists of a reusable, flexible and easily extendable tool-
box combining well-known methods, which have become standard in their respective fields of origin, 
in a meaningful way. By introducing NEFI, we hope to make these methods more widely accessible to 
practitioners in other fields.

NEFI’s segmentation is based on a combination of standard routines available in OpenCV, (2015)10, 
These algorithms are known to perform well on clean and uncluttered images obtained under controlled 
laboratory conditions. However, on more challenging inputs of low contrast, strong gradients or similar 
irregularities, their performance is severely reduced. Nevertheless, in these cases more involved algo-
rithms, currently not implemented as part of a reliable library and thus not integrated into NEFI, may 
still be able to process these images. To help meet this situation, NEFI was designed with extendability 
in mind. As a result users will find it easy to build on-top of NEFI’s code in order to add their own 
implementations of more sophisticated methods.

Network Extraction From Images
NEFI features a collection of image processing routines, segmentation methods and graph algorithms 
designed to process 2D digital images of various networks and network-like structures. Its main func-
tion is executing a so-called extraction pipeline, designed to analyze the structures depicted in the input 
image. An extraction pipeline, for short pipeline, denotes an ordered sequence of algorithms. A success-
ful execution will return a representation of the network in terms of an edge-weighted undirected planar 
graph. Computed weights include edge lengths and edge widths. Once the graph is obtained, available 
graph analysis software11–16 or custom written scripts can be deployed to investigate its properties.

A typical pipeline combines algorithms from up to four different classes: preprocessing, segmenta-
tion, graph detection and graph filtering, see Fig. 1. A more detailed description follows below. For each 
pipeline section, NEFI typically offers several interchangeable algorithms to choose from. After execut-
ing preprocessing routines, a segmentation algorithm separates foreground from background. Then the 
foreground is thinned to a skeleton from which the vertices and edges of the graph are determined. In 
the process various edge weights are computed. Finally, the graph can be subjected to a variety of useful 
graph filters. Figure  2 illustrates the intermediate results of NEFI’s pipeline steps listed in the order of 
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their execution. When a pipeline is executed, NEFI makes all intermediate results available via its clean 
and intuitive GUI, see Supplementary Fig. S7.

Using the GUI all basic functions of NEFI can be accessed in an intuitive fashion. To facilitate 
ease-of-use, most of NEFI’s algorithms come with default parameters based on the settings in OpenCV, 
(2015)10, which were found to perform well on our test sets as well as on many other images.

There are various predefined pipelines to get started immediately. Alternatively, users may freely com-
bine the various methods to build custom pipelines. Both approaches allow the user to experiment 
with the available methods in order to close in on the optimal settings for the data. Once a pipeline is 
constructed, it can be saved and reused. NEFI’s simple pipeline concept together with a self-explanatory 
graphical user interface make working with NEFI intuitive and straightforward. NEFI also offers a 
command-line mode, which is suited for batch processing.

NEFI comes with a number of example images from different domains which we use to produce the 
figures in this work. Figures 3 and 4 show NEFI’s output on two images using predefined pipelines. Blue 
squares denote the vertices and red lines the edges of the detected graph. The thickness of the detected 
edges corresponds to thickness of the depicted structures. For comparison the extracted graph is drawn 
on top of the input image. We present a detailed quantitative evaluation in a later section.

We stress that NEFI can deal with a range of inputs from various domains as long as they are of 
sufficient quality. In addition to the examples shown above, it has been successfully used to process 

Figure 1.  A flow chart illustrating NEFI’s pipeline components in green boxes. Dashed arrows depict 
optional sections of the pipeline. Blue and orange boxes denote NEFI’s input and possible outputs 
respectively.

Figure 2.  Direct comparison of NEFI’s pipeline steps given a slice of an image of a slime mold 
(Physarum polycephalum). From left to right: input image, segmented image, skeletonized image, detected 
graph and filtered graph. The green square contains a very faint vein which the segmentation did not pick 
up fully. Thus, the skeleton becomes fragmented which leads to spurious vertices in the detected graph. By 
applying a graph filter we remove stray vertices without manipulation of the segmented or the skeletonized 
image. Similar filtering can remove “dead-ends”, i.e. vertices that do not belong to any cycle in the graph.
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images of natural (e.g. leaf venation, patterns of mud cracks) as well as man-made structures (tilings). It 
is also straightforward to add custom extensions. We provide a well documented platform which allows 
programmers to include more specialized segmentation algorithms or additional graph filters. For an 
overview of alternative graph extraction approaches see for example17.

Next, we discuss the purpose and design of each major stage of the pipeline and highlight some of 
NEFI’s strong points.

Preprocessing Collection
The preprocessing section of the pipeline offers various standard image processing algorithms intended 
to be used prior to the segmentation step. Preprocessing methods may be exploited to affect the output 
of the segmentation step. For example, adding a slight blur to an input image may benefit the overall 
result by reducing the amount of spurious white pixels in the segmented image. However, blurring too 
much will remove fine detail and reduce accuracy in determining the thickness of depicted edges. As a 
result, we recommend to experiment with different approaches and parameter settings in order to decide 
how to use preprocessing. For images of sufficient quality we found that excellent results can be obtained 
without preprocessing.

NEFI relies on OpenCV, (2015)10, for preprocessing and offers Gaussian and Median Blurring, 
Denoising as well as Bilateral Filtering.

Figure 3.  Extracted graph of the network formed by a slime mold (Physarum polycephalum). The left 
hand side shows the input image depicting the network. The right hand side shows the extracted graph 
overlayed on top off the same image for direct comparison. Note, that no filters have been applied. The 
image was produced in a collaboration with the KIST Europe.

Figure 4.  Extracted graph of the vein network exhibited by a wing of a dragonfly (Ajax junius). Note, 
that after the use of various filters a very clean-looking graph is obtained. Image courtesy of Pam and 
Richard Winegar.



www.nature.com/scientificreports/

5Scientific Reports | 5:15669 | DOI: 10.1038/srep15669

Segmentation Collection
The goal of the segmentation step is separating the image foreground, i.e. the structures of interest, from 
the remaining image. NEFI builds on top of OpenCV, (2015)10, combining different segmentation algo-
rithms. The general-purpose algorithms shipped with NEFI have become standard in image processing 
and perform reliably well if input images are clean, devoid of strong gradients and have a good contrast 
between fore- and background. Conversely, if the input becomes more challenging, the effectiveness of 
NEFI’s segmentation degrades quickly and more complex or domain-specific algorithms become neces-
sary. We defer a quantitative study of how the properties of the input image affect NEFI’s performance 
to the Section Evaluation.

NEFI’s segmentation is designed such that several algorithms can be used interchangeably. We 
included basic thresholding algorithms like Otsu’s method18 or adaptive thresholding as well as more 
involved segmentation routines such as guided watershed19 and the GrabCut algorithm20. The last two 
methods receive as an additional input a so-called marker. The better the markers approximate the fore-
ground, the better these algorithms work. NEFI offers several marker strategies which can be used inter-
changeably together with the respective marker based segmentation routines.

Interchangeability of the algorithms is a core design principle of all pipeline steps.
This design facilitates easy experimentation with different methods. Our own experience shows that 

often it is not clear a priori which methods work for a given input image. This decision usually also 
depends on the desired degree of detail in the final output, where less sensitive methods might produce 
fewer false positives. This ease of experimentation with quick visual feedback from the GUI is one of the 
major strong points of NEFI.

The flexibility is not limited to the algorithms we provide. Instead, NEFI’s software design makes it 
easy to integrate additional methods. We expect that in practice challenging inputs will be encountered 
for which the algorithms currently offered by NEFI will be insufficient. In these cases a potential user 
may choose to implement additional, perhaps domain-specific, methods. By extending NEFI, the user 
can rely on existing modules and thus save a lot of time. The authors are convinced that improved 
extendability is another strong point of our work.

Graph Detection Collection
The graph detection collection consists of algorithms that take a segmented image as input and detect 
the nodes and the edges of the graph. We offer a colloquial description of the actual algorithm because 
we do not rely on well-documented library code for this section of the pipeline.

The first step for graph detection is called thinning. Here we reduce the segmented foreground such 
that every line is only one pixel thick, while preserving the connectivity properties of both the foreground 
and the background pixels. The result of this process is called the skeleton of the segmented image. To 
do so we implemented the algorithm by Guo and Hall21. It always produces thin results and preserves 
8-connectivity of the foreground pixels. A pure Python implementation proved to be fairly slow, hence 
we chose to implement this function as a C extension.

For fairly thin foreground features this method is nearly flawless and finds a skeleton where the lines 
lie in the center of the foreground areas. However, large foreground sections lead to artifacts in the skel-
eton whose exact shape depends on the noise present at their borders.

On the skeleton we then detect the positions of nodes. For this purpose we adapt criteria from thin-
ning algorithm by Zhang and Suen22. A white pixel becomes a node if its removal creates exactly one or 
at least three 4-connected white components in its 1-neighborhood. In the former case the pixel forms 
the end of a path, otherwise it is the meeting point of at least three edges.

Note that due to this step, the maximum degree of the graphs we detect is limited to four. This is inev-
itable if nodes are detected at single-pixel locations. For higher degree nodes we will create several nodes 
of limited degree that are very close to each other and can be merged by a later post-processing step.

Given the node positions, it is very simple to find the edges. We perform a variant of breadth first 
search on the white pixels in the skeleton, starting from each node simultaneously. Each white pixel 
around a node gets a unique number and a queue. In each step we iterate over all queues and take out 
the first pixel. If it is unmarked, we mark it with the unique number of this queue and enqueue all its 
white neighbors. Otherwise, we have detected an edge, i.e. there is a path along white pixels that connects 
two nodes.

While walking along the pixels we record the length of the edge. Horizontal and vertical steps count 
as one unit, diagonal steps count as ≈ .2 1 41 units.

The diameter of an edge calculated by computing a distance transform on the segmented image. This 
assumes that the thinned edge lies in the middle of the actual edge. Computing the diameters is now a 
simple lookup of each edge-pixel from the skeleton in the distance transformed image. As we have the 
diameters along the whole edge on hand by this procedure, we then compute a median and a variance.

For handling the graph we rely on NetworkX, (2014)23.

Graph Filter Collection
The graph filter collection offers the possibility to add powerful processing steps that directly apply to 
the graph obtained after graph detection.



www.nature.com/scientificreports/

6Scientific Reports | 5:15669 | DOI: 10.1038/srep15669

Often it is possible to improve the result by removing unwanted artifacts in the segmented image 
or during later processing stages. A common strategy, used for example in4,5, consists of “repairing” 
the errors in the skeleton using heuristics or user assisted methods. However, these methods carry the 
potential danger of introducing additional errors.

NEFI pursues a novel approach by exploiting the structure of the extracted graph. First, we retain a 
maximum of structural information by not altering the segmented image or the skeleton at all, i.e. we 
establish the graph including all artifacts. Then we use dedicated graph filters to remove said artifacts. 
For example, if the network in the input image is reasonably large, it will result in a large connected 
component in the graph. Small components resulting from noise can thus be removed effectively and 
safely. Since the effects of filtering the graph can immediately be evaluated by visual inspection, we prefer 
graph filtering over less transparent approaches that take place before the graph was established. Figure 2 
illustrates the use of filtering.

We have used filtering with sensitive segmentation to obtain surprisingly good results. Overly sensi-
tive segmentation picks up fine detail but also introduces artifacts. However, almost all of the artifacts 
result in very small components that can easily be removed by filtering. The desired detail will remain 
mostly unaffected because it is part of the largest component. The graph depicted in Fig. 4 was obtained 
using this technique.

Filtering may also be used to remove parts of the graph which are not of interest. The following fil-
ters are predefined in NEFI. A filter removing everything not in the largest connected component, one 
smoothing vertices of degree two except if this introduces parallel edges and finally, one which removes 
all vertices and edges that are not contained in a cycle. Filters may be freely combined in any order. 
Naturally, the filter collection is designed for extendability.

Graph filtering and its various applications delivers excellent results. To our knowledge, no other 
software offers such tools as part of its core workflow. For this reason, we consider this one of NEFI’s 
strong points.

Evaluation
To assess NEFI’s performance we investigate the output quality given input images of varying quality. 
Additionally we report on NEFI’s speed.

Defining a Graph Similarity Measure
As a quality measure, we need to quantify the degree of congruence between the graph depicted in the 
original input image i and the graph computed by NEFI.

Let = ( , )A V EA A  be the true graph correctly describing the structure depicted in i, with VA and EA 
denoting its vertex and edge set respectively. We call A the ground truth, which is of course not known 
in general. Furthermore, let B denote the graph obtained by executing one of NEFI’s pipelines. Note that, 

, ∈A B , where   denotes the set of undirected edge-weighted planar graphs where vertices are labeled 
with their respective euclidean coordinates in the plane. With these definitions we propose a similarity 
measure s mapping any pair of graphs , ∈A B  onto a number ∈ ,s [0 1].

We compute a correspondence of vertices in A to vertices in B. Two edges ∈e E A and ∈f E B then 
correspond if their endpoints correspond. We choose the correspondence such that the following intui-
tive notion of similarity are optimized.

1.	 Positions of vertices in VA are similar to positions of corresponding vertices in VB.
2.	 Edges in EA including their weights are similar corresponding edges in EB.

For an exact definition of s and the notions of similarity and correspondence, we refer the reader to 
the supplementary material.

We require that the measure is maximal if any graph A is compared with itself, that is ( , ) =s A A 1. 
Consequently, if A is completely different from B we have ( , ) =s A B 0. This minimum value is assumed 
if no viable correspondence between VA and VB can be found. Naturally, the value of s(A, B) increases 
(decreases) if the similarity between A and B increases (decreases).

Evaluation of NEFI’s Output
We proceed with the evaluation of NEFI’s output using the above similarity measure. To do so we create 
a set  of ground truth graphs such that A G⊂ . We start by processing a real-life set I0 of images of the 
slime mold P. polycephalum with NEFI. Thus we obtain a set of graphs B G⊂0 . Given those graphs we 
obtain the set  by distorting the graphs ∈Bi 0 using different graph filters. At this point we will not 
use the images in I0 or the graphs in 0 anymore.

Next, we turn the graphs in  into a test set I1 of 2D images by simply drawing them. The drawing 
preserves the euclidean positions of the nodes, the edge lengths and the thickness of the edges. As a 
result, the image ∈i I1 depicts the graph ∈Ai . In other words, we know the ground truth Ai for every 
image i in the test set I1.
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To compare different segmentation methods, we prepare a set  of pipelines differing only in the 
segmentation algorithms used. The parameters of the pipeline where chosen manually for each test set 
using experimentation and visual inspection.

Given the sets I1 and  as well as our similarity measure we can now evaluate NEFI’s output. We take 
an image ∈i I1 and process it with a given ∈p  to obtain a graph ∈Bi 1, i.e. the graph NEFI extracted 
from the input image. Then we compute the similarity ( , )s A Bi i . To obtain statistical statements, we 
repeat this procedure for all images and all pipelines.

During the computation of ( , )s A Bi i , we record features NEFI failed to detect in i, namely the number 
of vertices (edges) in Ai which remain without corresponding vertices (edges) in Bi. This is the number 
of false negatives (FN). Furthermore, we record the number of vertices (edges) in B for which no corre-
sponding vertices (edges) exist in Ai. These are features which NEFI detects in i but which are in fact not 
present. These are false positives (FP). Finally we record the number of vertices (edges) in Bi that have 
corresponding elements in Ai. That is, features correctly extracted from the image i, which we count as 
true positives (TP). Unfortunately, we cannot determine the number of true negatives (TN) in a similar 
fashion. For this reason we restrict ourselves to computing sensitivity ( )+

TP
TP FN

 and precision ( )+
TP

TP FP
 in 

the results of the evaluation. Sensitivity and precision reported in the following Tables combine the 
respective values for vertices and edges.

Table 1 summarizes the results of processing the set I1. The images in I1 are ideal inputs for NEFI for 
which all our segmentation routines produce very good results. Otsu’s method and adaptive thresholding 
yield perfect segmentations. Hence, any difference between NEFI’s output and the ground truth cannot 
originate in the segmentation part of the pipeline but must be attributed to thinning and graph detection. 
The excellent correspondence between NEFI’s output and the ground truth confirms that thinning and 
graph detection are very reliable.

One might question the validity of using graphs which were detected by NEFI in the first place as 
the input set. However, the approach is valid because the origin of the images in I1 has no significance 
regarding NEFI’s performance. In other words, they are just as hard or as easy to process as images 
obtained in any other comparable way.

The perfect images in I1 do not represent real life input very well. Therefore we produced three more 
test sets and evaluate them as described above.

For the set I2 we take the images in I1 and change the brightness of the edge drawings randomly. As a 
result the local contrast between foreground and background varies widely across the image. To create set 
I3 we take the images in I1 and insert a color gradient into the background while leaving the foreground 
unchanged. Set I4 is obtained by taking the images in I1 and subjecting them to a global blur.

Table 2 summarizes the results of processing the set I2. We observe that both similarity score as well 
sensitivity are deteriorating for almost all methods except for adaptive thresholding and watershed based 

Method Similarity score s Sensitivity Precision

Otsu’s method 0.984 ±  0.005 0.970 ±  0.011 0.998 ±  0.001

Adaptive threshold 0.984 ±  0.005 0.970 ±  0.011 0.997 ±  0.001

Watershed (deletion/erosion) 0.980 ±  0.006 0.959 ±  0.013 0.988 ±  0.001

Watershed (distance transform) 0.906 ±  0.121 0.837 ±  0.160 0.998 ±  0.001

Watershed (adaptive) 0.977 ±  0.008 0.956 ±  0.016 0.998 ±  0.001

Grabcut (deletion/erosion) 0.984 ±  0.005 0.970 ±  0.011 0.998 ±  0.001

Grabcut (distance transform) 0.983 ±  0.005 0.967 ±  0.011 0.998 ±  0.001

Table 1.   Summary of the evaluation of 250 ideal test images I1.

Method Similarity score s Sensitivity Precision

Otsu’s method 0.868 ±  0.018 0.704 ±  0.028 0.987 ±  0.005

Adaptive threshold 0.941 ±  0.010 0.853 ±  0.034 0.976 ±  0.025

Watershed (deletion/erosion) 0.859 ±  0.018 0.693 ±  0.028 0.984 ±  0.006

Watershed (distance transform) 0.408 ±  0.176 0.239 ±  0.154 0.987 ±  0.007

Watershed (adaptive) 0.966 ±  0.008 0.936 ±  0.016 0.984 ±  0.017

Grabcut (deletion/erosion) 0.864 ±  0.019 0.696 ±  0.029 0.986 ±  0.005

Grabcut (distance transform) 0.858 ±  0.020 0.688 ±  0.030 0.986 ±  0.005

Table 2.   Summary of the evaluation of 250 test images I2 with edges drawn with random brightness.
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on adaptive thresholding. Adaptive thresholding is still able to compensate the local changes in bright-
ness present in the test images and returns segmented images of high quality. We stress that for images 
showing more severe irregularities the performance of these methods is expected to suffer.

Note that the precision remains comparably high, which indicates that the vertices and edges detected 
by NEFI are indeed part of the ground truth.

Table 3 summarizes the results of processing the set I3. We observe that almost all methods, with the 
exception of adaptive thresholding and watershed based on adaptive thresholding perform very poorly. 
In particular watershed based on a distance transform marker is completely unable to handle the input 
images.

Table 4 summarizes the results of processing the set I4. We observe that almost all methods, with the 
exception of watershed with distance transform, perform reasonably well. Sensitivity and similarity 
scores are slightly smaller than the results obtained for the optimal test images I1. This is due to the fact 
that blurring an image i causes the depicted edges to appear slightly wider. This increase in width is 
detected in the edges of the graphs Bi. As a result the similarity score ( , )s A Bi i  decreases accordingly.

Summarizing the results we conclude that the quality of a graph detected by NEFI depends on the 
input image and the selected pipeline. We have established that the major factor determining the quality 
of the extracted graph is indeed the segmentation step. Errors introduced by thinning and graph detec-
tion appear negligible in comparison.

Consequently, NEFI’s major limitations arises from the limited applicability of its the segmentation 
algorithms. As a result, NEFI operates best on clean and uncluttered images such as images produced 
under controlled laboratory conditions. More difficult input may still be processed, possibly at the cost 
of reduced quality. For these inputs, domain specific algorithms might be necessary and can be imple-
mented as extensions for NEFI. Alternatively, the segmentation step can be entirely outsourced to more 
specialized third-party software. Given the externally segmented image as an input, NEFI’s pipeline may 
proceed directly with graph detection.

We refer the reader to the Supplementary Material for a short guide that summarizes our experience 
when dealing with more challenging input.

Evaluation of Speed Performance
NEFI was designed to efficiently process large quantities of images. Thus it outsources computationally 
intensive tasks to highly optimized and reliable libraries such as Itseez, OpenCV, (2015)10, and NetworkX 
Developer Team, NetworkX, (2014)23. Table 5 illustrates the effectiveness of some of NEFI’s algorithms.

Method Similarity score s Sensitivity Precision

Otsu’s method 0.737 ±  0.060 0.602 ±  0.065 0.911 ±  0.065

Adaptive threshold 0.984 ±  0.005 0.970 ±  0.011 0.998 ±  0.001

Watershed (deletion/erosion) 0.752 ±  0.047 0.588 ±  0.061 0.977 ±  0.009

Watershed (distance transform) 0.334 ±  0.303 0.240 ±  0.261 0.943 ±  0.043

Watershed (adaptive) 0.982 ±  0.005 0.967 ±  0.012 0.997 ±  0.001

Grabcut (deletion/erosion) 0.733 ±  0.053 0.573 ±  0.066 0.987 ±  0.005

Grabcut (distance transform) 0.742 ±  0.052 0.582 ±  0.065 0.983 ±  0.008

Table 3.   Summary of the evaluation of 250 test images I3 with a color gradient in the background.

Method Similarity score s Sensitivity Precision

Otsu’s method 0.953 ±  0.011 0.909 ±  0.022 0.993 ±  0.003

Adaptive threshold 0.947 ±  0.010 0.863 ±  0.028 0.989 ±  0.005

Watershed (deletion/erosion) 0.950 ±  0.010 0.915 ±  0.022 0.981 ±  0.010

Watershed (distance transform) 0.738 ±  0.127 0.575 ±  0.147 0.915 ±  0.059

Watershed (adaptive) 0.954 ±  0.010 0.909 ±  0.329 0.975 ±  0.020

Grabcut (deletion/erosion) 0.950 ±  0.012 0.903 ±  0.024 0.993 ±  0.003

Grabcut (distance transform) 0.918 ±  0.024 0.838 ±  0.046 0.990 ±  0.004

Table 4.   Summary of the evaluation of 250 blurred test images I4.
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Synergies With Other Software
Analysis of Graphs.  NEFI is a tool that facilitates data acquisition, which is a necessary precursor to 
data analysis. To analyze NEFI’s output one can either rely on open source graph analysis software11–16 or 
write custom programs. NEFI can output many common graph formats, readable by most popular graph 
libraries. To get the user started immediately, we provide a minimal Python program that illustrates the 
basic steps required to perform graph analysis. It shows how to read NEFI’s output from disk and how 
to compute a histogram of a given edge attribute. The code can be downloaded from NEFI’s project page 
at the Max Planck Institute for Informatics, http://nefi.mpi-inf.mpg.de, (2015).

Third-party Segmentation Software.  NEFI’s graph detection takes a segmented image as an 
input. Such an image need not be produced by using NEFI but can be obtained by relying on arbitrary 
third-party segmentation algorithms or tools.

In this context an interesting tool called ilastik24 was brought to our attention. ilastik offers a so-called 
classification workflow in which a pixel classifier is trained by interactive user inputs. The trained classifier 
can then be used to automatically segment previously unseen images. The segmented images obtained in 
this way can then directly be turned into graphs using NEFI.

By using NEFI in conjunction with third-party software the benefits of both can be realized.

General Information about NEFI.  NEFI is an open source Python application and available at its 
project page at Max Planck Institute for Informatics, http://nefi.mpi-inf.mpg.de, (2015). NEFI’s home-
page includes a gallery of various use-cases and a comprehensive guide containing instructions on how 
to download, install and use NEFI on Windows, Mac and Linux. Additionally, a supplementary datasets 
is available for download there, allowing for a quick evaluation of NEFI’s main features. This dataset can 
be used to reproduce the figures and evaluation results shown in this manuscript.

Discussion
We anticipate NEFI to become a valuable tool that allows scientists from any domain to automate graph 
extraction from images in an intuitive fashion requiring no expert knowledge. We hope that researchers 
will be able to spend more time on analyzing their data and less time on processing it. By providing a 
flexible platform for graph extraction, we invite experts to extend and improve NEFI in order to intro-
duce their contributions to a wider interdisciplinary audience. In the long run we would like NEFI to 
further the field of network science by promoting the creation of new network databases.
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