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An auto-adaptive optimization 
approach for targeting nonpoint 
source pollution control practices
Lei Chen, Guoyuan Wei & Zhenyao Shen

To solve computationally intensive and technically complex control of nonpoint source pollution, 
the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework 
was proposed by integrating this new algorithm with a watershed model and an economic 
module. Although conceptually simple and comprehensive, the proposed algorithm would search 
automatically for those Pareto-optimality solutions without a complex calibration of optimization 
parameters. The model was applied in a case study in a typical watershed of the Three Gorges 
Reservoir area, China. The results indicated that the evolutionary process of optimization was 
improved due to the incorporation of auto-adaptive parameters. In addition, the proposed 
algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability 
and computational efficiency. At the same cost level, solutions with greater pollutant reductions 
could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other 
watersheds to provide cost-effective configurations of BMPs.

Nonpoint source (NPS) pollution has recently been regarded as the major contributor to worldwide 
water quality deterioration, and best management practices (BMPs) are implemented to reduce the 
release of NPS pollutants1,2. Due to the complexity of watershed processes, the design of BMPs at the 
watershed scale is inherently a multi-objective optimization problem3. Generally, BMPs are divided into 
structural practices, in terms of filter strips, parallel terraces and grassed waterways, and non-structural 
practices, such as tillage operation and nutrient management. Determining the types, number, locations 
and configurations of BMPs are therefore some of the most serious challenges facing both watershed 
managers and the public.

Optimization algorithms have been widely used in the optimal design of BMPs2,4–6. Many algorithms, 
such as simulated annealing, ant colony optimization, and differential evolution, have been proposed, 
and theoretical information regarding these approaches has been summarized by Zecchin7. The appeal 
of these algorithms for NPS pollution problems is multifaceted. First, these algorithms are global opti-
mizers and able to deal with multi-objective, high dimensional, nonconvex and constrained problems. 
Second, gradient or Hessian information about the objective are not required so these algorithms can 
solve discrete, continuous or stochastic problems8,9. Among these algorithms, genetic algorithms (GAs), 
originally proposed by Holland10, and their extensions, such as non-dominated sorting genetic algo-
rithms (NSGAs)11, have been commonly used due to their iterative and parallel subpopulation features. 
However, optimal designs of BMPs in real-world situations can be extremely difficult to solve12. The 
technical complexity and computational burden involved are the two greatest barriers to the adoption 
of these previous approaches13.

Firstly, optimization algorithm itself may be a barrier. Generally, the performance of heuristic algo-
rithms, in terms of the process of natural evolution, their computational ability, and their efficiency in 
locating Pareto-optimality solutions, are determined by the parameters settings (e.g., population size, 
number of generations, crossover probability, and mutation probability in the case of GAs)14. Despite 
their critical importance, defining these parameters is often difficult and subjective, typically involving 
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trial-and-error sensitivity analysis2,7,14. However, such models are extremely computationally difficult to 
solve, especially in a series of watershed simulations. In addition, because many optimization parame-
ters are inter-dependent15, there is no well-accepted theory or methodology for the calibration of those 
parameters; furthermore, watershed processes are highly complex and comprise a network with nonlin-
ear dynamics16. Therefore, a specific set of parameters can only be selected for a particular watershed and 
cannot be extended to other watersheds due to the varying characteristics of environmental problems15.

In addition, the fixed values of parameters may be another potential shortcoming of the evolutionary 
process. Previously, fixed-valued parameters have been widely used to capture the characteristics of a 
watershed optimization problem. For example, the use of greater crossover and mutation probabilities 
allows GA to search large solution spaces, in terms of global convergence and the diversity of the opti-
mal solutions, whereas smaller parameters would benefit localized searches2,17. In addition, larger pop-
ulations or more generations would yield better Pareto-optimality solutions by increasing the parallel 
subpopulations but would also delay convergence or increases the computational time14. In this sense, the 
self-adaptation of these parameters as inherent to the optimization variables or hybridization processes 
might be an effective way to enhance the overall performance of the optimization algorithm13,15. Despite 
these efforts, there is still no systemic study providing insights into how to navigate the values of these 
parameters to find the final Pareto- optimization solutions.

Therefore, the primary goals of this study are 1) to modify the optimization parameters into an 
auto-adaptive pattern; and 2) to establish a new framework for the optimal design of BMPs at the water-
shed scale. Section of methodology describes the proposed framework in detail, and Section of results 
demonstrates an applied case study in the Daning River watershed (108°44′ –110°11′ E, 31°04′ –31°44′ N), 
in the central part of the Three Gorges Reservoir Area (TGRA), China.

Results
Evolutionary results of the GA parameters. The evolutionary processes of the genetic parameters 
are shown in Fig. 1a,b. As illustrated in Fig. 1a, the values of these parameters changed significantly in 
the first 10 minutes. Specifically, the integer and decimal mutation probabilities decreased from their 
default maximum values (set at 2) to 0.01 and 0.10, respectively. As the algorithm processed, the integer 
mutation probability changed gradually, but the decimal mutation probability changed more substan-
tially. During the following evolutionary processes, these parameters reached relatively stable states in 
87 minutes and 212 minutes, respectively. Conversely, the introduction probability increased noticeably 

Figure 1. The evolutionary process of the auto-adaptive optimization parameters. Note: (a) The evolution 
process of integrate mutation, decimal mutation and gene introducing parameter; (b) The evolution 
process of the effective rate per minute; (c) The evolution process of auto-adaptive pollution size; (d) The 
comparison between auto-adaptive and traditional optimization algorithms. These figures were drawn by the 
Matlab 2012a and Originlab softwares.
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from 0.14 to 0.45 during the first 300 minutes, but its rate of increase leveled off gradually in the following 
3000 minutes. Unlike the mutation operation, an increase in the introduction probability always results 
in better reproduction from the mating pool, and thus, this variation would lead to good convergence. 
Finally, the optimal front was found when the integer mutation, decimal mutation and introduction 
probabilities were 0.002, 0.014 and 0.56, respectively.

Instead of using the traditional concept of generation, the effective rate, which was quantified as the 
generation rate of the Pareto-optimality chromosomes and total chromosomes per minute, was tested 
as the genetic termination condition. As illustrated in Fig. 1b, the effective rate fluctuated during a few 
periods due to the stochastic nature of heuristic algorithms but showed an obvious decreasing trend. 
As the algorithms progressed, the effective rate decreased significantly from 0.37 to 0.20 in 20 minutes, 
and changed gradually from 0.2 0 to 0.10 in the following 300 minutes. Then, the effective rate changed 
very slowly and reached the final value (0) in 4000 minutes, indicating that few Pareto-optimality chro-
mosomes would be generated in the following few successive periods. This result confirmed that the 
effective rate could be used as the genetic termination condition of the optimization algorithms. In this 
sense, watershed managers would not need any knowledge of the optimization problem for automatic 
termination18.

As shown in Fig. 1c, the increasing population size, in terms of the number of points (chromosomes), 
approaches to the origin. During the evolutionary process, the population size was further increased 
from the default 1-chromosome to the final 26,820-chromosomes. The entire evolutionary process 
required approximately 300 minutes of computational time on a desktop personal computer (Centrino 
Duo processor running at 2.8 GHz). However, if the algorithms processed further, the population size 
would increase gradually to 56,462 in the following 1200 minutes and this ever-growing population 
would increase the computational burden.

Evolutionary results of the Pareto-optimization front. As shown in Fig.  2, the shape of the 
Pareto trade-off front obtained by the proposed method (red point) shifted from relatively scattered 
points to a smooth curve due to the increasing population size. The final Pareto-optimality front indi-
cated average reductions of N and P loads from 43.74%–93.38% and 49.74%–88.83%, respectively. In our 
previous studies19,20, the average concentrations of TN and TP at the Wuxi station were quantified as 
0.82 and 0.13 mg/l, respectively, indicating a further requirement of 39.02% and 23.07% load reductions 
from the baseline. Figure  2 indicates that the optimal watershed-scale BMP configurations would be 
disproportionate to the intended objective of maintaining the water quality provisioning services in the 
TGRA. Furthermore, fertilizer management and conservational tillage are continuously included in each 
optimal solution on the lower edge of the front curve, even from an early evolutionary point. However, 
structural BMPs are observed on the higher edge of the front curve, where those expensive solutions are 
located. These results indicated that effective watershed management could first can be achieved through 
a combination of non-structural BMPs. To reach further reductions of NPS-N and -P, a combination of 
structural BMPs is suggested for the entire catchment.

Discussion
Generally, fixed-value parameters are used for the traditional NSGA-II method2,7,12. Therefore, a 
trial-and-error sensitivity analysis was conducted in this study to compare the proposed auto-adaptive 
and fixed-value parameters. Based on the results, as the mutation probability decreased from 1 to 0.01, 
the Pareto-optimality front approached the origin, however, when this parameter was further decreased 
from 0.01 to 0, the Pareto-optimality front moved away from the origin. Similar shifts have also been 
found in several previous studies2,7,14. Finally, the best solutions of NSGA-II were found when the muta-
tion probability was set to 0.01. However, Fig. 1a indicates that the auto-adaptive mutation probability 
would evolve automatically from large values to small values during the evolutionary process. These 
variations would allow the optimization algorithm to search a large solution space (global search) at 
first, and then focus on smaller variable spaces (local search) afterwards21. The change from a global to 
local search could be due to the dynamic variations of these genetic parameters, as well as the decreasing 
benefits of variable spaces. Therefore, if the mutation probability were set to a fixed value of 0.01, the 
Pareto-optimality front would eventually move away from the origin. A consistent pattern in the shift 
of the Pareto-optimality front was also found for the crossover probability (introduction probability). In 
this sense, the use of the genetic parameters as an inherent portion of the decision variable provides an 
effective method to enhance the periodic evolutionary process of the optimization algorithms13.

In addition, more optimal solutions were found when the generation and population size of NSGA-II 
were fixed at 1,500 and 700, respectively. Conversely, as shown in Fig. 1b,c, the values of the auto-adaptive 
population and effective rate would be moderated in an attempt to obtain better Pareto-optimality solu-
tions. Generally, any increase in these parameters would provide more individuals, and a longer evo-
lutionary time, which would result in a higher probability of obtaining better offspring. As shown in 
Fig. 1b, the effective rate of auto-adaptive evolution decreased from 0.37 to 0.10 in 300 minutes. Those 
300 minutes also represent the computational time required to calculate 1,500 generations using the 
traditional NSGA-II method. As the effective rate further decreased to 0, the Pareto-optimality front 
approached the origin and more effective individuals were generated (Fig. 1c). However, only one param-
eter was changed in this study, and the other three parameters were fixed at their default values during 
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the sensitivity analysis. Therefore, if the population size were fixed at a larger value, more generations 
would be required for the NSGA-II as further computational time would be needed to show considerable 
changes in those objective functions13. In this sense, the termination criteria of Pareto-optimality were 
tightened based on the principles of the naturally-random evolution of these GA parameters.

Furthermore, the optimal configuration of BMPs is almost certainly case-specific when using tradi-
tional NSGA-II15, i.e., dependent upon the type of BMPs and the targeted pollutant. Instead, the proposed 
auto-adaptive method provided a very robust and parsimonious method within a specific computational 
budget. In practice, if the user is dissatisfied with the current solution, they could vary the effective rate 
(Fig. 1b) and give this auto-adaptive algorithm more computational time.

Figure 2. The evolutionary process of the Pareto-optimality front. Note: Red point and blue point 
represents the proposed auto-adaptive optimization algorithm and traditional NSGA-II, in which the points 
in the Pareto front represent the number of optimal solutions, and axis distance between points represents 
the magnitude of objective changes. These figures were drawn by the Matlab 2012a software.
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Generally, two points should be considered in the choice of an optimization algorithm: convergence 
ability and computational efficiency17,22,23. In this study, the evolutionary progress of the Pareto-optimal 
front is plotted in Fig. 2, in which the proposed method and the traditional NSGA-II method are rep-
resented by red and blue points, respectively. As illustrated in Fig. 2, in the first 30 minutes, the Pareto 
trade-off front of the proposed method was closer to the origin point than that of the traditional NSGA-II 
method, which could be due to the more effective reach of the proposed method by eliminating portions 
of the ineffective variable space from even the initial successive search. As shown in Fig. 1b, the greatest 
effective rate could be observed at approximately 1 minute, indicating that an effective search had been 
conducted even when the auto-adaptive algorithm began. Thereafter, the proposed Pareto-optimality 
front approached the origin more slowly, which prevented convergence to previous local optima. Finally, 
a smoother curve was generated by the proposed auto-adaptive method due to its larger population size, 
in terms of more solutions on the Pareto-optimality front.

As illustrated in Fig.  2, the final computational time was 340 and 300 minutes for the proposed 
method and the traditional NSGA-II method, respectively. Thereafter, all Pareto-optimality solutions per 
minute were mixed and compared in the mating pool. The Pareto concept offered the necessary logics 
for the prioritization of these two methods in the evolutionary process2,7,14. As shown in Fig.  1d, the 
traditional NSGA-II method initially generated more Pareto-optimality solutions due to its greater initial 
population size. As the algorithm progressed, equal percentile (50%) could be observed at 26 minutes 
for the two methods, which indicated that the proposed method generated as many Pareto-optimality 
solutions as the NSGA-II method in a very short time (less than 10% of the computational time). If 
the algorithm continues for a longer time, more effective solutions, with better convergence would be 
obtained by the proposed method. In this minimization problem, a Pareto-optimality front with greater 
fitness function values also indicates better convergence ability2,5,24,25. As shown in Fig. 2, on average, 8% 
and 6% greater reductions in N and P can be obtained at the same cost by using the proposed method 
rather than the traditional NSGA-II. This confirmed that auto-adaptive optimization has a better search 
capability (the ability to find Pareto-optimal solutions), and is more computationally efficient than the 
traditional NSGA-II method.

In addition to convergence efficiency, the diversity of the Pareto-optimality solutions is another 
important factor in characterizing the optimization algorithms2,7,14. As illustrated in Fig. 2, more effec-
tive solutions were generated by the proposed method due to its larger population size, which can store 
those increasingly effective solutions. Interestingly, the Pareto-optimality fronts of these two methods 
were similar at lower costs; this could be because the proposed method, like the NSGA-II, is character-
ized by the effective retention of the less crowded mother solutions as the main bodies of child chro-
mosomes during the evolutionary process2,21. However, the proposed method outperformed NSGA-II 
at higher costs in exploring a wider variable space and locating more promising regions. This indi-
cated that the auto-adaptive algorithm increased the diversity of the individuals on the higher edge of 
the Pareto-optimality front (Fig. 3). The auto-adaptive algorithm is designed to overcome the inherent 
shortcomings of traditional NSGA-II. To our knowledge, this study is the first use of an auto-adaptive 
strategy in an actual application of optimal BMPs configurations. Overall, the results suggested that 
this strategy works well, even for structural BMPs, for which many researchers have reported difficulty 
in finding feasible solutions due to their smaller variable space26–28. Finally, although the auto-adaptive 

Figure 3. The framework of the proposed auto-adaptive optimization algorithm. 
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optimization was developed for direct application to NSGA-II, it is also appropriate for other similar 
optimization methods.

Methodology
Study watershed. In this study, the Daning river watershed (108°44′ –110°11′ E, 31°04′ –31°44′ N) was 
selected as the study area. The Daning river is located in the Wuxi country of the district of Chongqing 
municipality, in the central part of the Three Gorges Reservoir Area (TGRA), China. It originates from 
northern mountains and travels a basin that includes forests and agricultural plains, and eventually 
influxes to the Yangtze River. The study watershed, with a drainage area of 4,426 km2, is a mixed land 
use area, 22.2% of which is covered by agricultural land (paddy land and dry land), 65.8% by forest 
and 11.4% by grassland. The main soils are 14.65% by purple soil, 11.0% by yellow soil, 26.5% by yel-
low-brown soil and 16.9% yellow cinnamon soil. The humid subtropical climate features this watershed, 
with the annual average temperature of 16.6 °C and precipitation being around 1124 mm. Due to an 
increase in fertilizer inputs, the P and N concentrations have increased greatly over the last 10 years, 
which has already resulted in not only significant on-site phytoplankton growth in the region, but also 
causes off-site problems related to downstream eutrophication to TGRA. Therefore, we focus on mini-
mizing P and N loads.

Description of the framework. Figure 3 illustrates the integrated framework for the optimal designs 
of watershed BMPs. An auto-adaptive algorithm was initiated using the NSGA-II to enhance the com-
putational efficiency of the entire optimization procedure. Each objective was then evaluated using the 
appropriate tools: 1) a watershed model, for quantifying the pollutant loads under scenarios with and 
without BMPs; and 2) an economic module, for calculating the implementation cost of each scenario.

Initial population including the chromosome for BMPs combinations at the watershed 
scale. As a geographically connected unit, a watershed consists of a stream network and its corre-
sponding sub-watersheds16,19. The river network can be extracted from a digital elevation map (DEM) 
and connected to each sub-watershed using the hydrology module in ArcGIS29. The sub-watershed is 
then broken into several smaller cells or hydrologic response units (HRUs) that consist of a homogeneous 
slope, land use, and soil type. Typically, non-structural BMPs are targeted to a certain land use, whereas 
structural BMPs are executed within smaller spatial units. Rather than using several dozen cells, the 
entire Daning watershed was subdivided into almost 80 sub- watersheds, and each sub-watershed was 
further divided into smaller HRUs approximately the same spatial dimensions as the relevant structural 
BMPs. Such a partitioning is essential to achieve the desired spatially explicit resolution within a fairly 
simple formulation.

In addition, non-structural BMPs are often implemented as source control measures, and structural 
BMPs are installed in certain stream segments as transport control measures12. Specifically, detention 
ponds and wetlands are designed at the drainage outlet as end control measures24. In this sense, different 
BMPs were grouped into three categories at the watershed scale (Table  1). At the sub-watershed scale, 
the aggregated configuration of the BMPs was represented by randomly sampling from these categories 
and real-coding the selection as a chromosome segment. Specifically, the integer part and decimal part 
of gene were used to represent the type and corresponding parameters of each categorized BMP. As illus-
trated in Fig. 3, the configuration of BMPs at the watershed scale was then real-coded as a population 
of chromosomes. In this sense, three genetic parameters, including integer mutation, decimal mutation, 
and probability of introducing, were added as genes at the end of each chromosome as inherent part of 
the optimization variables.

Watershed, river water quality, and cost level assessments. Preparation of the watershed 
model. In this study, the watershed processes and the pollutant loads released from each spatial unit 

Type of BMP Specific BMP examples Category

Non-structural BMPs

Conversion of farm land into 
forest/grass Source control measure

Fertilization reduction Source control measure

Conservation tillage Source control measure

Structural BMPs

Vegetative filter strip Transport control measure

Terrace Transport control measure

Grassed swales Transport control measure

Detention pond End measure

Wet lands End measure

Table 1.  Categories of different BMPs at the sub-watershed scale.
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were obtained from our previously calibrated Soil and Water Assessment Tool (SWAT)30. First, the SWAT 
model was calibrated and validated for the simulated flow, sediment, nitrogen (N) and phosphorus (P). 
More details regarding the calibration process can be found in previous studies31–33. Second, the cali-
brated SWAT was used to simulate the watershed’s hydrological and water quality responses during the 
baseline scenario (without BMP implementation). A 10-year period (2000–2009) was modeled to isolate 
the variability of climate, land use, crop rotations and runoff regime which might mask the effects of 
BMPs. Third, the N and P load reductions during the BMP scenario were quantified at the Wuxi mon-
itoring station using straightforward changes in the model parameter and updates to the management 
practices or land use24,34. In consideration of the temporal scale and data availability, the environmental 
benefits of each BMP configuration were quantified as the average load reductions of N and P at the 
Wuxi station during the simulation period of 2000–2009.

Quantification of the implementation cost. The Farm-level Economic model (FEM) was used as eco-
nomic estimators to quantify the implement cost of individual BMPs, in which the total implementation 
cost consists of the installation cost and the maintenance cost.

(i) Installation cost:

= + ( ) + ( ) + ( ) ( )Cost a b Length d Area f Volume 1c e g

where Length, Area and Volume represents the corresponding physical parameters of the BMPs; and a, b, 
c, d, e, f, and g denotes the empirical coefficients in Equation 2 (the default values are shown in Table 2).

(ii) Maintenance cost:
The maintenance expenditure was evaluated as a percentage of the installation cost (Table  2). This 

annual expenditure was then projected as a present net value:

= ×
( + ) −

( + ) ( )
C P

i
i i

1 1
1 2annual

n

n

where Cannual and P represents the present net value and the annual maintenance cost, respectively; and i 
and n denotes the interest rate (5% in this study) and designed lifetime (Table 2), respectively.

Finally, the total cost θ( = ( , , , , ))C g x I p r n  was quantified by summing the implementation cost of 
each individual BMP throughout the watershed.

Environmental/economic objectives. In this study, environmental and economic considerations were 
incorporated as two optimization objectives. The proposed fitness functions were then expressed as 
follows:

θ
θ







= ( , , )

= ( , , , , ) ( )

l f x I T
C g x I p r n

minimize
minimize 3

where l and C represents the load reduction of a certain targeted pollutant and the implementation cost 
over the period T, respectively; f and g represents the watershed model and economic module, respec-
tively; x denotes the combinations of BMPs at the watershed scale; and I, θ, p, r and n represents the 
type, parameter, cost, benefit and lifetime of the BMPs, respectively.

A BMPs database, which stores the pollutant load reductions and implementation costs of each BMPs 
scheme, was developed from a number of consecutive SWAT and economic model runs32,33. Using the 
process described below, this database provides necessary inputs into the optimization engine to decrease 
the computational time.

Development of optimization engine. The description of initial NSGA-II. In this study, the 
NSGA-II method was chosen because it has gained popularity in BMPs design and can overcome issues 
of high computational complexity35. The major difference between the NSGA-II and other GAs are as 

The type of BMPs Cost function*
Life cycle 

(years) Maintenance cost (%)

Wet lands C =  30.6 V0.71 25 3

Detention pond C =  24.5 V0.69 25 3

Grassed swales $0.25—$0.50/ft2 5 10

Vegetative filter strip $0.30—$0.70/ft2 2 15

Table 2. Implementation cost data for each BMP. *The units of V and C are ft3 and dollars ($), 
respectively.
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follows: 1) the NSGA-II adopts a crowding distance to measure the density of individuals; 2) the fast 
non-dominated sorting approach is applied as a better elitist-keeping strategy; 3) the elitist crowded com-
parison guides the selection process at various stages towards a uniformly spread-out Pareto-optimality 
front36. Each BMPs scheme underwent genetic operations, and the algorithm terminated if a specified 
range of Pareto-optimality solutions had been generated.

The incorporation of the auto-adaptive pattern. A variant of the popular NSGA-II method, which is 
coded in the Matrix Laboratory R2012b GA toolbox, was used to navigate the evolutionary process of 
each auto-adaptive parameter. As illustrated in Fig. 3, these generic parameters were added as genes at 
the end of each chromosome as the inherent optimization variable. The definitions of these parameters 
were based on the following claims:

Claim 1: The introduction probability and mutation probability are defined as the extensions of tra-
ditional concepts. The introduction probability, which is also called recombination, defines the num-
ber of genes in the mother solution that are combined with a corresponding fraction of genes in the 
paired father chromosome. Mutation probability indicates the number of genes that would be randomly 
changed from their current state in producing the child chromosome.

Initially, these genes were given large values to allow the random search to occur within a larger 
region of variable spaces2,21. As shown in Fig. 3, pair of chromosomes (parents) was selected for mating 
during the reproduction process. The mother chromosome was drawn from the existing chromosomes 
using the tournament algorithm36. To increase the diversity of Pareto-optimality solutions, the mother 
chromosome with the larger crowding distance was used as the main body of the child chromosome. The 
father chromosome was taken from the mating pool and used as the source of gene introduction. In the 
following hybridization process, the mother chromosome was altered from its normal distribution mag-
nitude to generate the child chromosome. In addition, appropriate parameters for the candidate mother 
chromosome were selected and changed slightly to generate the parental similarity parameters. In this 
sense, the generic genes of the parent chromosomes were retained and used to produce the offspring 
parameters through biological evolutionary processes.

Claim 2: The auto-adaptive heuristic search is not a fixed-population-based algorithm. Initially, only 
one chromosome was randomly generated, and the minimum-valued chromosomes (at least one objec-
tive) were added to the mating pool as father (seed) chromosomes. In successive iterations, every child 
chromosome was considered as a potential seed and compared with the existing chromosomes in the 
current population Xs. If no other dominant chromosomes existed, the current child chromosome would 
itself become a species seed in the population Xs. This procedure was repeated for all child chromo-
somes and those dominant chromosomes were eliminated from Xs. Theoretically, any update in the 
Pareto-optimality candidate chromosomes yields a larger population size. The subsequent evolutionary 
process was then divided into more parallel sub-simulations that simultaneously evolve. This automati-
cally increasing population size (Xs) can be used to save increasingly desirable chromosomes and there-
fore to locate more Pareto-optimality solutions. To reduce the computational time due to the increasing 
population size, the dichotomy approach was adopted to rank each child chromosome.

Correspondingly, a growing mating pool was used for the elite reservation strategy (Fig.  3). If an 
effective child chromosome was generated, the mother chromosome was selected as elite and put into 
the mating pool as a father chromosome. When a father chromosome was chosen from the mating 
pool, the default value of its reproduction ability was defined as 1. During the reproduction process, this 
value would be increased by 1 if one dominant child was generated, and decreased by 1 if no dominant 
child was generated. A new father chromosome would be chosen from the mating pool if the value of 
its predecessor had decreased to 0. As a greedy algorithm, the minimum-valued and best chromosomes, 
once identified, are never updated15. However, other chromosomes in the mating pool would be reset 
periodically to reduce the computational time.

Final Pareto optimal solutions
The traditional generation concept was replaced by the periodical statistics of this auto-adaptive algo-
rithm. Iterative statistics were performed, which repeatedly applied statistical analysis during each suc-
cessive period (i.e., per minute). To prevent convergence to previous local optima, portions of the variable 
spaces were eliminated from the successive searches. In this sense, this algorithm searches globally at 
the beginning of the search, and transitions to local searches as the optimization progresses. The desir-
able convergence was confirmed, and the algorithm terminated when no more dominant chromosomes  
were generated during a few successive periods. The default termination condition would be reached if 
the number of Pareto-optimality chromosomes exceeded the product of the population size and objective 
numbers. Otherwise, a maximum effective rate, designed as an algorithm input rather than as a param-
eter, should be set according to the available (or desired) computational time15.
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