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Adam-Gibbs model in the density 
scaling regime and its implications 
for the configurational entropy 
scaling
Elżbieta Masiewicz1,2, Andrzej Grzybowski1,2, Katarzyna Grzybowska1,2, Sebastian Pawlus1,2, 
Jürgen Pionteck3 & Marian Paluch1,2

To solve a long-standing problem of condensed matter physics with determining a proper description 
of the thermodynamic evolution of the time scale of molecular dynamics near the glass transition, 
we have extended the well-known Adam-Gibbs model to describe the temperature-volume 
dependence of structural relaxation times, τα(T, V). We also employ the thermodynamic scaling idea 
reflected in the density scaling power law, τα = f(T−1V−γ), recently acknowledged as a valid unifying 
concept in the glass transition physics, to differentiate between physically relevant and irrelevant 
attempts at formulating the temperature-volume representations of the Adam-Gibbs model. As a 
consequence, we determine a straightforward relation between the structural relaxation time τα 
and the configurational entropy SC, giving evidence that also SC(T, V) = g(T−1V−γ) with the exponent 
γ that enables to scale τα(T, V). This important findings have meaningful implications for the 
connection between thermodynamics and molecular dynamics near the glass transition, because it 
implies that τα can be scaled with SC.

The phenomenon of glass transition is an important and intriguing area of research in condensed matter 
physics, which is continuously attracting a lot of the researchers attention. A key problem in this field is 
to develop the physical model that will be able to describe the evolution of the structural relaxation time, 
τα, or alternatively viscosity, η, on approaching the glass transition. So far, the most efforts have been 
devoted to the analysis and the correct description of the temperature dependence of τα at ambient pres-
sure. In this context, the question is often raised whether the structural relaxation dynamics diverges at 
some finite temperature. However, the major challenge is to deliver the appropriate equation of state, i.e., 
the analytical expression for τα in the full (temperature-pressure-volume) thermodynamic space. This 
challenge is driven by the fact that the experimental studies of the molecular dynamics of glass-forming 
systems at elevated pressure are now possible in many laboratories around the world.

Among variety of models proposed for description of the temperature dependence of τα, the 
entropy-based model formulated by G.Adam and J.H.Gibbs (AG)1 has become one of the most dis-
cussed as reflected in the number of citations (cited more than 4000 times). This seminal work provides 
a connection between thermodynamic and dynamic quantities. According to this model, the structural 
relaxation time of supercooled liquid is controlled by the configurational entropy SC(T) which determines 
the size of cooperatively rearranging regions (CRR) and represented by the following formula
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Here, SC(T) is defined as the configurational entropy, and estimated as the difference between the entropy 
of the melt and the vibrational contribution to the entropy (rather from the glass than from the crystal)2, 
SC(T) =  Smelt −  Svib. The constant A is related to the intermolecular potential and is proportional to the 
free energy barrier (per molecule in CRR) for rearrangement Δ μ while τAG is the value of structural 
relaxation time in the limit of high temperatures. CRRs are defined as the smallest volume elements that 
can relax to the new configurations independently of their environment.

In the last decade, a lot of interest has been directed toward the analysis of molecular dynamics of 
supercooled liquids in terms of thermodynamic scaling3–17. This alternative approach is very appealing 
due to the possibility of universal description of relaxation phenomena for all supercooled liquids based 
on the generalized Lennard-Jones potential18. According to the thermodynamic scaling, some dynamic 
quantities can be scaled into a single master curve if they are plotted versus T−1V−γ, where T is the sys-
tem temperature; V is the system specific volume and γ is the scaling exponent13,14

= ( ) ( )γ− −x f T Vlog 21

The variable x denotes one of the dynamic quantities, such as the structural relaxation time τα, vis-
cosity η, or other dynamic property. The key quantity is here the scaling exponent γ. At the first stage 
of development of the thermodynamic scaling approach, it was postulated19 that the value of scaling 
exponent should be equal to 4 in accordance with the initial finding for OTP19,20. However, it has been 
subsequently demonstrated by a number of research groups that the value of γ can significantly differ 
from 4 for other glass formers. For example, for van der Waals liquids:

PDE: γ =  4.5, BMPC: γ =  7.0, BMMPC: γ =  8.512–15,17,21,22; for polymers: 1.9 ≤  γ ≤  5.623–27; for ionic liq-
uids: 2.25 ≤  γ ≤  3.712,16,28; for substances with hydrogen bonds: sorbitol: γ =  0.1312,13, salol: γ =  5.212,13,17,21. 
Major advances in understanding of the molecular basis of thermodynamic scaling and its relation to 
macroscopic thermodynamic properties of viscous systems have been possible to achieve by performing 
molecular dynamics (MD) simulations. Assuming that a short range effective intermolecular potential 
can be approximated by a combination of dominating repulsive inverse power law and small attrac-
tive background, the validity of the thermodynamic scaling was demonstrated on the basis of MD 
simulations7,16,29–34

ε σ( ) = ( / ) − , ( )
γU r r A4 3eff t

3 IPL

where ε, σ are respectively the potential well depth and the finite distance of the zero potential, which are 
the typical parameters of the Lennard-Jones potential, and At is a small attractive background. Moreover, 
it was pointed out that the parameter γIPL can be identified with the scaling exponent γ in the ther-
modynamic scaling law (Eq. (2)). This straightforward connection between both exponents made the 
thermodynamic scaling very attractive approach.

In this context, it is natural to ask how the thermodynamic scaling is incorporated into the AG model. 
Answering this question requires converting the temperature-dependent AG model (AG(T)) to its T-V 
representation AG(T, V). Furthermore, the generalization of the AG(T) model to T-V variables might be 
essential for testing its validity in general.

In this paper, we propose an extension of the original AG model (Eq. (1)) taking into account the 
combined effect of temperature and volume changes on τα. Consequently, we aim to verify whether or 
not the concept of thermodynamic scaling is consistent with the modified Adam-Gibbs model. These 
considerations lead us to very important implications for the temperature-density scaling rule for the 
configurational entropy SC and the well-grounded relation between τα and SC.

Theory
In order to apply the AG model, presented by Eq. (1), it is essential to know the form of SC. The 
temperature-dependent form of SC, originally proposed by Adam and Gibbs, is given by
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The difference between the isobaric heat capacity of the liquid and crystalline (or the glass) phase 
varies inversely with temperature, Δ CP =  KP/T, which was found for several glass-formers by R. Richert 
and C. A. Angell35 by comparing the behavior of the dielectric relaxation time with the experimen-
tally obtained configurational entropy. KP is a constant parameter, Tk is Kauzmann’s temperature and 
S∞ =  KP/Tk is the limiting value of SC at very high temperature.

The AG(T) expression (Eq. (1)) can also be derived by considering both temperature and pres-
sure dependence of SC. The configurational entropy decreases on cooling or with an increase in pres-
sure. Thus, the consideration of the dependence of SC also on pressure, not only on temperature, is 
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very essential. This problem was investigated by Casalini et al.36 by adding the term Sisoth to Eq. (4),  
SC(T, P) =  Sisobar +  Sisoth, which explicitly involves the isothermal pressure variation of thermal expansion,
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If the dependence of the configurational entropy on volume and temperature, i.e., SC(T, V) is known, 
a much more direct way to test the connection between AG(T, V) and the thermodynamic scaling is to 
study the molecular dynamics by T −  V representation of Eq. (1).

To determine the T −  V version of Eq. (1), we consider the system entropy as a function of tempera-
ture and volume, the total differential of which is given as follows
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Using the well-known Maxwell’s thermodynamic relationship, (∂S/∂V)T =  (∂P/∂T)V, and 
(∂S/∂T)V =  CV/T, Eq. (6) can be rewritten as
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which leads to a temperature-volume function for configurational entropy, SC(T, V) =  Sisochor +  Sisoth,
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where the first integral with respect to temperature is calculated from the difference between the iso-
choric heat capacity of the melt and the vibrational contribution to the isochoric heat capacity (rather 
from the glass than from the crystal)2, Δ = −C C CV V

melt
V
vib. It also can be approximately described over 

a limited range by KV/T, with a constant KV, similarly to its isobaric counterpart36. The second integral 
with respect to volume constituting SC(T, V) is calculated from the difference between the temperature 
derivatives of pressure of the melt and the contribution related to the vibrational modes (rather from the 
glass than from the crystal)2,
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Here, we assume that the vibrational part of the difference between the temperature derivatives of pres-
sure is constant and can be regarded as a fitting parameter. The assumed lower limits of the integrals are 
respectively Kauzmann’s temperature, Tk, and the volume at Kauzmann’s temperature for the examined 
material, Vk.

The pressure dependence of temperature at a constant volume can be estimated by using an equation 
of state (EOS)37
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Where BT(P0) is the isothermal bulk modulus at a reference pressure P0, parameterized by an exponential 
temperature function as ( ) = − ( − )B P b b T Texp[ ]T 0 0 2 0 , V0 =  V(P0) is the volume at the reference 
pressure parameterized by a quadratic temperature function, V0 =  A0 +  A1(T −  T0) +  A2(T −  T0)2, where 
T0 =  Tg(P0) is the glass transition temperature at P0, and γEOS is a material constant independent of ther-
modynamic conditions. It is worth noting that the exponent γEOS is also related8,37–40 to the exponent γIPL 
in the effective short-range intermolecular potential given by Eq. (3). However, in case of real materials, 
we have observed8,9,28,37–39 that γ γEOS , where γ is the density scaling exponent for dynamic quantities 
in terms of Eq. (2). This discrepancy can be argued8,41 by considerably different values of the density 
scaling exponent for the dynamic quantities and the total system entropy, which have been established 
for real glass formers.

In Eq. (9), A0, A1, A2, b0, b2, γEOS are fitting parameters. Defining new quantities δ =  − b2BT(P0)/γEOS 
and ω =  A1 +  2A2(T −  T0), the melt part of difference of the temperature derivative of pressure is then 
given by
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Consequently, the integral of Eq. (10) takes the following form
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Inserting Eq. (11) and Sisochor =  S∞ −  KV/T into Eq. (8), we find the expression for SC(T, V),
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Finally, taking into account the classical AG equation (Eq. (1)) and the expression SC(T, V), we obtain 
the AG(T, V) representation for τα(T, V)
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where T0AG =  KV/S∞ and the parameter A is defined as CAGΔ μ/S∞, where CAG is a constant.
If the structural relaxation time and the configurational entropy obey the thermodynamic scaling 

law in the form of the power law density scaling, τα =  F(TVγ) and SC =  G(TVγ), then a consequence 
of the thermodynamic scaling hypothesis for the elementary activation energy in the material-specific 
coefficient A of Adam-Gibbs approach (Eq. (1)) is that it is expected to be not a constant but to comply 
with a power law dependence of volume in the form A =  A(V) →  A′ V−γ. The scenario for the volume 
(or density) dependence of A in the AG equation was postulated by C. Alba-Simionesco et al.42, but it 
was not tested. Using the Kob-Andersen binary Lennard-Jones mixture, an explicit simulation tests of 
TVγ-scaling of SC and τα in terms of the AG model as well as the scaled volume dependent change in 
A(V) was successfully performed by S. Sengupta et al.43. Following this approximation, we propose the 
second formula for τα(T, V), which is a modified Eq. (13) by involving the volume contribution to the 
parameter A
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where the scaling exponent γ is computed from standard methods. The AG(T, V) model, in this form, is 
a good candidate to be a TVγ-scaling model. It should be noted that Eq. (14) with the density depend-
ent parameter A also satisfies some earlier suggestions (e.g. that made by Johari44) that the parameter A 
should depend on pressure.

Results and Discussion
In order to verify the equations (13) and (14), we have carried out the high pressure dielectric spectros-
copy studies of simple van der Waals liquid, Tributyl-2-acetylcitrate (TBAC) with the aim to determine 
the temperature and pressure dependence of structural relaxation times. Dielectric spectra were meas-
ured both at isobaric (0.1 and 200 MPa) and isothermal conditions (199.0 K, 202.5 K, 205.9 K, 209.0 K, 
212.9 K, 216.5 K, 225.9 K and 240.7 K) over a wide frequency range from 10−2 to 106 Hz. In Fig. 1a and  
Fig. 1b, we show a number of representative dielectric loss spectra obtained at various temperatures at 
ambient pressure and as a function of pressure at constant temperature, T =  216.5 K, respectively. 
Lowering temperature has a similar effect as increasing pressure, i.e., in both cases, the relaxation peaks 
moves to lower frequencies. By analyzing all the measured spectra, we have determined the temperature 
and pressure dependence of the structural relaxation times, which were calculated from the inverse of 
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the frequency corresponding to peak maxima, τ π= ( )α
−f2 max

1. Eventually, using structural relaxation 
times in various thermodynamic conditions (T and P), it was possible to construct the 3D relaxation map 
depicted in Fig. 2.

As a next step toward the experimental verification of the equations (13) and (14), it is necessary to 
convert the T-P data to their T-V representation. Therefore, apart from the high pressure dielectric stud-
ies, we additionally performed PVT measurements. Figure 3a displays the experimentally obtained tem-
perature dependences of specific volume V(T) isobars at labeled pressures, in the range of 10 MPa–200 MPa. 
The experimental PVT data for TBAC were satisfactorily parameterized by means of the EOS equation 
of state (Eq. (9) - solid lines) with the following values of its fitting parameters as well as errors and 
relative errors of their determination: A0 =  (0.8685 ±  0.0004) cm3/g [Δ rA0 =  0.04%], A1 =  (6.95 ±  0.05) ×  
10−4 cm3K−1/g [Δ r A1 =  0.7%], A2 =  (4.39 ±  0.16) ×  10−7 cm3K−2/g [Δ rA2 =  3.6%], b0 =  (3149 ±  9) MPa 
[Δ rb0 =  0.3%], b2 =  (5.80 ±  0.02) ×  10−3 K−1 [Δ rb2 =  0.3%], γEOS =  10.09 ±  0.02 [Δ rγEOS =  0.2%], assum-
ing the reference state at a fixed glass transition temperature T0 =  186.06 K at ambient pressure. The value 
of adjusted R2 is equal to 0.99998. The above set of data enables us to convert τα(T, P) to τα(T, V), and 
finally to construct 3D or 2D plots of the structural relaxation times versus T and V, required to perform 
the test for the validity of the AG(T, V) model. The best 3D numerical fit of τα(T, V) for TBAC data to 
Eq. (13) was obtained with the well-adjusted coefficient R2 equal to 0.99894 and the values of the fitting 
parameters τ( / ) = − . ± .slog [ ] 11 65 0 1410 0  [ τΔ = .log 1 2r 10 0 %], A =  (1484 ±  44) K [Δ rA =  3.0%], 
T0AG =  (153.17 ±  1.00) K [Δ rT0AG =  0.7%], (∂ /∂ ) = ( . ± . ) /P T MPa K0 16 0 23V

vib  [Δ (∂ /∂ )P Tr V
vib 

= . %150 0 ], S∞ =  (0.62 ±  0.06) JK−1g−1 [Δ rS∞ =  9.7%]. The resulting fit to Eq. (13) is depicted in Fig. 4.
It should be emphasized that Eq. (13) has, in general, thirteen parameters, but only five of them are 

free in the fitting procedure. The other parameters were fixed. Their values were earlier established from 
PVT measurements using the equation of state (A0, A1, A2, b0, b2, γEOS, T0), whereas the value of Vk was 
calculated from the equation of state at Tk where the temperature Tk was determined from fitting the 
dielectric isobar at 0.1 MPa to the VFT equation, τ τ= /( − )α B T Texp[ ]VFT VFT0 0 , on the assumption 

Figure 1.  Imaginary part of the dielectric loss spectra ε′′(ω) for TBAC vs frequency for (a) isobaric 
measurements at 0.1 MPa in the temperature range 189.15 K–247.15 K in steps of 3 K and 2 K; (b) for 
isothermal measurements at 216.5 K under increasing pressure. 
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that T0VFT =  Tk
35. Here, for TBAC, Tk =  156.29 K and Vk(Tk, P0) =  0.8482 cm3/g. In this context, it is worth 

noting that this equation basically has the same number of free fitting parameters as the previous one, 
because the additional parameter γ in Eq. (14) was determined from the criterion for the density scal-
ing45,46. The value of the scaling exponent γ, required to construct the thermodynamic scaling plot, was 
determined from the linear regression of ταTlog10  against ταVlog10  at a few constant structural relaxation 
times (Fig. 3b). As can be seen in Fig. 3b, the best linear fit was achieved for the value γ =  3.17 ±  0.01. 
Using this value of the exponent γ, we constructed the scaling curve by plotting the structural relaxation 

Figure 2.  Three-dimensional plot of decimal logarithms of isobaric and isothermal structural relaxation 
times of TBAC as a function of temperature T and pressure P. 

Figure 3.  Temperature and pressure dependences of structural relaxation times vs scaling quantity 
T−1V−γ with γ = 3.17. The inset (a) presents isobaric PVT data, V(T). Solid lines are fits to equation of state 
(EOS) (Eq. (9)). The inset (b) presents double logarithmic plot of the temperature ταT  versus the volume τα

V  
at τα =  const for several relaxation times τα, which has been used to found the value of the scaling exponent 
γ =  3.17 ±  0.01 as a slope of the linear dependences.
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times versus the product of the temperature T and the specific volume V raised to the exponent γ. It is 
obvious from Fig. 3 that all the scaled experimental isobars and isotherms collapse onto a single master 
curve. This result is in accord with a general observation of the validity of thermodynamic scaling for 
van der Waals liquids.

The volume dependence of isothermal and isobaric structural relaxation times determined from  
dielectric measurements and the best fitting curves obtained using Eq. (14) are displayed in Fig.  5,  
with the well-adjusted coefficient R2 equal to 0.99927 and the following values of the fitting parameters 
of Eq. (14): τ( / ) = − . ± .slog [ ] 10 92 0 1010 0  [ τΔ = .log 0 9r 10 0 %], A′  =  (771 ±  18) Kcm3γ/gγ[Δ rA′  =  2.3%], 
T0AG =  (156.87 ±  0.72) K [Δ rT0AG =  0.5%], (∂ /∂ ) = ( . ± . ) /P T MPa K1 23 0 08V

vib  [Δ (∂ /∂ )P Tr V
vib = . %6 5 ], 

S∞ =  (0.47 ±  0.03) JK−1g−1 [Δ rS∞ =  6.4%]. As can be seen, a satisfactory agreement between fits and the 
experimental points has been achieved. The quality of the fits to Eqs. (13) and (14), imply that the 
TV-generalized AG model, represented by both the two equations, provides a satisfactory description of 
experimental data. Analyzing errors of determination for each fitting parameter, we can also confirm the 
statement that a satisfactory description of experimental data is achieved, because most relative errors of 
determination of the values of the fitting parameters are less than 3%, and only the error of determina-
tion for the value (∂ /∂ )P T V

vib exceeds the value of this parameter in case Eq. (13), while Eq. (14) is 
devoid of such a problem. These facts can have influence on further discussion about correctness and 
applicability of both equations. Nevertheless, a comparison of the values of the adjusted R2 obtained from 
fitting experimental data to Eq. (13) (Adj. R2 =  0.99894) and Eq. (14) (Adj.R2 =  0.99927) seems to indi-
cate that both the equations lead to the same outcome. Does it indeed mean that both the equations are 
internally consistent with the thermodynamic scaling concept?

To answer this question we refer to our recent findings reported in ref. 47. As we pointed out there, 
one can formulate some general rules for isobaric mP

T  and isochoric mV
T  fragilities, i.e., (i) compression 

brings about the decrease in the isobaric fragility mP
T  and (ii) the isochoric fragility mV

T  is an invariant 
parameter with pressure. They are both valid if the density scaling is satisfied. Consequently, on the basis 
of above rules, we will be able to check the correctness of the derived equations, because if they work 
the appropriate trend in the fragilities behavior should be reproduced. The isobaric and isochoric fragil-
ities can be defined in the following way

( )
τ

=
/

,

( )

α

= , =

m
d

d T T

log

15
x

g
T T x const

10

g

where x stands for either P or V, depending on the thermodynamic conditions. Analyzing the temper-
ature dependences of the structural relaxation time at constant pressures, we found for TBAC that mP, 
calculated from Eq. (13), systematically increases with increasing pressure. It is shown in Fig.  6 (solid 
squares). Similarly, we calculated the isochoric fragility mV from Eq. (13) and tested it as a function of 

Figure 4.  The test of AG(T, V). The solid lines represent the best fits of τα(T, V) to Eq. (13), projected on 
the τα −  V plane.
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pressure. The values of mV were depicted by open square symbols in the same figure. As can be seen, mV 
is not a constant, which is in contradiction with the invariant isochoric fragility rule. In fact, mV appears 
to be continuously increasing with increasing pressure, giving a value range of mV varying from 55.55 to 
59.01. Thus, the AG(T, V) model, represented by Eq. (13), exhibits patterns of behavior for the pressure 
dependences of mP and mV which are not consistent with those observed commonly for simple van der 
Waals liquids. On the other hand, solid circles in Fig. 6 represent the dependence mP(P) obtained from 
Eq. (14). The value mP decreases in the experimental pressure range from mP =  86.56 at ambient pressure 

Figure 5.  Plot of the isobaric and isothermal relaxation data of TBAC vs specific volume. The solid lines 
represent the best fits of τα(T, V) to Eq. (14), projected on the τα −  V plane.

Figure 6.  Pressure dependences of isobaric fragilities calculated by means of the AG(T, V) and AGS(T, V) 
models (given by Eqs. (13) and (14), respectively) in the pressure range (0.1–200) MPa at τα = 100s and 
the pressure dependence of isochoric fragilities determined from both the models.
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to mP =  82.17 at P =  200 MPa, which agrees with the general trend found in case of van der Waals liquids. 
In addition, we have established that mV is pressure-independent within error bars and has a constant 
value equal to 59.34 at investigated pressure range (open circles in Fig. 6).

From the comparison of the isobaric and isochoric fragilities, obtained from Eq. (13) and Eq. (14), 
we can see that these equations lead to both quantitatively and qualitatively different results. The above 
analysis unambiguously shows that the appropriate form of AG-model transformed to the T-V ther-
modynamic space is that given by Eq. (14), which complies with the following compact representation

τ τ( , ) =





′
( , )





.

( )
α γT V A

TV S T V
exp

16C
0

It should be stressed that the AG(T, V) model expressed by Eq. (14) has turned out to be consistent 
with the thermodynamic scaling idea, although Eq. (14) has been derived without any scaling assump-
tions for the configurational entropy SC(T, V), because the latter has been employed in Eq. (16) by using 
Eq. (12). This finding raises a subsequent important question concerning the scaling of the configura-
tional entropy. According to this, SC calculated from Eq. (12) should be possible to collapse onto a single 
curve by plotting it as a function of TVγ. Thus, our next step is to check whether or not the configura-
tional entropy SC, similarly to the structural relaxation time τα, satisfies the TVγ-scaling rule. Prior to 
doing that, we verify the results given by Eq. (12) with the values of its parameters taken from the fitting 
experimental dependence τα(T, V) to Eq. (14). In Fig.  7, we present the temperature dependence of 
isobaric heat capacity at ambient pressure obtained from the differential scanning calorimetry (DSC) 
measurements with stochastic temperature modulation (TOPEM). Based on this data, we determined the 
configurational entropy (see the inset in Fig. 7) by taking the definite integral ∫ (Δ / ′) ′C T dT

T

T
P

k
, where 

the value of Tk is the same as that assumed to fit the dielectric structural relaxation times to Eqs (13) and 
(14), and Δ CP is taken as the difference between two linear functions describing respectively temperature 
behavior of CP

liquid and CP
glass. In the inset in Fig. 7, we also show a very satisfactory agreement between 

the dependence SC(T) determined from the heat capacity measurements (solid squares) at ambient pres-
sure and that obtained from Eq. (12) (open circles) at ambient pressure, based on the same values of its 
fitting parameters as those which very well describe the dependence τα(T, V) in terms of Eq. (14). After 
this additional confirmation of the validity of Eq. (12), we analyze the temperature and volume depend-
ences of the configurational entropy (see Fig. 8a), and plot the dependences ( )T Vlog logS S10 10C C

 at a few 
constant SC(Fig. 8b). As can be seen, these dependences have a linear character. From the simple linear 
regression, we have found that the value of the slope of all the isoentropic lines (γ = . ± .3 17 0 03SC

) is 
the same as the value of the scaling exponent for the structural relaxation time (γ =  3.17 ±  0.01). It means 

Figure 7.  Temperature dependences of the heat capacity for TBAC established from TOPEM 
measurements. The inset shows comparison of the dependence SC(T) determined from the heat capacity 
measurements at ambient pressure with that calculated from Eq. (12) with the values of its parameters found 
from fitting τα(T, V) to Eq. (14).
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that we are able to scale the configurational entropy (see Fig. 8) with the value of the scaling exponent, 
which very well corresponds to that established for the structural relaxation time (γ γ=SC

).

Conclusions
The latter finding has very important implications for making a final identification of the role of entropy 
in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition. An 
important consequence of the found equivalence of the values of the scaling exponents γ and γSC

 for the 
structural relaxation time τα and the configurational entropy SC should be a subsequent scaling of τα vs 
SC. As can be seen in Fig. 9, this scaling indeed occurs, because the structural relaxation times of TBAC 
can be plotted onto a single master curve as a function of the configurational entropy. This meaningful 
result clearly shows that the structural relaxation time can be a single variable function of the configu-
rational entropy, τα =  h(SC), although the more complex formula (Eq. (16)) is required to meet the power 
law density scaling criterion in terms of the AG model originally based on Eq. (1). An essential impact 
of the configurational entropy on the thermodynamic evolution of the time scale of molecular dynamics 
near the glass transition has been anticipated for many years. For instance, Wolynes and coworkers sug-
gested48,49 a function τα =  h(SC) based on the random first-order transition theory and showed50 the 
power law density scaling of SC using simulation data in a simple model based on the Lennard-Jones 
potential. To achieve the power law density scaling = ( )γS G TVC SC  with γ γ=SC

 for real glass formers, 
Casalini and Roland proposed51–53 an alternative way to calculate SC, which requires determining refer-
ence values of SC along a chosen isochrone τα =  const. In this paper, for the first time based on experi-
mental data analyses and without making any limiting assumptions for the configurational entropy 
calculations, we show that both the structural relaxation time and the configurational entropy follow the 
same pattern of the power law density scaling behavior, which relies on the same value of the scaling 
exponent γ, i.e., τα =  F(TVγ) and SC =  G(TVγ). In this way, we solve a long-standing problem with deter-
mining the proper effect of thermodynamics on molecular dynamics near the glass transition. The found 
single variable function, τα =  h(SC), which is a consequence of the density scaling laws, τα =  F(TVγ) and 
SC =  G(TVγ), has a decreasing character (see Fig. 9) which implies that a decrease in the configurational 
entropy straightforwardly causes the dramatic slowdown in the molecular dynamics (reflected in the 
rapid increase in its time scale) near the glass transition. Thus, the configurational entropy seems to be 
sufficient to govern the structural relaxation of supercooled liquids without any contributions from addi-
tional factors. For comparison, we have very recently established41 that such an exclusive impact is not 
made on the structural relaxation by the total system entropy S and the excess entropy Sex (defined as 
the difference between the total system entropy and the entropy of an ideal gas at the same density and 
temperature), although both S and Sex obey the density scaling law. For S and Sex, the values of the scaling 

Figure 8.  Density scaling of the configurational entropy for TBAC vs the scaling quantity γTV Sc with 
γ = .3 17SC

. The insets present (a) temperature and volume dependences of SC, and (b) double logarithmic 
plot of the temperature T SC

 versus the volume V SC
 at SC =  const for several configurational entropies SC, 

which has been used to found the value of the scaling exponent γ = . ± .3 17 0 03SC
 as a slope of the linear 

dependences.
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exponents have been found by us to be considerably different from that valid for τα of a given glass 
former, and consequently the different values of the scaling exponents rationalize the decoupling observed 
by us between τα and S (or Sex) and imply that the relation between τα and S (or Sex) requires supple-
menting with an additional density factor41. In this context, our findings reported herein become espe-
cially useful for further investigations, because they suggest a way to formulate an optimal model of the 
thermodynamic evolution of the time scale of molecular dynamics of supercooled liquids, which is 
expected to be able to take a form of a single variable function of the configurational entropy SC or the 
scaling variable TVγ in the power law density scaling regime.
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