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Co-extinction in a host-parasite 
network: identifying key hosts for 
network stability
Tad Dallas1 & Emily Cornelius2

Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host 
extinction could result in many secondary extinctions of obligate parasites and potentially alter host-
parasite network structure. Here, we examined a highly resolved fish-parasite network to determine 
key hosts responsible for maintaining parasite diversity and network structure (quantified here as 
nestedness and modularity). We evaluated four possible host extinction orders and compared the 
resulting co-extinction dynamics to random extinction simulations; including host removal based on 
estimated extinction risk, parasite species richness and host level contributions to nestedness and 
modularity. We found that all extinction orders, except the one based on realistic extinction risk, 
resulted in faster declines in parasite diversity and network structure relative to random biodiversity 
loss. Further, we determined species-level contributions to network structure were best predicted by 
parasite species richness and host family. Taken together, we demonstrate that a small proportion of 
hosts contribute substantially to network structure and that removal of these hosts results in rapid 
declines in parasite diversity and network structure. As network stability can potentially be inferred 
through measures of network structure, our findings may provide insight into species traits that 
confer stability.

Species extinctions can alter community dynamics1, the transfer of energy through ecosystems, and may 
also result in secondary extinctions of obligate species2–5. As obligate species, parasites represent a hid-
den portion of biodiversity, comprising around half of the planet’s total biodiversity, and are important 
indicators of ecosystem health3,6. Perturbations, such as habitat loss and climate change, may endanger 
free-living species and their resident parasites. Given the diversity of parasite communities occupying 
hosts, the extinction of a host species could result in many cryptic, secondary extinctions of specialist 
parasites. Further, the loss of a host species and the corresponding secondary extinctions have a potential 
to impact the structure of the host-parasite network, which could have large destabilizing effects and 
perhaps result in further species loss7.

Despite the potential importance of host species identity, traits, and interaction patterns to secondary 
extinction dynamics1 and community stability, few studies have examined network structure or stability 
from a trait-based perspective, though this has been identified as a future research need5. For instance, 
many co-extinction investigations in food webs remove species based on their number of interactions 
(i.e. degree)8,9. However, the order which hosts become locally extinct from a network is nontrivial, as 
different extinction scenarios will result in vastly different outcomes10,11. Recent efforts have focused on 
refining the traditional node removal strategy by incorporating elements of species biology, such as host 
range size, trophic level, and estimated extinction risk3,12,13. However, much of the previous work on 
co-extinction dynamics has been in food webs, which are unipartite networks, and differ fundamentally 
from bipartite networks, in which two classes of organisms interact with each other, but not among 
nodes in the same class. Finally, most studies to date have quantified extinction cascades in ecological 
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networks by losses in biodiversity, without assessing changes to network structure. Here, we examine 
both losses to biodiversity (secondary extinctions) and changes to network structure with the removal 
of host species from a network.

Network structure is commonly quantified using topological network measures to describe the ten-
dency for interactions in a network to be organized in a particular manner. These metrics describing 
network structure have often been related to measures of network stability, such as structural stabil-
ity14. Understanding how network structure changes with host species loss is an interesting unexplored 
research question. We focus on two measures of network structure which have been previously related 
to network stability; nestedness and modularity14–19. Nested networks are observed when nodes with 
few links form subsets of the links observed for higher degree nodes16,18. For instance, in the context of 
host-parasite networks, hosts with species-rich parasite communities would contain all parasites found 
in hosts with sparser parasite communities. Modularity, on the other hand, is a measure of community 
formation20–22 and is the tendency for groups of nodes to have many interactions among them and sparse 
connections to other groups of highly-connected nodes23. We expect based on previous studies that 
nestedness and modularity will have opposite influences on network stability, as Thébault and Fontaine 
(2010)17 previously suggested that trophic network stability was related to modularity, while nestedness 
actually destabilized trophic networks.

Currently, co-extinction studies tend to measure the effects of an extinction event on the diversity of the 
network2,3,13, while studies of network structure tend to ignore the possibility of host extinction and focus 
on the role of particular hosts to networks structure3,9,18. The natural synthesis of these two approaches 
can provide predictions on what happens to network structure when species are systematically lost from 
the network. Here, we combine both approaches, using data from a Neotropical fish-parasite network24, 
to distinguish hosts contributing differentially to network structure, traits associated with these key hosts, 
and the resulting effect of removing these hosts relative to random extinction simulations. We provide 
evidence that 1) a small proportion of key hosts are responsible for maintaining network structure (i.e. 
nestedness and modularity), 2) parasite diversity and host family are important predictors of species level 
contributions to network structure, and 3) simulated extinctions of hosts with high parasite richness, or 
large contributions to network structure (nestedness and modularity), tend to result in more precipitous 
declines in parasite diversity and network structure relative to random simulations.

Materials and Methods
Study system. The current study utilizes data from a Long Term Ecological Research study on the 
fish and parasite communities of the Upper Paraná River floodplain, a 230 km long dam-free portion of 
the Paraná River in southern Brazil. Fish were sampled quarterly for eight years (2000–2008) by using 
both active and passive sampling techniques, resulting in a total of 4,875 fish captures of 72 species 
selected for parasitological analysis, Native species (n =  49) outnumbered non-native species (n =  23) 
of those fish species chosen for parasitological analyses. Parasites (n =  324) were identified to the best 
possible resolution, which resulted in 140 parasites identified to the species level, 120 to genus, and 64 to 
family24. The network is significantly nested and modular24, and has low connectance (C =  0.022), similar 
to other fish-parasite networks25. Details for the sampling protocols26 and parasite examination27,28 are 
provided elsewhere. Calculations of network structure metrics were based on the host-parasite interac-
tion matrix provided by Lima et al. (2012)24.

Fish host trait variables selected. Data on fish traits (Table 1) were obtained from FishBase [Froese, 
R. and D. Pauly, www.FishBase.org, accessed 08/2014] a comprehensive fish life history trait database 
accessible in R using rfishbase29, and based on information provided in Lima et al. (2012)24. The impor-
tance of certain fish species in the network may relate to specific host traits. For instance, body size and 
range size are often correlated, and larger ranged hosts typically harbor higher parasite diversity. Loss 
of these hosts could have a larger negative impact on network structure. However, we did not exclude 
variables for which we had data on, as there was no a priori reason to exclude data, and our analysis 
method was insensitive to issues of collinearity and overparameterization. Parasite species richness was 
quantified as the number of parasite species found on a given host species. Measures obtained from 
FishBase included host extinction risk (“vulnerability”)30, resilience from a perturbation31, phylogenetic 
diversity32, maximum weight, body size, length at maturity, and host family. Vulnerability is a predicted 
measure of extinction risk based on host life history information. Resilience is a measure that incorpo-
rates host demographic information (carrying capacity, fecundity, etc.) to classify the likelihood that a 
fish population will recover quickly from a perturbation. Phylogenetic diversity is reported in FishBase 
and based on Faith et al. (2004)32. The specific measure used, PD50, represents the expected loss in phy-
logenetic diversity under species extinction, assuming that all other species have equiprobable extinction 
risk. Measure of sampling effort, fish abundance, and biomass were obtained from Lima et al. 201224. 
Host species “status” (i.e., native or non-native) was compiled by Lima et al. (2012)24, though the original 
evaluation was performed by Julio et al. (2009)33.

Host species-level contribution to nestedness and modularity. We quantified nestedness using 
a metric based on overlap and decreasing matrix fill (NODF)34. Nestedness contribution (Ci), a meas-
ure of the importance of a single node to overall network structure, was calculated following Saavedra 
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(2011)18, in which the interactions of a single host species were iteratively randomized, with the resulting 
simulated NODF values compared to the observed nestedness of the empirical network. Modularity 
contribution (Qi) was calculated in the same way, but using Barber’s Q statistic20. Both measures were 
calculated only for the complete network. It is likely that species contribution to nestedness and modular-
ity changes as the network disassembles. However, identifying nestedness and modularity contributions 
via dynamic updating makes the measures state-dependent, in such that the relative impact of a species 
removal in the full network may be greatly altered after a certain number of nodes have been removed. 
As a result, our modularity contribution values do not contain information on how the network will 
respond when host species are lost from the network. Values of Ci or Qi close to zero indicate little or 
null impact of that host on network structure, while positive (negative) values are indicative of hosts that 
enhance (reduce) nestedness or modularity.

We used three randomization algorithms ranging from a) each interaction equiprobable b) probabil-
ity of interaction determined by parasite host breadth and c) probability of interaction determined by 
average of host and parasite occurrence probabilities (supplementary equation S1; Saavedra 201118). All 
null models gave similar results, so we report parasite host breadth to determine occurrence probabilities 
herein (b from above), and relationships between measures obtained from the different null models are 
presented as supplementary material (Figs S1 & S2).

Traits associated with host nestedness contribution. In order to assess the potential relationship 
between host traits and their corresponding contributions to network structure (i.e. Ci and Qi), we used 
regression tree analysis. Regression trees are a useful tool for the identification of the most important pre-
dictor variables, and have been used extensively in ecological applications35–38. Regression tree analysis 
aims to predict a response variable based on several input variables, in which input variables represent 
splits in the tree. We applied an iterative process called “boosting”, where we formed many regression 
trees, and then combined to improve predictive power. The final boosted regression tree (BRT) model 
was cross-validated using ten-fold cross validation and permutation tests to determine the optimal num-
ber of trees. Variables included in the BRT analysis are provided in Table  1. The relative contribution 
(RC) of predictor variables was determined through permutation tests, in which each predictor variable 
was permuted randomly, and the importance of the predictor variable was quantified by the subsequent 
reduction in model performance. Relative contribution estimates are based on the number of times a 
given predictor variable is selected for splitting, weighted by the degree the split improves model per-
formance. This metric is then averaged across all trees built in the model, and scaled between 0 (no 
contribution) to 100 (high contribution).

Host removal simulations. In order to assess the impact of host extinction on network structure 
and parasite diversity, we sequentially removed hosts according to four potential extinction orders. We 
removed hosts from the network in order from highest to lowest host extinction risk (as estimated by 
Cheung et al. 2005)30, parasite species richness, modularity contribution, and nestedness contribution. 

Host trait Units Mean (sd) n

Parasite species richness Number of parasites per fish 
species 7.08 (8.21) 72

Host extinction risk – 30.77 (17.58) 70

Body size Maximum body size (mm) 354.87 (211.32) 72

Max weight kg 9.11 (2.02) 25

Length at maturity mm 49.50 (65.73) 43

Trophic level – 3.08 (0.76) 70

Sampling effort Number of fish analyzed for 
parasites 67.71 (92.28) 72

Abundance CPUE (individuals/1000 m2 gill 
net) 27.25 (55.33) 69

Biomass CPUE (kg/1000 m2 gill net) 3.74 (6.72) 69

Phylogenetic diversity – 0.56 (0.13) 70

Resilience Minimum population doubling 
time (years) 3.41 (3.16) 55

Status Native or non-native – 72

Table 1.  Fish life history traits (means and standard errors) used to train the boosted regression tree 
models. These outcomes related fish species life history traits to their contributions to network structure 
(nestedness and modularity). Descriptions of how fish life history metrics were assigned can be found in the 
materials and methods section.
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Many of these variables are related, which also makes the extinction orders related (see Figure S4 for 
rank correlations between all species removal scenarios).

After each host removal, nestedness (NODF), modularity (Q), and parasite diversity (PSR; total num-
ber of parasite species remaining) were determined. Hosts were removed in random order for 1000 sim-
ulations to provide appropriate bounds of expected trajectories for the decay of nestedness, modularity, 
and parasite diversity. To measure the magnitude of the effect of each of the four species removal sce-
narios, we compared the decay curves of our targeted removal scenarios to a null expectation generated 
by 1000 random extinction simulations. From these simulations, we quantified the divergence of our 
targeted extinction scenarios to random simulations. To do this, we first plotted the decay in parasite 
diversity, modularity, or nestedness as a function of the number of hosts removed for each of our targeted 
and random simulations. Then we quantified the decay area (DA) between the curve generated from a 
targeted extinction scenario and the mean curve generated from random extinction simulations in terms 
of parasite diversity (DAPSR), nestedness (DAC), and modularity (DAQ). This measure is almost identical 
to how Evans et al. (2013)39 defined robustness, except they considered robustness the area under the 
decay curve to the origin instead of to a mean random simulated extinction scenario.

We also calculated DA values for each random simulation to the mean random simulation, thus creat-
ing a distribution of possible decay area values obtained from completely random extinction simulations. 
We treated this area as an estimate of the magnitude of difference between a particular host extinction 
scenario and random extinction simulations, which allows us to compare random extinction scenarios to 
our targeted extinction scenarios using z-tests. We performed all analyses in the R Statistical Computing 
Environment using functions from the vegan package for the analysis of nestedness [Oksanen et al. 
2012], gbm for the boosted regression tree analysis [Ridgeway et al. 2013], and flux for AUC determina-
tion [Jurasinski et al. 2014].

Data accessibility. Host-parasite interaction matrices are provided in the supplementary material 
of Lima et al. (2012). Fish host traits were obtained from FishBase (Froese and Pauly 2012) and from 
Agostinho et al. (2004).

Results
Host traits associated with network structure. Hosts contributed differentially to network proper-
ties, resulting in many hosts having a negligible effect on nestedness or modularity, while a small number 
of hosts had large positive effects on network structure measures. Contrary to the idea that modularity 
and nestedness have opposing influences on network structure (i.e. should be negatively correlated), we 
found a significant positive relationship between the two measures (rs =  0.485, p-value <  0.0001).

Host-specific contributions to nestedness and modularity were most associated with parasite spe-
cies richness based on the relative contribution (RC) values obtained from the boosted regression tree 
analysis (Fig. 1). Host family was the second-most important variable to both nestedness contributions 
(RC =  40.28) and modularity contributions (RC =  19.94) of host species, indicating a potential role of 
host phylogeny in determining the host species relative impact on network structure. The biomass of 
fish captured per host species had a marginal influence on host-specific contributions to nestedness. The 
remaining variables contributed little, each having a relative contribution value of less than 5 units (out 
of 100). To examine the predictive accuracy of our models, we regressed model predictions against actual 
values of nestedness and modularity contribution. Regression plots of model predicted versus actual val-
ues for nestedness and modularity contribution are provided in the Supplementary Materials (Figure S3). 
Root mean squared error is another commonly used scale-dependent measure of predictive accuracy. 
Nestedness contribution (RMSE =  1.06) and modularity contribution (RMSE =  1.05) both had relatively 
low RMSE values, slightly over one unit difference between predicted and actual values. Both biomass 
and abundance are variables defined in terms of catch per unit effort, which makes both variables closely 
related to the dominance of a species in a community, and to sampling effort, as larger values would 
indicate species more frequently examined for parasites. However, sampling effort was not a strong con-
tributor to either measure of network structure (Ci and Qi), suggesting the importance of biomass to Ci 
could relate more to host biology and community composition than sampling effort.

Effect of nonrandom host extinctions on secondary extinctions. Sequential host removal 
scenarios based on extinction risk, parasite species richness, nestedness and modularity contributions 
resulted in significantly larger decay areas (DA) in parasite diversity(DAPSR), nestedness (DAC), and mod-
ularity (DAQ) (Figs 2 and 3) compared to random simulations. The exception to this was host removal 
based on estimated extinction risk, which resulted in significantly larger decay area when looking at 
parasite diversity, but not nestedness or modularity. In other words, parasite diversity, but not nestedness 
or modularity, declined at a faster rate when hosts were sequentially removed based on their estimated 
extinction risk (Table 2).

Host removal based on parasite species richness values resulted in larger decay area values than 
removal of hosts based on their estimated nestedness and modularity contribution (Table 2 and Fig. 3), 
suggesting both a strong link between parasite species richness and species level contributions to net-
work structure (see Supplementary Material for rank correlation matrix) and also that nestedness and 
modularity contributions may change markedly as hosts are removed from the network. In other words, 
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a policy that re-calculates nestedness and modularity contribution after each host removal may converge 
upon on a similar or better host removal strategy than removal based on parasite species richness.

Another interesting result is what happens to modularity values with any (random or non-random) 
host removal. Modularity values actually increase until a critical point, after which they go to zero. This 
is likely a result of the modularity calculation itself. We demonstrate this in the Supplementary Materials 
(Figure S6) by numerically simulating sequential host removal in randomly constructed bipartite net-
works. Understanding if this increase in modularity is a statistical artifact, or an important component 
of complex networks is an area for further research.

There are many host removal strategies not examined here. For instance, host extinction may be 
related to their native or non-native status, or their abundance within the community. While these analy-
ses may be outside of the scope of the current manuscript, we have examined both in the Supplementary 
Materials (Figure S5 in particular).

Discussion
Declining host biodiversity could result in secondary extinctions of obligate parasites, especially par-
asites endemic to a small subset of host species. These secondary extinctions, in turn, may result in 
further extinctions as demonstrated recently in a host-parasitoid system40. Coextinction may destabilize 
networks41, resulting in faster losses in biodiversity and network structure than expected under ran-
dom extinction scenarios. Here, we find that the differential impact a host has on network structure 
and parasite diversity can be partially explained by host traits. First, we found that hosts contributing 

Figure 1. Species contributions to nestednesss and modularity as functions of life history traits. Boosted 
regression models for modularity (top) and nestedness (bottom) contributions of host species, with green 
bars indicating fish species traits associated with their contribution to either measure of network structure 
(relative contribution values greater than 5%).
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strongly to nestedness also contributed strongly to modularity, partially reconciling two opposing net-
work properties related to network structure42, though more research is necessary to determine the true 
relationship between these network properties. Secondly, we found that both network structure measures 
were related to host family affiliation and parasite community richness, suggesting that host phylogeny 
and the number of interactions a host has in the network play a role in determining network structure. 
Also, fish biomass was marginally important in predicting nestedness contributions, which may relate 
to biased sampling, or to host body size, as fish biomass combines aspects of individual fish mass and 
relative abundance. Taken together, these findings suggest that species roles in antagonistic networks may 
be phylogenetically conserved or influenced by host traits (e.g. body mass). Lastly, we found that ran-
dom extinction simulations may underestimate the rate of decline in parasite diversity when compared 
to extinction based on realistic extinction risk measures, and that extinction orders based on parasite 
species richness, and network structure contribution measures tended to result in much faster declines 
in parasite diversity and nestedess relative to random extinction simulations.

Previous studies have argued that topological measures of network structure may confer stability14,17. 
For instance, nestedness43 and modularity17 have both been related to network persistence (proportion 
of surviving species after recovery from perturbation), and resilience (time until community returns to 
equilibrium after perturbation). Further, resilience, robustness and structural stability (all slightly differ-
ent components of stability) have previously been related to nestedness14. These topological measures are 
appealing proxies for network stability as they are easy to measure and do not require time-series data to 
calculate. Previous studies have acknowledged that some species are more important for network stabil-
ity than others8,9,44. Our decay area (DA) statistic can be considered a measure of network robustness39, 
thus relating topological properties of networks (nestedness, and modularity) to dynamical properties 
(stability).

Figure 2. Histograms of the distribution of decay area (DA) values of parasite diversity nestedness and 
modularity for random simulations, with points indicating the DA values for each of the four ordered 
extinction scenarios.
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Figure 3. Simulated trajectories examining the decay in parasite diversity (top), nestedness (middle), 
and modularity (bottom) as a result of simulated sequential host removals. Host removal based on 
parasite species richness (purple) resulted in the fastest declines of network metrics examined, followed 
closely by host removal based on modularity contribution (yellow) and nestedness contribution (red). Host 
removal by estimated extinction risk (green) did not differ from random extinction in terms of nestedness 
and modularity losses, but parasite diversity did decline faster relative to random simulations.
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While the importance of host family to species level contributions to nestedness and modularity could 
be viewed in an evolutionary context, it is potentially a result of the variation in parasite species richness 
seen in the fish taxa examined. For example, the family Anostomidae (specifically four native Leporinus 
species) had the highest positive values of Ci and Qi and also the highest parasite species richness relative 
to other fish taxa. While the importance of host family may be conflated with parasite species richness, 
it is also possible that host family represents a coarse measure of phylogenetic relatedness, such that host 
family can be considered a proxy for evolutionary relatedness. Alternatively, this could simply be a vari-
able related to unmeasured trait variation. Rank correlations between extinction scenarios show support 
for the relationship between species contributions to network structure and parasite species richness 
(Figure S4). Overall, this suggests that parasite species richness may be the most important determinant 
of network structure and parasite diversity, even when compared to metrics that calculate species-level 
contributions to nestedness and modularity. There are a number of possible explanations for this.

First, nestedness and modularity contribution metrics were not dynamically updated as species were 
removed. This was intentional, as the goal of this study was to determine if a snapshot of a full net-
work could capture node importance as the network disassembles. This result makes intuitive sense, 
as the removal of host species with species-rich parasite communities may be more likely to result in 
co-extinction of parasite species. This finding, despite its appealing simplicity may not be true for some 
networks, as other aspects of network structure, host biology and community dynamics may also be 
important for network stability45. Second, it may be the case that nestedness and modularity contribu-
tion measures simply cannot capture a host species true contribution to network structure, such that 
more simple metrics like node degree (i.e., parasite species richness) may outperform more complicated 
metrics. Lastly, the calculation of nestedness and modularity contributions is based on null model ran-
domizations of each host in the network. That is, nestedness and modularity contribution measures 
are based on the idea that the host is still present, but the interactions of that host are randomized. 
Statistically, this approach makes sense, since some network structure metrics are sensitive to matrix 
size or fill. However, this formulation is conceptually different from a host removal, which may explain 
why removal strategies based on nestedness and modularity contributions did not result in the fastest 
declines in network structure.

Through simulated sequential host extinctions, we found that parasite diversity declined at a slightly 
faster rate when extinction order was based on host extinction risk than compared to random extinction 
order, but only after around 40% of hosts were already lost from the system. This suggests that the loss 
of host biodiversity based on realistic estimates of extinction risk may result in a greater loss of parasite 
diversity through secondary extinctions than is currently expected, but only in highly perturbed systems 
subject to large losses in host diversity. This result is comparable to Davies and Yessoufou (2013)46, in 
which they found that phylogenetically clustered extinctions result in disproportionate loss, compared 
to random extinction scenarios.

While parasite diversity and nestedness declined precipitously in our simulations, modularity actu-
ally increased slowly in our extinction scenarios relative to random extinction simulations. This find-
ing may be a function of removing hosts with high parasite species richness as this may fragment the 
network into small groups of specialist parasites, which would increase modularity. In a limiting case, 
a host-parasite network in which each host is parasitized by a single host-specific parasite would be per-
fectly modular. However, modularity increased even in random extinction simulations, suggesting one 
of two things; either modularity statistics are biased by matrix size or host removal from a network may 
actually increase modularity until a critical point is reached before the network collapses entirely. We 
address the relationship between matrix size and modularity in the Supplementary Materials (Figure S6).

Biodiversity loss is a pressing concern, with recent focus on the impact of host extinctions on second-
ary extinctions of obligate parasites6 and the importance of parasites as indicators of ecosystem health47,48. 
A recent investigation into the shape of the relationship between free-living species richness and para-
site richness under sequential host removal simulations resulted in a myriad of possible trajectories for 
the decay of parasite diversity6. While we acknowledge that host diversity loss may influence parasite 
diversity idiosyncratically, our simulations find a consistently greater loss in both network stability and 
parasite diversity relative to random simulations. Understanding the network properties that alter decay 

Removal order

Parasite diversity Nestedness Modularity

z p z p z p

Extinction risk 2.81 0.005 − 1.43 0.153 − 0.24 0.81

Parasite species richness 12.73 <0.0001 8.37 <0.0001 10.63 <0.0001

Nestedness contribution 6.29 <0.0001 6.25 <0.0001 4.34 <0.0001

Modularity contribution 10.94 <0.0001 7.81 <0.0001 6.67 <0.0001

Table 2.  The effect of targeted extinction scenarios on the decay of parasite diversity, nestedness and 
modularity. Decay area (DA) between targeted host removal orders were compared against DA values 
obtained by comparing random simulations to the mean decay trajectory.



www.nature.com/scientificreports/

9Scientific RepoRts | 5:13185 | DOi: 10.1038/srep13185

trajectories (e.g. degree distribution) may provide a better understanding of the structure and stability of 
ecological networks49. Lastly, the integration of network structure measures into studies of network sta-
bility may yield insight into species-level characteristics that promote biodiversity and network structure.
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