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Thermal-induced force release in 
oxyhemoglobin
S. G. Gevorkian1,3, A. E. Allahverdyan2,3, D. S. Gevorgyan4 & Chin-Kun Hu1,5

Oxygen is released to living tissues via conformational changes of hemoglobin from R-state 
(oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet 
fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to 
determine the behavior of the Young’s modulus and the internal friction for temperatures between 
20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden 
and strong increase of their Young’s modulus, accompanied by a sudden decrease of the internal 
friction. This sudden mechanical change (and the ensuing force release) takes place in a partially 
unfolded state and precedes the full denaturation transition at higher temperatures. After this 
transformation, the hemoglobin crystals have the same mechanical properties as their initial state 
at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing 
function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The 
effect is specific for the quaternary structure of hemoglobin, and is absent for myoglobin with only 
one peptide sequence.

Since its discovery in 1840, the hemoglobin is one of the most extensively studied proteins1,2. This is 
related to its important physiological function: it carries oxygen from the lungs throughout the body 
allowing us to breathe and live. It consists of four globular units linked into a double-dimer tetrameric 
structure1,2 as shown schematically in Fig.  1. Each unit can carry one oxygen molecule O2 attached 
to its heme group. The hemoglobin structure is adapted to the needs of its function. First, its oxygen 
binding is cooperative: the response of hemoglobin with respect to O2 concentration has a S-shaped 
region, thereby a relatively slight decrease of the oxygen concentration between the lungs and the body 
brings in a significant decrease of the bound oxygen (up to 25%)1,2. Second, the oxygen binding ability 
decreases upon reducing the pH factor or increasing the concentration of CO2

3. Due to this Bohr’s effect3 
a tissue with a stronger need of oxygen receives it more. Cooperative oxygen unbinding of hemoglobin is 
explained by the change of its tetrameric conformational structure induced by binding of the first oxygen 
molecule2; see Fig.  1. The conformational states with (R-state or oxyhemoglobin) and without (T-state 
or desoxyhemoglobin) the four oxygen molecules are clearly distinguishable by their shape, as seen via 
X-ray crystallography1,2. In vivo those states are more like dynamic ensembles than fixed conformations4.

Many aspects of hemoglobin are well understood by now2. However, the physics of conformational 
changes and their interaction with external factors (pressure, oxygen concentration, temperature) is still 
under active scrutiny5–8. In particular, this concerns the thermal response of hemoglobin that is tradi-
tionally studied via denaturation experiments. It is known that the multidomain hemoglobin does not 
unfold via a single transition5. Rather, there is a wide transition zone ≃ 40°–60 °C that includes several 
events5. These events are typically interpreted as unfolding and/or internal aggregation, two standard 
mechanisms normally applied for describing thermal responses of multi-subunit proteins5,6.

Here we report the results of micromechanical experiments carried out on crystals of horse and 
human hemoglobin. We show that in its partially unfolded state—i.e. for a temperature higher than 
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the physiological temperatures, but lower than the unfolding temperature—the hemoglobin responds 
to heating by a sudden release of force and a subsequent rapid increase of the Young’s modulus, which 
is similar to the finding reported by Ansari et al.9. The detailed structure of this effect is different for 
human and horse hemoglobin. We argue that the effect relates to certain slowly relaxing degrees of free-
dom of the quaternary structure that accumulate energy during heating and then suddenly release it at 
a well-defined temperature that is specific for hemoglobin.

Such effect is absent in the thermal response of myoglobin. This is a single-unit globular protein that 
displays a visible transition towards a partially denaturated state around a certain unfolding temperature5. 
Myoglobin also binds and unbinds oxygen, but does so without a sizable cooperativity. This relates to its 
function: myoglobin is a depot (not transporter) of oxygen in muscles. The difference between hemoglo-
bin and myoglobin was also observed in heating and re-cooling data of Young’s modulus for two systems 
to be reported below.

The force-release effect reported here for hemoglobin crystals has several predecessors in biopolymer 
physics. Ansari et al. found an indirect experimental evidence that the low-temperature ligand unbinding 
of myoglobin is modulated by a sudden release of energy accumulated due to the ligand binding9. They 
proposed the term proteinquake for such effects. Later on, it was found computationally that protein-
quakes are relevant to the functioning of myosin10 and adenylate kinase11. More specifically for hemo-
globin, it is known that when crystals of deoxyhemoglobin are exposed to oxygen, they shatter due to 
the force released during the conformational transition from deoxy to oxyhemoglobin12,13. Postponing 
detailed connections with literature till the end of this paper, we stress already here that the presented 
report seems to be the first one, where a force-release effect was found under heating which is generally 
supposed to diminish mechanical features of biopolymers.

Note in this context that the advantage of using biopolymer crystals for measurement is that there is 
a possibility of controlling and displaying—via intermolecular contacts regulated by the crystal syngony 
and the water content—those motions of the macromolecule that can have only transient character in 
the solution14,15. Almost all the basic information on the hemoglobin structure came from experiments 
on soild-state hemoglobins. Figure 2 illustrates the structure of the hemoglobin crystal1,2,16,17. The solid 
state hemoglobin is closer to its in vivo state in mammal erythrocytes, where it is densely packed with 
concentration ≃ 34%18. It should be noted in this context that the orientation of hemoglobin molecules 
in erythrocytes is not random. First indications of this fact were obtained some 30 years ago19, but were 
not widely disseminated by that time. More recently this fact was confirmed by several independent 
studies; see e.g. Ref. 20.

Results
1. We start with the denaturation curve of the human oxyhemoglobin at relative humidity 95% as shown 
in Fig. 3. The Young’s modulus E is stable between 25 °C and 36 °C and then decreases in discrete steps. 
In between of each step E is constant. We argue below that that these discrete steps are related to partial 
dissociation of the quaternary structure. The measured internal friction θ increases, because the structure 

Figure 1.  Schematic representation of the hemoglobin quaternary structure with four globular sub-
units (yellow color: α1, α2, β1, β2) and four heme groups (blue color). (Left) T-form, where the access 
to the oxygen binding sites of the heme groups is restricted and the overall structure is more compact; 
(Right) R-form with easier access to the heme groups by oxygen molecule O2 and a more loose structure. 
The cooperativity of hemoglobin during oxygen binding is related to the transition from the T form to the R 
form.
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breaking liberates new degrees of freedom that are able to dissipate the energy of forced oscillations; see 
Fig. 3.

But we could not perform the experiment for temperatures higher than 49 °C, because (at the employed 
excitation frequency ≃ 5 kHz of the plate oscillations) the crystals clove to pieces. The measurement of 
θ had to be terminated even earlier due to instability of results; see Fig. 3. The same breaking effect at 
49 °C was observed for crystals of horse hemoglobin prepared under the same relative humidity 95%. 

Figure 2.  Contacts between two deoxyhemoglobin molecules in monoclinic crystal at resolution 1.74 Å 
with parameters P(1 21 1), a = 63.15 Å, b = 83.59 Å, c = 53.80 Å, α = 90.0°, β = 99.3°, γ = 90.0°16,17. 
Red points represent water molecules from the first Langmuir adsorption layer. The relative humidity is 
95%–98%.

Figure 3.  The Young’s modulus and the logarithmic decrement of damping of the human hemoglobin 
under heating. The relative humidity is now 95%.
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This effect indicates the conformational changes taking place in the hemoglobin macromolecule. Recall 
in this context that deoxyhemoglobin crystals shatter after exposure to oxygen, since they cannot support 
a large conformational change related to the transition from deoxy to oxyhemoglobin12,13. The difference 
with our situation is that we work with oxyhemoglobin and that with us the crystals shatter after heating.

2. To understand this effect, we equilibrated our samples under lower relative humidity of 75% at 25 °C. 
This was expected to prevent strong instabilities in the crystal21, since inter-molecular contacts in the 
crystal get stronger due to less inter-molecular water (Fig.  2). Figure  4 displays the behavior of the 
Young’s modulus for the human and horse hemoglobin under heating at relative humidity 75%. Note 
that compared to the 95%-humidity, the absolute value of the Young’s modulus increased for about 8 
times; cf Fig. 4 with Fig. 3.

For temperatures from 20 °C to 49 °C the Young’s modulus E of the human hemoglobin decreases 
again in discrete steps. However, due to less inter-molecular water these steps are now shorter. Indeed, 
consider the temperature interval 25°–36 °C. For 95%-humidity E is constant there [see Fig. 3], but for 
75%-humidity it still makes one sudden change in this interval; see Fig.  4. Hence the inter-molecular 
water does stabilize the hemoglobin structure against dissociation, though it decreases the absolute value 
of E. For horse hemoglobin the decay of E for temperatures from 20 °C till 49 °C is more gradual, but the 
stepwise change is still visible; see Fig. 4.

3. But the temperature 49 °C is again a special one both for the human and horse hemoglobin; see 
Figs 4–6. In its vicinity, the Young’s modulus E changes abruptly. We prescribe these effects to the qua-
ternary structure of hemoglobin, since myoglobin which lacks this structure, but still has well-defined 
tertiary and secondary structure does not show this effect [see Figs 7 and 8 below]. Thus, it is plausible 
that certain degrees of freedom of the quaternary structure have long relaxation times. During gradual 
heating, they go out of equilibrium, accumulate energy in elastic deformations and then suddenly release 
this strain energy at 49 °C.

The abrupt change of the Young’s modulus for relative humidity 75% is clearly the same effect that is 
responsible for breaking the crystals at a higher relative humidity 95%, where inter-molecular contacts 
are weaker [see 1]. However, for the human hemoglobin E abruptly decreases at 49 °C, while for the horse 
hemoglobin it abruptly increases. We see that the precise type of the mechanical event—i.e., whether its 
Young’s modulus increases or decreases—depends on the type of hemoglobin (human or horse), but the 
temperature of the event is to a larger extent independent from the type, as Fig. 4 shows [we come back 
to this difference in 4]. It is also independent from the relative humidity, in contrast to the absolute value 
of E and the pattern of its change. Recall that hemoglobin crystals of human and horse have the same 
crystal structure (monoclinic), but the space groups and lattice sizes for these situations are different22,23; 
see Materials for more details.

Figure 5 presents the behavior of both θ and E for the horse hemoglobin. It is seen that in the imme-
diate vicinity of 49 °C, θ abruptly decreases basically to the value it had at ≃ 35 °C. This indicates that the 
degrees of freedom liberated during the previous melting stage get blocked again.

The evolution of E and θ under heating with temperatures higher than 50 °C is different: θ starts to 
grow again indicating a new trend in structure breaking; see Fig. 5. But E gradually increases for both 

Figure 4.  The Young’s modulus of the horse versus human hemoglobin. Both samples were prepared at 
the same initial temperature t =  25° and relative humidity 75%. The Young’s modulus at temperature t =  25°: 
Et=25° =  0.75 GN/m2 for the horse hemoglobin sample and Et=25° =  0.94 GN/m2 for the human sample.
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human and horse hemoglobin; see Fig. 4. We interpret this effect via the intra-tetrameric aggregation of 
partially denaturated monomers of hemoglobin, because such increase of E is absent for the monomeric 
myoglobin; see Fig. 7 below.

It is impossible to prescribe the event at 49 °C to the aggregation only, because the changes of E and 
θ take place within a too narrow temperature interval. We also cannot prescribe this effect to unfolding, 
since the decreasing θ indicates the ordering (rather than disordering) of certain degrees of freedom. 
Apparently, the only possibility left is that the event at 49 °C indicates the transition of the partially dena-
turated tetramer from the R-state to another conformational state with different visco-elastic features.

Figure 6 displays the heating-recooling dynamics of the human hemoglobin at relative humidity 95% 
around 49 °C. The effect is irreversible, but the initial value of E is roughly recovered for 30 °C, albeit 
the characteristic stepwise pattern of decreasing E under heating is not seen during the recooling. This 
indicates that the discrete steps relate to dissociation of the hemoglobin quaternary structure, which 
(as compared to the tertiary and secondary structures) is expected to be the most fragile one. Figure 6 
confirms that the event at 49 °C takes place in a partially unfolded state.

4. We now face a non-trivial situation: the event happens at the same temperature 49 °C for both horse 
and human hemoglobin. But, the behavior of the Young’s modulus is very different: it suddenly increases 
for the horse hemoglobin (more rigid structure for higher temperatures), but decreases for human 

Figure 5.  The normalized Young’s modulus E/Et=25° and the logarithmic decrement of damping, θ, 
versus temperature t for monoclinic crystals of horse hemoglobin. The relative humidity is 75%. The 
heating rate is 0.1 °C/min and Et=25° =  0.75 GN/m2.

Figure 6.  The Young’s modulus of the human hemoglobin under heating and re-cooling in the vicinity 
of 49 °C. The relative humidity is 95%. The heating rate is 0.1 °C/min. Temperature is smaller than 49 °C and 
Et=25° =  0.11 GN/m2.
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hemoglobin (less rigid). We repeated the experiment with several different samples, to be sure that the 
difference between human and horse hemoglobin is well reproduced.

It is well known that these two macromolecules differ by 20–25 amino acid residues on each hemo-
globin unit24. Due to such differences the horse hemoglobin has lower reactivity with respect to certain 
cofactors regulating oxygen binding25.

We conjecture that these biochemical differences are reflected in the mechanical features of hemo-
globin around 49 °C. The slow transformations that are responsible for the mechanical event at 49 °C are 
most probably the same for the horse and human hemoglobin, otherwise the temperature 49 °C could 
not be the same for both situations. But since the environments of these degrees of freedom in horse 
and human hemoglobin are different, we get a different overall response for horse and human situations.

5. For temperatures higher than 65 °C the Young’s modulus for the hemoglobin crystals [both for human 
and horse] abruptly decreases again (not shown on figures) indicating on its full denaturation. For such 
high temperatures we expect that even the secondary structure of the macromolecule is broken. Our 
experimental samples became unstable at temperatures higher than 70 °C, so that no reliable data could 
be extracted.

Figure 7.  The Young’s modulus E versus temperature t under heating and recooling for monoclinic 
crystals of sperm-whale myoglobin. The denaturation process is seen to be approximately reversible.

Figure 8.  The logarithmic decrement of damping, θ versus temperature t under heating and recooling 
for monoclinic crystals of sperm-whale myoglobin. 
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6. To gain more evidence on whether the described effect is specific for the tetrameric structure of 
hemoglobin, we performed the same experiment with the myoglobin crystals and showed the result 
in Fig. 7. Upon heating, the Young’s modulus E of the myoglobin decreases gradually, without discrete 
steps. This is consistent with breaking the tertiary structure of the myoglobin towards acquiring a more 
labile state. This also confirms that the discrete steps seen in Figs  3 and 4 relate to the dissociation of 
the quaternary structure, which is absent for myoglobin. Apart from relatively small non-monotonicity 
of E around 57 °C, the behavior of E is monotonic and reversible upon recooling. It is seen though that 
the reversibility is more visible for T >  57 °C than for lower temperatures, since at low temperatures E 
is more influenced by the well-defined myoglobin tertiary structure, which is not completely recovered 
after recooling. It is known that the calorimetric experiments for myoglobin show a well-displayed tran-
sition to a partially denaturated (molten) state, where its tertiary structure is partially lost; see5 for fur-
ther references. Depending on certain experimental conditions this happens around 60°–80 °C5. But the 
mechanical features of myoglobin do not change suddenly during this transition to the partially molten 
state. This corresponds with the behavior of the logarithmic decrement of damping for the myoglobin—
see Fig. 8— and is consistent with the gradual decrease of E with temperature; see Fig. 7.

Relations to previous work.  Several experimental studies were carried out via various methods 
(calorimetry, optics) on liquid-state samples displayed that something peculiar happens with hemoglo-
bin around 49 °C5–7. The authors of5 and6 prescribed the 49 °C event to the onset of aggregation. As we 
saw, this is correct, but essentially incomplete: the aggregation indeed starts around 49 °C, but there is 
certainly more there than simply aggregation. Artmann et al. found indications of conformational tran-
sitions (not reducible to aggregation) at 49 °C using optical methods on liquid state human hemoglobin7. 
This is close to our results. They extensively studied hemoglobin of other species and noted that the 
event correlates with the physiological temperature and relates to the motion of erythrocytes (red blood 
cells)7. They also suggested that the scenario of this conformational transition can be similar to the glass 
transition in polymers7. Also this suggestion is confirmed by our results, because the peak of the internal 
friction around transition temperature [see Fig. 5] is a known indication of the glass transition, as was 
employed recently for detecting the glass transition in collagen26,27; see also Ref. 15,28–31 in the context 
of glassy features of biopolymers.

Several decades ago it was conjectured that conformational changes related to biopolymer function-
ing proceed via mechanical motion of certain mesoscopic degrees of freedom32. This protein-machine 
conjecture was discussed in9, where certain aspects of the low-temperature kinetics of myoglobin were 
interpreted via proteinquakes: a sudden release of energy accumulated in elastic degrees of freedom. 
Later on, proteinquakes were found to be relevant for functioning of myosin10 and adenylate kinase11. 
An important aspect of this research was that proteinquakes were connected to partial unfolding of the 
biopolymer tertiary structure10,11. This agrees with our finding that the heating-induced force release at 
49 °C takes place in a partially unfolded state of hemoglobin.

Meanwhile the protein-machine conjecture was supported from another angle: not only the protein 
functioning resembles that of a machine, but also the performance of an optimal (high efficiency and a 
large power) heat engine—as described by a generalized Carnot cycle—has shown deep analogies with 
protein physics and the folding-unfolding transition33.

Discussion
Our main message is that upon temperature elevation horse and human hemoglobins experience a con-
formational transition around 49 °C detectable via suddenly changing Young’s modulus and decreasing 
internal friction. We argued that this is a mechanical event and that it cannot be traced back to dena-
turation and/or aggregation. The precise scenario of the event—but not its temperature—appears to be 
dependent on the type of hemoglobin. We conjectured that this difference relates to structural differences 
in the horse and human hemoglobin.

The message of our results for the hemoglobin functioning is that its mechanical features can be trig-
gered by temperature in addition to other pertinent factors such as pH or oxygen concentration. In par-
ticular, our results can turn out to be relevant for understanding the process of oxygen release, because 
in tissues the oxygen release should take place much faster than the oxygen consumption in lungs.

Note that the global temperatures ≥ 42 °C are lethal for humans and horses. However, the local tem-
perature can easily go to values higher than 42 °C without causing any serious damage to living tissues. 
A pertinent example is the hyperthermia treatment of cancer, where the local temperature goes to values 
higher than 45–48 °C without destroying healthy tissues. Recall as well that the orientation of hemoglo-
bin molecules in erythrocytes is not random (in that respect they are similar to protein crystals)19,20.

In conclusion, we reiterate that the main experimental result of this work—force reease in heated 
hemoglobin—can be interpreted as a sudden, temperature-controlled mechanic motion. The mechanic 
character of this motion is to be compared with the fact that certain features of proteins may well have 
glassy properties. Recall that the glassy state is yet another (different from a mechanic motion) form of 
non-equilibrium that is characterized by slow relaxation and strong memory effects34–36. By now there 
are many experimental and numerical indications of such a state in biopolymers15,26–31. It should be 
interesting to carry out a direct experiments and study in which specific way the glassy state in proteins 
coexists with the mechanic motion.
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Methods
Materials.  Monoclinic crystals of horse and human hemoglobin were grown following the modified 
method of Drabkin37–39. Drabkin uncovered that hemoglobin crystals vary from one species to another, 
e.g. they are different for dog, horse and human. He also showed that hemoglobin crystalizes in three 
systems (syngonies): monoclinic, rhombic and hexagonal37–39. For our micro-mechanical experiments 
only the monoclinic is suitable, because we need pinacoid crystals samples.

Our solution contained 33 mg/ml oxyhemoglobin, 1% sodium oxalate, 0.9 M potassium phosphate 
and had pH =  6.5. It was poured on glass weighing cups, which were put inside the crystallization cham-
ber. At the bottom of the chamber we poured a solution of 3% sodium oxalate and 2.7 M potassium 
phosphate (pH =  6.5). Crystallization was processed under 4–6 °C for several months. The crystals came 
out as thin rhomboids with the length around L =  4 mm, width b =  0.05 mm and thickness h =  0.005 mm 
(we stress that different crystal samples have slightly different values of L, b and h, what are given here 
are the characteristic values). This form did not differ from that described in Ref. 37 where the crystal-
lization was processed in the presence of sodium oxalate and (NH4)2SO4. The obtained crystals can be 
utilized directly (without fixation) for our micromechanical experiments. A typical structure is shown in  
Fig. 216,17. Monoclinic crystals of sperm-whale myoglobin were grown following the method of Ref. 40.

Note that hemoglobin crystals of human and horse have the same crystal structure (monoclinic), 
but the space groups and lattice sizes for these situations are different. Here we briefly recall the X-ray 
diffraction data22,23 obtained with resolution of ≈ 2 Å. For horse hemoglobin the space group is C2221, 
while the unit cell parameters (in Å): a =  76.96, b =  81.70, c =  92.6322. For human hemoglobin the space 
group is P21212A, and the unit cell parameters are a =  97.05, b =  99.50, c =  66.1123. The horse and human 
hemoglobin crystals also differ by their salt content.

Experimental methods.  The dynamic Young’s modulus E and the logarithmic decrement of damp-
ing θ for hemoglobin and myoglobin crystals were studied via the method described in15,41. The method 
is based on analyzing electrically induced transverse mechanical oscillations of the plate which is fixed 
by a cantilever. The dynamic Young’s modulus measures the elasticity degree. To measure E, one changes 
smoothly the frequency f of the induced oscillations to determine experimentally the basic resonance 
frequency f0, which corresponds to the maximal oscillation amplitude of plate’s loose end. The Young’s 
modulus for the long axial direction of the plate is given as42

ρ
= . , ( )E

f L S

I
3 19 1

0
2 4

where L is the length of sample, S =  bh is the cross-section area of the plate, ρ is its density, and I =  bh3/12 
is the main inertia moment of the plate.

The logarithmic decrement of damping θ is used as a measure of the internal friction, and is defined 
as θ = ( )/ ( + )A t A t Tln[ ], where A(t) is the oscillation amplitude in time t, and T is the period. θ is 
measurable by two related methods. One can measure the length of the resonance curve and calculate θ 
according to: θ π= Δ /f f 0, where Δ f is the difference of frequencies between the oscillation amplitude 
at the maximum amplitude and 2  times less than the maximum. A more precise determination method 
amounts to measuring the phase shifts between the oscillations of exciting force and the sample loose 
end15,41.
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