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Emergence of multicluster chimera 
states
Nan Yao1,2, Zi-Gang Huang2,3, Celso Grebogi4 & Ying-Cheng Lai2,4,5

A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the 
structurally and dynamically identical oscillators in a coupled networked system spontaneously 
break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon 
was typically studied in the setting of non-local coupling configurations. We ask what can happen 
to chimera states under systematic changes to the network structure when links are removed from 
the network in an orderly fashion but the local coupling topology remains invariant with respect to 
an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter 
characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters 
emerge and persist in different parameter regions. We develop a phenomenological theory, based 
on enhanced or reduced interactions among oscillators in different spatial groups, to explain why 
chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical 
prediction agrees well with numerics.

The collective behaviors of systems of coupled oscillators have been a topic of continuous interest1–3. 
A class of oscillator systems is those with non-local interactions, which arise in realistic systems such 
as Josephson-junction arrays4 and chemical oscillators5,6. A phenomenon of recent interest is chimera 
states7–41, in which different subsets of the completely identical oscillators exhibit completely distinct 
dynamical behaviors, e.g., synchronization or incoherent oscillations. In the past decade, chimera states 
were observed in, e.g., regular networks of phase-coupled oscillators with ring topology7–9, regular 
networks hosting a few populations10,15, and two-dimensional lattice6,16 or torus34,21. Issues that were 
addressed include transient behavior of chimera states17–19, control26, the effects of time delay14,11,40, phase 
lags22, and coupling functions27–29. Theoretically, two approaches were developed to analyze and under-
stand the dynamical origin of chimera states: self-consistency equation7–9 and partial differential equa-
tion (PDE)42,43. Quite recently, the effects of random perturbation and complex topologies of coupling 
on chimera states were investigated23,30,37. Experimentally, chimera states were observed in a system of 
chemical oscillators24,31, in an optical system25, in coupled mechanical oscillators32, and in electrochem-
ical systems33,36. Other natural phenomena such as unihemispheric sleep44,45, neural spikes46,47, and ven-
tricular fibrillations48 are among those associated with chimera states. We note that, while the term of 
chimera states first appeared about a decade ago7,8, their signatures were actually observed earlier49 from 
the spatiotemporal evolution of a system of coupled nonlinear oscillators and the phenomenon was 
named “domain-like spatial structure”.

While a chimera state is commonly referred to as the situation where two dynamically distinct states 
coexist in different regions of the physical space, in certain particular settings more than two coexisting 
states can occur, e.g., in systems with time delay11,14, phase lags22, or special coupling functions27–29. Such 
a situation is typically characterized by the emergence of multiple clusters in the physical space, each 
being associated with a specific region. For convenience, we use the name “multicluster chimera states”. 
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Because of the special system setting required for such states to occur, their generality or “typicality” in 
realistic physical systems becomes an interesting issue.

In this paper, we demonstrate that multicluster chimera states can occur commonly in the “tradi-
tional” setting of Kuramoto networks of phase coupled oscillators, without the need to impose special 
dynamical features on time delay, phase lag, or special coupling function differing from that associated 
with the classical Kuramoto model. In fact, perturbing the coupling configuration23,30 can lead to the 
emergence of various multicluster chimera states with rich spatiotemporal dynamical patterns. In par-
ticular, starting from the classical, non-locally coupled Kuramoto oscillator network, we systematically 
remove a small number of links. As the fraction of the removed links is increased from zero, chimera 
states with different number (denoted by m) of clusters emerge, i.e., become stable, and then disappear 
(become unstable). An interesting phenomenon is that, certain m-cluster chimera states can undergo 
a period-doubling like bifurcation to states with 2m clusters. We propose a phenomenological theory, 
based on the intuitive idea of mutual enhancement among oscillator subsets exhibiting similar dynamical 
behaviors in space, to explain the “bifurcation” behavior of chimera states with distinct spatiotemporal 
patterns. The theory predicts correctly key features such as the emergent order of m-cluster chimera 
states, the corresponding region of the topology parameter, and the possible m values for the occurrence 
of cluster doubling. Our results imply that multicluster chimera states can occur in non-locally coupled 
oscillator networks more commonly than previously thought.

Results
Model. We consider a one-dimensional network of N non-locally coupled, identical phase oscillators 
with periodic boundary condition (the ring configuration). The system is mathematically described as
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where φ(xi) is the phase of the ith oscillator at position xi. For convenience, we choose the range of 
the spatial variable to be [− π,π]. Since the oscillators are identical, the natural velocity and phase lag 
parameter, ω and α, respectively, are chosen to be constants that do not depend on the spatial location 
of the oscillator. Without loss of generality, we set ω =  0 and choose α  <  π/2. The kernel G(xi −  xj) =  [1 
+  Acos(xi −  xj)]/(2π) is a non-negative even function that characterizes the non-local coupling among 
all the oscillators. The quantity cij is the ij th element of the N ×  N coupling matrix C, where Cij =  1 if 
there is coupling from the jth oscillator to the i th oscillator, and Cij =  0 indicates the absence of such 
coupling. We systematically remove certain fraction of links from every node, while ensuring that all 
nodes remain identical and structurally indistinguishable. To do this we introduce a tunable topological 
parameter η =  2L/N (L =  1, . . . , N/2), the fraction of neighbors removed for any given oscillator, where L 
denotes the number of removed links from each side of the node. We have Cij =  0 for j =  i −  L, . . . , i +  L. 
The connection pattern of a node after link removal is shown in Fig. 1, where the node was originally 
connected to all other nodes in the network, and link removal is carried out in the order of increasing 
distance from this node.

The network dynamics can be characterized by the following complex order parameter Z, defined7 
for oscillator i as

Z x R x e
N

c G x x e2

2
i i

i x

j

N

ij i j
x

1

ii j∑π( ) ≡ ( ) = ( − ) ,
( )

θΘ( )

=

( )

where the phase of the oscillator is written as θ =  φ − Ω t, and Ω  denotes the velocity of the oscillators 
in the coherent subset when a chimera state emerges. Theoretical insights into the chimera states can be 
obtained by resorting to the continuum limit N →  ∞ to reduce the system to one described by PDE42,43, 
where the state of the system is characterized by a probability density function f(x, φ, t) that satisfies the 
continuity equation
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and v is phase velocity13. The function f(x, φ, t) can be expressed in terms of Fourier series expansion as
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where “c.c.” stands for the complex conjugate of the previous term, and the nth coefficient is the nth 
power of some function h(x, t) that effectively characterizes the state of the system. The time evolution 
of h(x, t) associated with the order parameter Z(x, t) is42,43
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G x x
x x

A x x
x x

0
1 cos

2 6

πη

π
πη π

( − ′) =










, − ′ ≤ ,

+ ( − ′)
, < − ′ ≤ ,

( )

taking into account the deletion of the nearby η fraction of couplings. The modulus of the order param-
eter, R x t Z x t( , ) = ( , ) , can be obtained from the numerical solution of Eq. (5).

Numerical findings and interpretation. Numerically, we observe a variety of rich phenomena 
when links are systematically removed. In particular, using the real order parameter R(x, t), we can 
identify the emergence of multiple cluster chimera states, where each cluster corresponds to a coherent 
group of oscillators. Figure 2 shows the spatiotemporal patterns of the emergent m-cluster chimera states 
for different intervals of η, which indicates that the emergence of the chimera-state patterns is robust 
with respect to reasonable variations of these parameters. In the simulations, the system parameters are 
A =  0.995 and α =  1.39, and the initial condition is generated8,9 using the function φ(x) =  6r exp(− 0.76x2), 
where r is a random variable uniformly distributed in [− 1/2,1/2]. In fact, the results obtained from direct 
simulations of Eq.  (1) for finite-size networks and from the PDE approach [Eq.  (5)] in the continuum 
limit N →  ∞ agree with each other with similar spatiotemporal patterns. As shown in the inset of 
Fig. 2(b), the degree of synchrony as characterized by R  for different η values differs by orders of mag-
nitude. For clarity, we use different color bars to distinguish the magnitudes of the spatiotemporal 

Figure 1. Nodal connection structure after link removal. For any node in the network, removal of links 
starts from the nodes with the minimum distance to it (colored by red).
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patterns in different panels. As η is increased, the number m of clusters undergoes changes from 4 to 3 
(or 3&6), to 5 (or 5&10), to 7, and to 9, etc. Here the 3&6 state (or the 5&10 state) is a state that switches 
between 3-cluster and 6-cluster (or between 5-cluster and 10-cluster) chimera behaviors.

Figure 2. Spatiotemporal patterns associated with multicluster chimera states after link removal. (a,c) 
Typical spatiotemporal patterns of the order parameter R for different values of η, a parameter characterizing 
the extent of link removal. The magnitudes for different panels are indicated using the respective color bars. 
The results are obtained for parameters A =  0.995 and α =  1.39 and system size N =  256, and for over 2 ×  105 
time steps. The values of η for different panels are (a) 0.43, 0.70, 0.75, 0.80, 0.87, and (c) 0.46, 0.54, 0.59, 
0.66, 0.68 from left to right, respectively. (b) Difference in the order parameter, R∆ , between the m-cluster 
chimera state and the corresponding hypothetical synchronous state, where the values of the average order 
parameter R  are displayed in the inset. The order parameters calculated through direct simulation of 
Eq. (1) (red pluses) and from the PDE Eq. (5) (blue circles) agree well with each other. The number of 
clusters emerged as η is increased is m =  4, 3, 5, 7, 9, and so on, and they are distinguished using white and 
gray backgrounds.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:12988 | DOi: 10.1038/srep12988

To better understand the impact of multicluster chimera states on global coherence of the system, we 
calculate the average order parameter R  over time and space. For a hypothetical system of the same 
structure but exhibiting global synchronization, R  is given by

R G x dx1 2 7s
0∫= − ( ) , ( )
πη

which serves as a reference to characterize the system’s coherence. We can then examine the difference 
R R Rs∆ = − , in different regions of m [differentiated using different background colors in 

Fig.  2(b)], to quantify the degree of coherence as compared with the synchronized reference state. In 
general, the coherence of the m-cluster chimera state is weaker than that of the global synchronization 
state, so the maximum value of R∆  is zero.

In the small neighborhood of zero η value, the observed states are conventional chimera states con-
sisting of a coherent and an incoherent clusters. For η ~ 0.4, 4-cluster chimera states emerge. In the 
4-cluster region [m =  4 region in Fig. 2(b)], the value of R∆  increases with η, which can be attributed 
to the increasing fraction of coherent groups, as demonstrated by the red color in the spatiotemporal 
patterns [first panel in Fig.  2(a)]. The behaviors in subsequent parameter regions are richer and more 
complicated. In particular, the 3-cluster chimera states for small values of η are stable and regular as the 
4-cluster chimera states. As η is increased further, the 3-cluster configuration becomes unstable and 
evolves eventually to global synchronization. In the 3-cluster region, various other states can emerge, 
which include (in successive order) stable regular 3-cluster states, transient 3-cluster states toward global 
synchronization, 6π-twisted states and 3&6 cluster double-state switching process, cluster drift states, and 
so on. One remarkable phenomenon is spatial period doubling (or spatial cluster doubling) in the 
3-cluster region, in which each cluster bifurcates into two clusters and a 6-cluster chimera state emerges 
consequently, as shown in Fig. 2(c) (2nd and 3rd panels). The 6-cluster chimera states are unstable and 
can evolve into 6π-twisted states, as shown in the 2nd panel in Fig. 2(c), which will be further discussed 
in Fig. 3. Analogous to chemical oscillating reactions50, self-organized double-state switching processes 
are observed, in which the 3-cluster and 6-cluster chimera states appear and disappear alternatively, 

Figure 3. Different final states associated with a multicluster chimera state. For the ring network system 
of size N =  256, spatiotemporal patterns of the order parameter R, instantaneous phase φ and short-term 
average velocity v for: (a) a stable 4-cluster chimera state, (b) a transient 3-cluster chimera state evolving 
into a globally synchronous state, and (c,d) transient 3-cluster and 6-cluster chimera states evolving into 
a 6π-twisted state, respectively. The phase φ at several instants and the corresponding short-term average 
phase velocity v (temporal average over a time window with length 104) are displayed to demonstrate 
the dynamical processes, e.g., global synchronization at t2 in (b), 6-cluster chimera states at t1, and the 
twisted states at t3 in (c,d). The results in (a–d) are obtained from Eq. (1) for η =  0.43, 0.48, 0.55, and 0.54, 
respectively.
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leading to spatiotemporal patterns of switching between the two states. The switching process also takes 
place in the 5-cluster region, where the system alternates between 5-cluster and 10-cluster chimera states, 
as shown in the 3rd panel in Fig. 2(a). Overall, as η is increased in the 3-cluster region, the resulting state 
is a cluster drifting state with strong intrinsic correlation in the spatiotemporal dynamics, as characterized 
by harmonically temporal breathing and spatial drifting of the coherent and incoherent groups [4th panel 
in Fig. 2(c)].

Chimera states with m =  5, 7, and 9 clusters emerge as η is increased further. In the 5-cluster region, 
the breathing and spatial period doubling phenomena are also present, as shown in Fig. 2(a) (2nd and 
3rd panels). At the boundary between the two neighboring m regions shown in Fig.  2(b), the system 
with different initial phase configurations can evolve into either of the two m states, leading to fuzziness 
of the boundary.

As shown in Fig. 2, the destinations of the system can be a stable chimera state, or transient and finally 
reaching a globally coherent state such as synchronization or a coherent twisted state. Deviations from 
the structures that sustain the m-cluster patterns will make the m-cluster chimera state transient (a 
detailed analysis will be given in Methods). Figure  3 shows the spatiotemporal patterns of the order 
parameter R, instant phase φ and the average velocity v associated with a stable chimera state, a transient 
3-cluster chimera state evolving into global synchronization, and two examples of transient 3&6-cluster 
chimera states evolving into coherent 6π-twisted states51 that are phase-locked states with the phase 
difference between neighboring oscillators on the ring to be 2mπ/N. From the patterns of the order 
parameter R(x, t) in Fig. 3(b–d), we see that the oscillators in the globally coherent state have a identical 
constant value of R. The R values associated with the twisted states are smaller than that associated with 
global synchronization. The order parameter of an ideal twisted state can also be obtained from Eq. (2), 
and the difference R∆  from that of a synchronous state is plotted in Fig. 2(b) (gray solid curve) in the 
m =  3 region.

The heuristic reason that a transient chimera state can evolve into either a globally synchronous state 
or a coherent phase-twisted state can be seen, as follows. The coherent groups (separated by the incoher-
ent groups) in the m-cluster chimera state (with m =  4, 3, 5, 7 and so on) are found to be synchronized 
with each other. However, for the 2m-cluster chimera state “bifurcated” from the m-cluster chimera 
state, each pair of the nearby coherent groups have opposite phase φ but the same velocity v. Intuitively, 
for the first case of m synchronized clusters, global coherence of the system tends to increase when the 
coherence groups are enlarged, and the incoherent oscillators will consequently join the synchronized 
groups. As a result, global synchronization finally sets in, replacing the m-cluster chimera state. For the 
case of coherent phase-twisted state, the 2m-cluster chimera state is composed of opposite-phase coher-
ence groups with large phase differences, as exemplified in Fig. 3(c,d) at time t1. The interaction between 
the coherent and incoherent groups can cause the phases of the oscillators to have uniform and ordered 
arrangement in each of the m clusters so that the 2mπ-twisted state will finally replace the 2m-cluster 
chimera state.

Discussion
The discovery of the counterintuitive phenomenon of chimera states in coupled dynamical networks was 
remarkable6–8,49. In a spatially extended system of coupled, completely identical oscillators, depending on 
the coupling parameter the oscillators form two distinguished groups in space, where one group exhibits 
a highly coherent behavior while oscillators belonging to the complementary group are incoherent. The 
coherent and incoherent behaviors emerge as a single state of the underlying dynamical system, which is 
quite different from the phenomenon of multistability in nonlinear dynamical systems52,53. Often, a non-
linear dynamical system can exhibit multiple coexisting attractors, each with its own basin of attraction. 
Starting from a random initial condition the system approaches one particular attractor that can be a 
stable fixed point, periodic, quasiperiodic, or chaotic. The key difference from the chimera states is that, 
from a single initial condition the asymptotic state of the system cannot simultaneously exhibit more 
than one of these traits. Most existing works on chimera states focused on the setting of fully connected, 
non-local coupling configurations, in which the oscillators of the system typically are self-organized into 
a coherent and an incoherent groups. The question that we address in this paper is what can happen to 
the chimera states when structural deviations from the fully connected coupling configuration occur in 
a systematic fashion.

Our main finding is that, as links are removed from the network in an orderly fashion, multicluster 
chimera states can emerge. Especially, for any node in the network, we systematically remove a given 
fraction of links, starting from the nearest neighbors. The network is still regular under such structural 
changes, because the number of links remains identical for every node. A surprising result is that, as 
the fraction of the orderly removed links is increased, chimera states consisting of different numbers 
of spatial clusters are observed in different intervals of the link-removal parameter. While the order 
of emergence of such distinct chimera states appears to be somewhat irregular, we find that it can be 
explained by the mechanism of enhanced or reduced interactions among different groups of oscillators 
through a phenomenological theory (see Methods). Especially, by hypothesizing a simple, binary type 
of interaction between any pair of oscillators, we can determine the number of clusters embedded in the 
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chimera state for any given value of the link-removal parameter, with remarkable agreement with the 
numerical results.

We note that, when links are randomly removed from the network so that it becomes somewhat 
random, in a statistical sense chimera states can persist if the fraction of the removed links is relatively 

Figure 4. Mutual enhancement and formation of multicluster chimera states. (a) Schematic illustration 
of m =  3 cluster chimera states in certain range of η. The colors represent the values of the order parameter 
R and the regions centered with red and blue colors correspond to coherent and incoherent groups of 
oscillators, respectively. The reference oscillator for calculating the enhancement factor I is the bottom node 
at the center of the coherent group. (b) Enhancement factor I for the reference oscillator as a function of 
η, for different values of m. The regions of maximum I values among the different m curves are specified 
as bold lines, which can be regarded, approximately, as the regions in which the corresponding m-cluster 
chimera states emerge. (c) Regions of m-cluster chimera states predicted by our mutual-enhancement theory 
(the colored thick horizontal lines at different m levels), including the main regions m =  4, 3, 5, 7, and 9, 
and the two subregions with 3&6-cluster and 5&10-cluster chimera states. The white and gray backgrounds 
have the same meaning as those in Fig. 2, i.e., they denote the regions of m-cluster chimera states, which 
are obtained from both simulation of Eq. (1) and solution of Eq. (5). The subregions for 3&6-cluster and 
5&10-cluster chimera states obtained from Eqs (1) and (5) are also specified with the thin black vertical lines 
and the corresponding notations.
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small23,30. In such a case the observed chimera states consist typically of two clusters. In this regard, a recent 
work by Omelchenko et al.54 studied the robustness of chimera states for coupled FitzHugh-Nagumo 
oscillator networks. The main finding is that gaps in the coupling matrix can result in a change in the 
multiplicity of the incoherent regions associated with the chimera state. However, to our knowledge, the 
orderly emergence of multicluster chimera states under systematic link removal, as uncovered in this 
paper, has not been reported before. It would be interesting if such exotic chimera states can be observed 
in experiments.

Methods
We develop a phenomenological theory to understand the emergence of multicluster chimera states and 
their stabilities. As we find numerically, the clusters emerge according to the order m =  4, 3, 5, and a 
few subsequent odd numbers as the parameter η is increased. Through extensive simulation with differ-
ent initial phase configurations, we observe that mutual enhancement between coherent (or incoherent) 
groups of oscillators in the network is key to emergence of multicluster chimera states.

To gain insight into the mechanism of mutual enhancement, we analyze the stability of the coherent 
(or incoherent) groups in an idealized m-cluster chimera state. For a given coherent group, the contri-
bution to the coupling from oscillators in other coherent groups tends to stabilize the state (a positive 
effect), while that from oscillators in the incoherent groups plays the opposite role (a negative effect). 
For an incoherent group, the effects of other coexisting coherent and incoherent groups are negative 
and positive, respectively. That is, oscillators in the like groups (coherent versus coherent or incoherent 
versus incoherent) tend to enhance each other’s stability, while those in the unlike groups (coherent ver-
sus incoherent or vice versa) tend to destabilize each other. To be concrete and quantitative, we define 

Figure 5. Enhancement factor and predicted regions of multicluster chimera states for exponential 
coupling kernel. (a) Enhancement factor I as a function of η for different values of m. The regions of 
maximum I values among the different m curves (specified as bold lines) are the regions in which the 
corresponding m-cluster chimera states emerge. (b) Regions of m-cluster chimera states predicted by 
the mutual-enhancement theory (the colored thick horizontal lines at different m levels), including the 
main regions m =  3 and 2, and the subregion 2&4 for the 2&4-cluster chimera states. The gray and 
white backgrounds denote the regions of the m-cluster chimera states obtained from Eq. (1) and Eq. (5), 
respectively. The subregion for the 2&4-cluster chimera states obtained from Eqs (1) and (5) is within 
η =  0.76 and 0.91 as marked by the two thin black vertical lines. The exponential coupling kernel has κ =  4, 
and the phase lag is α =  1.457.
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an enhancement factor I(η) that depends on the system parameter η and assume that, for an oscillator 
in the coherent group, the contribution from each coherent-group oscillator is + 1, while that from an 
incoherent-group oscillator is − 1. Consider the oscillator at the center of a coherent group, e.g., the 
bottom oscillator in Fig.  4(a). The total contribution from other oscillators to the enhancement factor 
for this oscillator is

I G x x C x dx2
8ref∫η( ) = ( − ) ⋅ ( ) ,
( )ηπ

π

where the contribution of the oscillator located at x is C(x) =  ± 1, depending on whether the oscillator 
at x is in a like or an unlike group with respect to the group of the reference oscillator located at xref, 
and the coupling kernel G(xref −  x) is effectively the weight of the contribution. Figure  4(b) shows the 
enhancement factor I associated with the reference oscillator as a function of η, calculated from the pat-
terns of different m-cluster chimera states. In addition, the enhancement factor I of the oscillator at the 
center of an incoherent group exhibits the same behavior. The mutual enhancement factor is increased 
(or decreased) as more (or fewer) groups of the same kind are involved for different values of η.

The dependence of the maximum enhancement factor, Imax, among those for different m values on 
the parameter η are marked by the bold curves in Fig. 4(b). We see that the variation of Imax follows the 
same sequence as that for emergence of m-cluster chimera states, i.e., m =  4, 3, 5, 7, and so on. For a 
given coupling structure as determined by η, the pattern with the maximum enhancement factor will 
“stand out” in the competition among patterns of different m values. The estimated η region for each 
m-cluster chimera state can be predicted through the corresponding region of each m with the maximum 
enhancement factor. Figure  4(c) shows the estimated regions for each m-cluster chimera state (thick 
straight lines) and the corresponding regions obtained through direct simulations and PDE (gray and 
white backgrounds as in Fig. 2). We see that our estimation of the parameter region in which m-cluster 
chimera states occur based on the maximum enhancement factor agrees well with the simulation results, 
including the order of m that emerges with increased η and the region of η for each m. The agreement 
indicates that our phenomenological theory based on mutual enhancement to explain the occurrence of 
m-cluster chimera state captures the essential dynamics of the emergence of the exotic states.

Our theory is also effective at predicting the emergence of 2m-cluster chimera states from the 
m-cluster background, through the behavior of the second-largest enhancement factor, where the corre-
sponding state can emerge when it possesses the spatial symmetry as that of the maximum-I state. For 
example, for the m =  3 maximum-I region, the second-largest I cluster is associated with the m =  4, 7, 10, 
6, and 5 states as η is increased. However, only the m =  6 state has the same spatial symmetry as that of 
the m =  3 background state. For the m =  5 maximum-I region, the second-largest I states are m =  3, 10, 
and 7, but the state that has the same spatial symmetry as that of the m =  5 state is the m =  10 state. As 
shown in Fig. 2, the emergence of 6-cluster (or 10-cluster) chimera states from the 3-cluster (or 5-cluster) 
background chimera states is observed. However, for the m =  4 region, the second largest values of I 

Figure 6. Representative spatiotemporal patterns for exponential coupling kernel. The values of η for 
(a–d) are 0.51, 0.67, 0.72, and 0.79, respectively. The exponential coupling kernel has κ =  4, and the phase 
lag is α =  1.457.
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Figure 7. Enhancement factor and predicted regions of multicluster chimera states for rectangular 
coupling kernel. Enhancement factor I as a function of η for different values of m. The regions of maximum 
I values among the different m curves (specified as bold lines) are the regions in which the corresponding 
m-cluster chimera states emerge. The results in (a) are for N =  1024 and γ =  0.6, and those in (b) are for 
N =  512 and γ =  0.8.

correspond to the m =  5, 9, and 3 states that have different spatial symmetry than that of the m =  8 state. 
As a result, no 2m-cluster can arise from the m =  4 state.

The fuzzy boundary between different m regions in Fig.  2 can be understood based on our mutual 
enhancement theory: at the boundary the m-cluster chimera state no longer possesses the maximum I 
value. For example, around the boundary of m =  4 and 3, the two chimera states have similar values of 
I, and therefore both are likely to emerge.

Since the coupling structure of the oscillator system, as controlled by the parameter η, is regular, the-
oretical analysis of pattern formation can be carried out by using the continuity equation Eq. (3) and the 
concept of invariant manifold42,43. In this approach, various multi-cluster patterns correspond to rotat-
ing wave solutions of the underlying infinite-dimensional dynamical equation. A systematic analysis39 
led to a number of results with respect to the general coupling function G(x) in Eq.  (1). For example, 
every non-zero harmonic term in the Fourier series of G(x) gives rise to a number of solutions. A more 
recent work41 discussed the simple case where G(x) is a purely harmonic function, e.g., cos(kx), or a 
superposition of two harmonics in the form of cos(kx) +  cos[(k +  1)x], with k being an arbitrary positive 
integer. The piecewise smooth coupling function G(x) employed in our present work, however, consists 
of an infinite number of harmonics. In this case, it is not clear whether a mathematical theory can be 
developed to analyze the pattern formation process. Because of this difficulty, we resort to developing a 
phenomenological theory, in which the value of I(η) effectively determines, in a self-consistent manner, 
the emergence of m-cluster patterns in the continuum limit, as exemplified in Fig. 4. This approach yields 
results that agree well with those from direct numerical simulations, despite the fact that our analysis 
based on I(η) takes into account only the coarse-grained configuration of multi-cluster patterns formed 
due to the mutual interactions between oscillators in distinct spatial regions.

To demonstrate the general applicability of our mutual-enhancement theory with respect to the choice 
of different coupling kernels, we have studied the case of normalized exponential coupling kernel

G x x x xexp 9i j i j( )κ( − ) ∝ − − , ( )



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:12988 | DOi: 10.1038/srep12988

where xi and xj run from 0 to 1 with periodic boundary condition7. Figure 5(a) presents the curves of 
I(η) from Eq. (8) with integral interval [η, 1], while Fig. 5(b) compares the prediction (the colored thick 
horizontal lines) with results from simulations of Eq.  (1) (the gray and white regions). We observe a 
good agreement. The corresponding spatiotemporal patterns for a representative set of η values (0.51, 
0.67, 0.72, and 0.79) are shown in Fig. 6.

Furthermore, we have studied the case of rectangular coupling kernel

G x x
x x1

2
0 others 10

i j
i jγ

γ
( − ) =









, − ≤ ,

, , ( )

where xi and xj run from − 1 to 1 with periodic boundary condition, and g [0 1]∈ ,  is a parameter char-
acterizing the width of the coupling range for oscillators. The behaviors of I(η) and a number of typical 
spatiotemporal patterns are shown in Fig. 7(a,b), for γ =  0.6 and 0.8, respectively. The results are essen-
tially the same as those for the case of sinusoidal coupling function, demonstrating the general applica-
bility of our mutual-enhancement theory.
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