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Chromatin states modify network 
motifs contributing to cell-specific 
functions
Hongying Zhao1, Tingting Liu1, Ling Liu1, Guanxiong Zhang1, Lin Pang1, Fulong Yu1, 
Huihui Fan1, Yanyan Ping1, Li Wang1, Chaohan Xu1, Yun Xiao1,2 & Xia Li1

Epigenetic modification can affect many important biological processes, such as cell proliferation and 
apoptosis. It can alter chromatin conformation and contribute to gene regulation. To investigate how 
chromatin states associated with network motifs, we assembled chromatin state-modified regulatory 
networks by combining 269 ChIP-seq data and chromatin states in four cell types. We found that 
many chromatin states were significantly associated with network motifs, especially for feedforward 
loops (FFLs). These distinct chromatin state compositions contribute to different expression levels 
and translational control of targets in FFLs. Strikingly, the chromatin state-modified FFLs were highly 
cell-specific and, to a large extent, determined cell-selective functions, such as the embryonic stem 
cell-specific bivalent modification-related FFL with an important role in poising developmentally 
important genes for expression. Besides, comparisons of chromatin state-modified FFLs between 
cancerous/stem and primary cell lines revealed specific type of chromatin state alterations that 
may act together with motif structural changes cooperatively contribute to cell-to-cell functional 
differences. Combination of these alterations could be helpful in prioritizing candidate genes. 
Together, this work highlights that a dynamic epigenetic dimension can help network motifs to 
control cell-specific functions.

Epigenetics has become one of the most promising and expanding fields in current biological researches. 
Diverse post-translational modifications in the tails of histone proteins have been validated to exert 
important functions in modulating gene expression and be involved in many biological processes, such 
as development and cell proliferation1. Distinct histone modifications can give rise to active or repressed 
states of key regulatory elements, such as H3K4me3-marked active promoters and H3K27me3-marked 
silent regions, contributing to regulation of gene expression. Such properties of epigenetic marks have 
been successfully used to comprehensively identify various regulatory elements through characterizing 
chromatin states across the human genome2. Accumulating evidence further indicates that regulatory 
elements marked by different epigenetic modifications can lead to open or closed chromatin conforma-
tions, thereby regulating the accessibility of regulatory elements and influencing transcription factor (TF) 
binding3. In parallel, recent studies also revealed that TF binding can accompany specific chromatin state 
changes by the recruitment of chromatin modification complexes.

A limited cohort of TFs regulating a large variety of targets form complex transcriptional regulatory 
networks for precisely and globally organizing gene expression4. Extensive studies have demonstrated 
that a small set of circuits exhibit much higher frequencies than expected at random. Such recurring 
circuits in regulatory networks have been termed network motifs. One of the most important network 
motifs is feedforward loop (FFL), in which a primary TF regulates a secondary one, and both target a 
final gene. FFLs play important roles in regulation of most cellular pathways.
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Thus, we assume that specific chromatin modifications can influence FFL regulation, and subsequently 
contribute to biological functions. To address this hypothesis, we constructed chromatin state-modified 
regulatory networks in which nodes were labeled with different chromatin states. We searched for signif-
icant chromatin state-modified network motifs in different cell types and investigated their expression-, 
dynamic- and function-related properties. We found that FFLs coupled with diverse chromatin states 
were highly cell selective, and were associated with maintenance of cell-specific functions. We also found 
that cell-cell differences were partly dependent on specific chromatin state changes in specific types of 
motifs. Our results suggest that chromatin states appear indispensable for insights into how network 
motifs are involved in transcription regulation. Based on the important roles of chromatin states in net-
work motifs, integration of chromatin states and structures of motifs allowed us to prioritize candidate 
genes for their contribution to cancers.

Results
Revealing transcriptional regulatory networks modified by chromatin states.  In order to 
explore how chromatin states modify network motifs, we constructed transcriptional regulatory net-
works in four cell lines, consisting of H1, GM12878, K562 and HepG2, through the combination of 269 
ChIP-seq data sets and DNase I hypersensitive sites (DHS) (see Methods).

Considering chromatin states of nodes (TFs and targets) in different cell lines, we obtained genome-wide 
maps of 15 chromatin states, which were used for systematic annotation of the human genome in2, and 
sought to classify them into different categories. In order to determine the optimal number of chromatin 
state categories, we used seven histone modifications from ENCODE project (H3K4me1, H3K4me2, 
H3K4me3, H3K27ac, H3K27me3 and H3K9me3 over the promoter, and H3K36me3 over coding region) 
to characterize genes across four cell lines. The seven-dimensional histone modification profiles (Reads 
Per Kilobase per Million mapped reads (RPKM) values) from four cell lines were concatenated. The gap 
statistic (‘clusGap’ function in R package) was used to determine the optimal number of chromatin state 
categories by comparing observed within-cluster dispersion with its expectation. We observed that the 
maximum gap value is observed at 4 (Supplementary Fig. S1A). Besides, accumulating evidence have 
established some epigenetic states contributing to different expression levels2, including the active state 
marked by H3K4me1, H3K4me2, H3K4me3, H3K27ac but not H3K27me3, the weak activity state by 
moderate level of the active histone modifications, the repressed state by H3K27me3 or H3K9me3 but 
not H3K4me3, and the poised state by H3K4me3 and H3K27me3. We thus grouped these states into 
four broad categories including strong activity, weak activity, poised state and repressed state (Fig. 1A). 
In detail, ‘Active promoter’ and ‘Strong enhancer’ which marked by active epigenetic marks such as 
H3K4me1, H3K4me2, H3K4me3, H3K27ac but not H3K27me3 were combined as ‘Strong activity’ state. 
These active epigenetic marks have been reported to show high levels at promoters of high expressed 
genes5. Recently, weak chromatin state (such as weak promoter) was frequently studied2,6. They are char-
acterized by moderate levels of active histone modifications and associated with intermediate expression 
levels. ‘Weak promoter’ and ‘Weak enhancer’ which marked by moderate levels of active epigenetic marks 
such as H3K4me1, H3K4me2 and H3K4me3 were thus combined as ‘Weak activity’ state. ‘Poised pro-
moter’ state characterized by both the H3K4me3 and H3K27me3 marks is regarded as ‘Poised state’7, 
which plays important roles in cell differentiation8. These states without obvious enrichment of active 
epigenetic marks such as H3K4me1, H3K4me3 and H3K27ac were grouped into ‘Repressed state’ (such 
as ‘Polycomb repressed’, ‘Heterochromatin/low signal’ and ‘Insulator’). These agree with our results that 
various epigenetic marks (such as H3K27ac and H3K27me3) showed significant difference between dif-
ferent chromatin state categories (Supplementary Fig. S1B, S1C). Then, we identified chromatin states 
for each gene in regulatory networks by enrichment of epigenetic states at the promoter (see Methods). 
Finally, for each cell type, a chromatin state-modified transcriptional regulatory network was constructed 
(Fig. 1B). The number of regulatory interactions ranged from 94,509 to 151,589 and networks exhibited 
scale-free power-law degree distributions (Supplementary Fig. S2 and Supplementary Table S1).

In accordance with chromatin states having a previously described role in gene expression, we found 
that genes with different chromatin states showed differential expression (P-values <  1.1e-13, Wilcoxon 
rank-sum test, Fig. 1C and Supplementary Fig. S3) in four cell lines. For example, core TFs SOX2 and 
NANOG show particularly high expression in hESC, and they showed enrichment of H3K4me3 and 
loss of H3K27me3 when compared with other cell types (Fig. 1D). Genes with/without TF binding sites 
in the promoters were highly enriched with active/silent chromatin states (Fig. 1E). Besides, we found 
similar distributions of chromatin states between TF and non-TF genes and between different cell lines 
except H1 (Fig.  1F). Interestingly, degrees of gene with different chromatin states consistently showed 
significant differences in all cell lines (Fig. 1G), suggesting a close relationship between chromatin states 
and topological structures.

Identifying chromatin state-modified network motifs.  We sought to systematically search for 
three-node motifs by taking into account both the topological structures of networks and chromatin 
states of nodes. Comparing to random networks, we then detected over-represented three-node motifs 
coupled with chromatin states, which were defined as chromatin state-modified network motifs.

We found a number of significant chromatin state-modified motifs in the four cell types, including 41 
in H1, 36 in GM12878, 26 in K562 and 5 in HepG2, referring to a total of twelve types of motif structures 
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Figure 1.  Detailed information of regulatory networks and their associated chromatin states. (A) Four 
broad chromatin states used in this study from fifteen chromatin states by Ernst et al. (B) The chromatin-
state modified networks in four cell lines. The colors represent different chromatin states. (C) The log2 
expression level of targets in FFL coupled with different chromatin states. (**represents P-value <  1.1e-13 
from Wilcoxon rank-sum test; colors correspond to chromatin states). (D) H3K4me3 (red) and H3K27me3 
(purple) occupancy at the SOX2 and NANOG promoter regions in four cell lines. (E) The distribution of 
chromatin states for all promoters, one with TF binding and one without. (F) The frequency of genes with 
different chromatin states in four cell lines (solid for TFs and dotted for non-TFs in left panel; all genes in 
right panel). (G) The degree distribution of genes for each chromatin state in four cell lines (**represents P-
value <  0.01 from Wilcoxon rank-sum test; colors correspond to chromatin states).
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(Fig.  2A). FFL, one of the most important network motifs, was linked with multiple chromatin state 
compositions and was consistently present in four cell types. The fully open states (i.e., all nodes in FFL 
are strongly activated) were found to be the most enriched state composition in H1 and K562, suggesting 
its fundamental role in FFL (Supplementary Fig. S4A). Also, we found that other significantly enriched 
chromatin state compositions tend to show changes of chromatin states in more than one position (top, 
intermediate or bottom) when comparing with the major fully open states (Supplementary Fig. S4B).

Chromatin modification acts as a factor contributing to expression fluctuations of TFs, which can 
propagate through regulatory interactions9 and in turn influence downstream targets. Thus, it is rea-
sonable to assume that chromatin states of both targets and their upstream regulators can influence the 
expression of targets by network motifs. To address the hypothesis, we analyzed expression levels of 
target genes in instances of chromatin state-modified FFLs. We removed these targets shared by differ-
ent types of state-modified FFLs to avoid combination of control10. Notably, the edge directions of FFLs 
represent active or repressive effects of TFs on their targets. We thus manually searched PubMed and 
obtained 29 and 28 TFs that can act as activators and repressors, respectively (Supplementary Table S2). 
Activators (or repressors) are regarded to play active (or repressive) effects on all of their targets. Then, 
we classified FFLs into four different types based on the active or repressive effects of TFs (type I: top 
and intermediate TFs are repressors; type II: top and intermediate TFs are activators; type III: top TF is 
an activator and intermediate TF is a repressor; type IV: top TF is a repressor and intermediate TF is an 
activator). Interestingly, in type I FFLs, we observed significant differences in expression of target genes 
between some specific chromatin state compositions, even between those with the same chromatin states 
of targets (Wilcoxon rank-sum test, Fig.  2B). For example, in H1 cell line, the target genes expression 
of two chromatin state-modified FFLs (one is ‘strong activity’ state at top- and intermediate positions, 
and ‘weak activity’ state at bottom position; the other is ‘poised’ state at top- and intermediate positions 
and ‘weak activity’ state at bottom position) showed significant difference (P-value =  0.01). Subsequently, 
we analyzed all types of comparable FFLs in four cell lines and found significant expression difference 
between different chromatin state compositions (Fig.  2C and Supplementary Fig. S5). In addition, for 
each type of comparable FFLs, we also found significant differences in protein abundance and phospho-
rylation level of target genes between different chromatin state compositions (Fig. 2D and Supplementary 
Fig. S5).

Besides, we sought to further investigate whether alteration of chromatin states of upstream regula-
tors can induce the expression changes of target genes by knockdown of EZH2, an H3K27me3 methyl-
transferase, which can result in decreased H3K27 trimethylation. Perturbation of H3K27me3 would be 
expected to influence expression of repressed genes (with poised or repressed chromatin state) but not 
for active genes (with strong or weak activity state). Thus, we focused on FFL instances with poised or 
repressed chromatin states at the upstream regulators and activity states at the target genes to avoid the 
influence of the epigenetic state of target genes. By analyzing genome-wide expression of SUZ12 and 
EZH2 shRNA (GSE54108) in HepG2, we found that many FFL instances showed obvious expression dif-
ferences of target genes (Fig. 2E). Two FFL examples, RXRA-JUND-ARID1A and RXRA-JUND-PTPN11, 
are coupled with repressed state of RXRA (top TF), strong activity of JUND (intermediate TF, Fig. 2E-1) 
and two targets ARID1A and PTPN11 (Fig.  2E-2). Knockdown of EZH2 or SUZ12 led to increased 
expression of RXRA (fold-change =  5.3 for SUZ12 and 3.6 for EZH2), and JUND, a tumor suppressor11 
(fold-change =  2.1 for SUZ12 and 1.8 for EZH2). Notably, the expression of target genes ARID1A and 
PTPN11, two tumor suppressors12, ranged from 3.0 to 7.9 fold increase (Fig.  2E-3). Furthermore, we 
analyzed H3K27me3 levels before and after EZH2 mutation in HepG2 and three diffuse large B-cell 
lymphoma (DLBCL) cell lines (GSE40970), respectively. We found that the top TF RXRA showed a 
strong decrease of H3K27me3 levels after EZH2 mutation, yet the intermediate TF JUND and targets 
ARID1A and PTPN11 showed similar H3K27me3 levels before and after EZH2 mutation (Fig. 2E). These 
findings highlight the importance of chromatin state of upstream regulators on target gene expression. 
Additionally, by analyzing another data of EZH2 shRNA in human glioblastoma stem cell (GSE18150), 
we observed similar results. MAX-MXI1-MLLT11 and MAX-MXI1-SMC3 are coupled with weak activity 
of MAX (top TF, a partner protein of proto-oncogene MYC), poised state of MXI1 (intermediate TF, a 
transcriptional repressor of MYC13 (Fig.  2F-1) and strong activity of two targets MLLT11 and SMC3 
(Fig.  2F-2). After knockdown of EZH2, the expression of MXI1 slightly increased (fold-change =  1.2). 
Importantly, the target genes MLLT11 and SMC3 showed more than 2-fold increase in expression 
(Fig. 2F-3). These observations may suggest that diverse chromatin states are exploited by FFLs to finely 
regulate gene expression.

Cell specificity of chromatin state-modified FFLs for maintenance of cell-specific func-
tions.  To explore how these chromatin state-modified motifs affect biological functions, we performed 
functional enrichment analysis on target genes of each chromatin state-modified FFL in the four cell 
types (FDR <  0.05). We found that the targets were significantly involved in many important biological 
functions, such as DNA damage checkpoint and cell cycle. Strikingly, these functions showed a mutually 
exclusive pattern across different chromatin state compositions in all cell types (Fig. 3A). For instance, 
in H1, the chromatin state composition (top-, intermediate- and bottom positions with ‘strong activity’ 
states) could capture functions associated with mitosis and metabolism, however, another chromatin state 
composition (top and intermediate positions with ‘strong activity’, and bottom position with ‘poised state’) 
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Figure 2.  The landscape of chromatin state-modified motifs and their contribution to target expression. 
(A) Over-represented chromatin state compositions associated with network motifs in four cell lines. 
Asymmetric, partially and globally symmetric motifs are shown from left to right. For the symmetric motifs, 
only one of possible combinations of chromatin states was displayed. Chromatin states of gene promoter in 
each type of motif are shown in the order of top, intermediate and bottom positions. Values are presented as 
the number of chromatin state compositions. (B) Examples of FFLs in type I (both of top and intermediate 
TFs having repressive effects on their targets) can lead to expression differences of target genes (Wilcoxon 
rank-sum test). (C,D) Significant differences in expression, protein levels69 of targets between different 
chromatin state compositions within type I FFLs in H1 cell line. Color intensities (blue) correspond to 
P-values of Wilcoxon rank-sum test results. Gray entries represent data unavailable. Colored rectangles 
indicated the chromatin states of genes at top, intermediate and bottom position in FFLs. (E) Two examples 
of FFLs before and after knockdown of EZH2 in HepG2. Promoters are analyzed for the distribution of 
histone modifications (such as H3K27me3 levels before and after EZH2 mutation in HepG2 and DLBCL cell 
lines: DLCL2, KARPAS-422 and Pfeiffer) and TF binding signal. E-3 shows fold-change expression of FFL 
instances after EZH2 knockdown (colors of bar indicate their chromatin states). (F) Two examples of FFLs 
in H1 cell line after EZH2 knockdown in GBM stem cell. Promoters are analyzed for the distribution of 
histone modifications and TF binding signal. F-3 shows fold-change expression of FFL instances after EZH2 
knockdown (colors of bar indicate their chromatin states).

was related to development and differentiation. High functional specificity of chromatin state-modified 
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motifs emphasizes an important role of various distinct chromatin states in motif-mediated maintenance 
of cell homeostasis.

We next examined whether chromatin state compositions were commonly used by different motifs 
in a specific cell line. We found a large number of specific chromatin state compositions and only a 
few common ones shared by multiple motifs in H1 and GM12878 (P-value <  0.05, permutation test; 
see Methods; Fig. 3B), suggesting that different types of motifs are related to specific chromatin states, 
probably due to their distinct structural organization.

We further explored whether consistent chromatin states are coupled with the same types of motifs 
across different cell types. To our surprise, mutually exclusive patterns of chromatin states across differ-
ent cell types were clearly evident for the FFL and ‘regulated mutual’ (both P-value <  0.01, permutation 
test; see Methods; Fig.  3C), suggesting that chromatin state-modified motifs are highly cell selective. 
Interestingly, the state profile of FFL had the ability to distinguish H1 and GM12878 from K562 and 
HepG2, when clustering four cell types based on the state profile (Fig. 3D). One chromatin state com-
position associated with FFL (top position with ‘strong activity’ state, intermediate position with ‘poised 
state’ and bottom position with ‘repressed state’) was observed both in H1 and GM12878, but not in 
K562 and HepG2. For example, in TCF12-MXI1-HMP19, the intermediate TF MXI1, a negative regulator 
of cell cycle14, showed a state transition from ‘poised state’ to ‘strong activity’ state in the comparison of 
GM12878 and K562. The epigenetic alteration of MXI1 lead to its increased expression, and thus greatly 
reduce the expression of downstream target HMP19 by MXI1-mediated inhibition (Fig. 3E). The down-
stream target HMP19 has been verified to be a tumor/metastasis suppressor15. These findings further 
support that epigenetic changes of major upstream regulators play important roles in the expression of 
downstream targets.

Moreover, we analyzed functions enriched in target genes of chromatin state-modified FFLs in four 
cell lines and found that cell-specific chromatin state-modified motifs seem to be responsible for specific 
biological functions (Fig. 4). For instance, one H1-specific FFL coupled with ‘strong activity’ states (top 
and intermediate) and a ‘poised state’ (bottom) is associated with development (such as ‘multicellular 
organismal development’, ‘cell fate commitment’ and ‘pericardium development’) and cell differentiation 
(such as ‘positive regulation of cardioblast differentiation’) (Fig. 4A-1). As an example, RAD21 cooperated 

Figure 3.  Specific chromatin state-modified network motifs and their specific biological functions. (A) 
The significant biological processes enriched by target genes of each chromatin state-modified FFL. The 
distribution of chromatin state compositions across thirteen types of motifs (B) in each cell line and (C) 
across four cell types. The P-values were obtained using mutual exclusivity test (see Methods). (D) The 
two-way clustering of state profile of chromatin state-modified FFLs across four cell lines. (E) An examples 
of changes of chromatin state-modified FFLs in the comparison between GM12878 and K562. The log2-
transformed fold changes in gene expression are showed.
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with the master pluripotency gene POU5F1 to regulate downstream the early B-cell factor 3 (EBF3). Both 
RAD21 and POU5F1 playing important roles in maintaining hESC identity16 showed ‘strong activity’ 
states in H1. However, EBF3 that had been implicated in B-cell differentiation, bone development and 
neurogenesis17 showed a ‘poised state’ (Fig. 4B-1), consistent with its essential role in stem cell mainte-
nance and subsequent differentiation18. Another example was SIN3A-CTBP2-HOXD11, in which SIN3A 
(a repressor of pluripotency gene) with a ‘strong activity’ state directly regulated CTBP2 (‘strong activity’) 
(Fig. 4B-2) which played an important role in maintaining a balance between self-renewal and differenti-
ation19. And these TFs regulated HOXD11, which showed a ‘poised state’ in H1 and was required for limb 
development20. Similarly, JUND-RAD21-NKX2-5 and YY1-RAD21-GATA4 were associated with ‘positive 
regulation of cardioblast differentiation’ (Fig. 4B-3, 4B-4) and CREB1-USF1-NKX2-6 was related to ‘peri-
cardium development’ (Fig. 4B-5). These target genes, NKX2-5, GATA4 and NKX2-6, have been reported 
to be essential for cardiac development21. These results are supported by previous studies that bivalent 
domains silenced lineage specific differentiation genes and loss of which was crucial for development22. 
We further used all poised genes of H1 network as background (referring to 3,064 genes) to perform 
functional enrichment analysis, to test whether the FFL target poised genes are selectively enriched in 
some specific developmental processes. We found that FFL target poised genes were selectively enriched 
in ‘negative regulation of apoptotic process’, ‘axon development’, ‘axonogenesis’ and ‘positive regulation 
of cell differentiation’ (FDR <  0.1; Supplementary Fig. S6A).

In addition, one type of H1 and K562-shared chromatin state-modified FFL (‘strong activity’ states at 
the top, intermediate and bottom, referred to as ‘all-strong-activity’ FFL) was associated with K562-related 
functions, such as ‘antigen processing and presentation of peptide antigen via MHC class I’ (Fig. 4A-2). 
For example, SPI1-RFX5-(HLA-E) was associated with ‘antigen processing and presentation of peptide 
antigen via MHC class I’, in which SPI1 was a major factor for maintenance of germinal center B-cells23 
and HLA-E, human histocompatibility leukocyte antigen, has been reported to be involved in MHC-I 
antigen processing and presentation pathways24 (Supplementary Fig. S7A). Also, we used used all ‘strong 
activity’ genes of K562 network as background (referring to 9,509 genes) to characterize specific biologi-
cal processes of ‘strong activity’ genes of the ‘all-strong-activity’ FFL. The result showed that these ‘strong 
activity’ genes were selectively enriched in ‘antigen processing and presentation of exogenous peptide 
antigen via MHC class I, TAP-dependent’, ‘G2/M transition of mitotic cell cycle’ and ‘positive regulation 
of ubiquitin-protein ligase activity involved in mitotic cell cycle’ (FDR <  0.1; Supplementary Fig. S6B).

Figure 4.  Examples of specific biological functions of cell-type-specific chromatin state-modified 
network motifs. (A) The significantly enriched biological processes with target genes in different types of 
chromatin state-modified FFL. The left of each panel shows the chromatin state-modified motifs. On the 
right, the purple rectangles represent whether a specific chromatin state composition is present (purple) or 
absent (white) in four cell lines. (B) Examples of chromatin-state modified FFL instances contributing to 
different biological processes and their associated H3K4me3 (red) and H3K27me3 (purple) distributions in 
H1 and HepG2.
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One type of HepG2-specific chromatin state-modified FFL, coupled with a ‘repressed state’ (top) 
and ‘strong activity’ states (intermediate and bottom), was associated with cancer-related functions, 
including mitosis and cell division (Fig. 4A-3). For instance, RXRA regulated SRF. They together regu-
lated critical modulators of cell-cycle progression, including two members of CDK family (CDK1 and 
CDK6), mitogen-activated protein kinase 1 (MAP2K1) and cell division cycle 25A (CDC25A) (Fig. 4B-6 
and Supplementary Fig. S7). Taken together, these results consistently suggest that highly cell-selective 
state-modified network motifs are associated with maintenance of cell-specific functions and cell identity.

FFLs with specific chromatin state changes contribute to cell-to-cell functional differ-
ences.  We analyzed alterations of chromatin states and FFL structures in cell comparison (that is, 
from embryonic stem cell H1 to lymphoblastoid cell GM12878; from GM12878 to myelogenous leu-
kemia cell K562) by extracting chromatin state-modified FFL instances. Unexpectedly, comparative anal-
ysis in H1-GM12878 and GM12878-K562 consistently showed that more than 85% FFLs (97.48% in 
H1-GM12878; 86.16% in GM12878-K562) architectures were changed (Fig. 5A). Chromatin state tran-
sitions were involved in 37.55% and 100.00% FFLs in H1-GM12878 and GM12878-K562, respectively 
(Fig.  5B). However, there were only 20.77% and 9.86% genes in FFL instances changed their chroma-
tin states in H1-GM12878 and GM12878-K562, respectively (Fig. 5C). Furthermore, they were signifi-
cantly enriched in immunity-related functions (e.g., immune response-regulating signaling pathway) in 
H1-GM12878 and GM12878-K562 (P-value <  0.05, Fig. 5D). Thus, we further analyzed chromatin state 
transitions in chromatin state-modified FFL with edge gain (or loss) or not. We observed that transition 
within ‘strong activity’ state was a high-frequency event (P-value <  1e-6 based on 1,000 permutation 
tests; see Methods; Fig.  5E, 5F). However, other chromatin state transitions in cell comparison were 
dependent on motif structure, edge gain or loss and cell types.

Notably, a remarkable chromatin state transition from the poised state to the strong activity state at 
the top position of FFLs without edge gain or loss (P-value <  1e-6) was observed in GM12878-K562 
rather than in H1-GM12878 (Fig. 5E-1, 5F-1, black star). Another remarkable chromatin state transition 
from the poised state to the strong activity state at the top and intermediate positions of FFLs with edge 
loss (P-value <  1e-6) was observed in GM12878-K562 (Fig.  5E-2, 5F-2, black star). The finding was 
supported by a recent report that loss of H3K27me3 mark is a predictor of poor outcome in cancers25. 
Similarly, a chromatin state transition from the active state to the ‘poised state’ at the intermediate and 
bottom position (P-value <  1e-6) was unique to FFLs with edge gain in H1-GM12878 (Fig. 5E-3, 5F-3), 
suggesting a close association of state transitions with cell-to-cell differences.

In the ATF3-MAX-SH3GL1-formed FFL, ATF3, a tumor suppressor26, showed a state transition from 
‘weak activity’ to ‘repressed state’ in the GM12878-K562 comparison. The epigenetic alteration results in 
its reduced expression level, and in turn increases the expression of SH3GL1 by reducing ATF3-mediated 
inhibition of SH3GL1, which is a fusion partner in acute myeloid leukemia and plays a role in leuke-
mogenesis. However, we did not observed any changes in the FFL architecture in the GM12878-K562 
comparison (Fig. 5G-1). In the ATF3-ELF1-BRCA2, BRCA2 (an anti-oncogene) intensely reduced their 
expression in K562 relative to GM12878, which together with loss of the regulation from ELF1 to BRCA2 
(Fig.  5G-2). Consistently, aberration of BRCA2 has been confirmed in acute myeloid leukemia27,28. 
Overall, our findings underscore their cooperative relationships in a cell-specific manner.

Chromatin state and structure alterations of FFL contribute to discovery of cancer 
genes.  Such chromatin state and structure changes of motifs seem to play crucial roles in main-
taining cell-specific functions, which inspired us to integrate chromatin state and structure alterations 
of motifs for prioritization of candidate genes29 (Fig. 6A). By quantifying changes in chromatin state 
and FFL architecture between cancer (i.e., K562) and normal (i.e., GM12878) cells using the criteria 
described in Methods, in which poised and repressed state with suppression effects on gene expres-
sion were regarded as similar chromatin states; strong and weak activity state associated with consist-
ent epigenetic marks with different intensity were regarded as proximate chromatin states. Chromatin 
state changes between activation (e.g., strong and weak activity states) and repression (e.g., poised 
and repressed states) seriously affected gene expression and thus were given by the highest score. 
And chromatin state changes within similar or proximate chromatin states were given by relatively 
low score. Finally, we assigned a summary score to each candidate gene based on all of its impli-
cated FFL instances. Particularly, when we changed the scoring matrix, the results was little changed. 
Ranking candidate genes according to their summary scores (Supplementary Table S3), we found 
that the top 1% of genes (referring to 82 genes) were significantly enriched in known cancer genes 
(P-value =  1.3e-05, hypergeometric test, Fig.  6B) from Cancer Gene Census (CGC)30. Furthermore, 
the top 1% of genes showed strong enrichment for leukemia-associated genes (P-value =  7.6e-04, 
hypergeometric test, Fig.  6B), which were collected from OMIM and KEGG databases. Functional 
enrichment analysis of the top 1% of genes revealed many functions involved in leukemia develop-
ment (Fig.  6C), such as ‘PML body organization’, ‘immune response-activating signal transduction’, 
and ‘transforming growth factor beta receptor signaling pathway’.

These top-ranked genes were composed of 67 ‘source-node’ genes (the TFs with ChIP-seq data avail-
able in the corresponding cell type) and 15 ‘non-source-node’ genes. Notably, we found that the known 
cancer genes in the top 1% of genes were from ‘source-node’ genes. Thus, we manually annotated the 
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Figure 5.  Changes of motif architecture and chromatin state in cell comparisons. (A) The percentage 
of changes in FFL architecture based on FFL instances in corresponding source cell line (such as H1 for 
H1-GM12878). The values of x-axis represent the number of edges of FFLs in the end cell types. (B) FFL 
instances in the source cell line were divided into different groups according to the alterations of FFL 
structures (including edge gain, loss or no change). For each group, the percentage of FFL instances with 
at least one chromatin state change under different types of changes of motif structures was shown. (C) 
The percentage of genes involved in FFL instances with chromatin state change or not. (D) The significant 
biological processes enriched by genes involved in FFL instances with chromatin state change. (E) 
Chromatin state transition of FFLs under different types of changes of motif structures: without alteration 
in motif structures (E-1; F-1), loss edges from FFL (E-2; F-2), gain edges (forming FFL) (E-3; F-3). The 
four types of chromatin states are arranged in the same order along each axis. The I, II and III quadrants 
separately represent chromatin state transitions at top-, intermediate-TF and target gene of a motif in 
an anticlockwise direction. Each curve represents a kind of chromatin state transition. Colors of curves 
indicate the chromatin states of genes at the starting point of comparison (e.g., H1 in H1-GM12878). The 
terminal points of curves represent chromatin states at the end point of comparison (e.g., GM12878 in H1-
GM12878). The thickness of curves represents the significance of chromatin state transition by the value of 
1-(P-value). (G) Examples of changes of chromatin state-modified FFLs. The log2-transformed fold changes 
in gene expression are showed.
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15 ‘non-source-node’ genes and found that some of them have been demonstrated to be involved in 
human tumorigenesis. For example, LAPTM4B (lysosome-associated protein transmembrane 4 beta), a 
novel cancer-related gene, has been showed to be amplified and overexpressed in many human malig-
nancies31,32. An uncharacterized gene FAM133B at chromosome 7q21.2 was recently identified as a novel 

Figure 6.  Prioritization of candidate genes by integrating changes of chromatin state and motif 
architecture. (A) The workflow based on a chromatin state transition matrix and structure alteration of 
FFLs for prioritization of candidate genes (see Methods). (B) The enrichment analysis between the top 1% 
of ranked genes and Cancer Gene Census (CGC) (P-value =  1.3e-05), leukemia-related genes derived from 
OMIM and KEGG databases (P-value =  7.6e-04). Statistical significance was calculated by hypergeometric 
test. (C) The GO biological processes enriched by the top 1% of ranked genes (FDR <  0.05). (D) Kaplan-
Meier curves of the overall survival for high and low expression of top-ranked gene in 197 AML samples 
from TCGA. P-value was determined by log-rank test.
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gene fusion partner of CDK6, a regulator of G1/S cell-cycle progression, in T-cell acute lymphoblastic 
leukemia (T-ALL)33. STEAP1B was found to be overexpressed in prostate cancer and associated with 
a down-regulated lncRNA (AC002480.5) in Chronic Lymphocytic Leukemia (CLL)34. Focal amplifi-
cation of BRF2 in chromosome 8p12, a RNA polymerase III (Pol III) transcription initiation factor, 
is an early event in lung tumorigenesis through Pol III-mediated transcription35. The tumor protein 
D52-like 1 (TPD52L1) involved in cell proliferation and cell cycle control and its overexpression was 
found to be associated with human breast and prostate cancers36. Differential methylation of C7orf63 
was observed between two diffuse large B-cell lymphoma (DLBCL) subtypes37. ENDOV, the DNA repair 
enzyme endonuclease V, participates in DNA repair and helps to prevent mutations38,39. GPR176 is a 
member of G-protein-coupled receptors (GPCRs), the deregulation of GPCRs has been associated with 
tumorigenesis40. Additionally, we obtained RNA-seq data set of 4,466 Cancer Genome Atlas (TCGA) 
tumors from 12 cancer types and 549 normal samples. For each cancer type, we identified differentially 
expressed genes using DEseq241 (FDR <  0.05 and fold change >  2). Comparing to randomly selected 
genes, the ‘non-source-node’ genes were differentially expressed in more cancer types (P-values <  0.001; 
1,000 permutation tests, Supplementary Fig. S8). Together, these top-ranked ‘non-source-node’ genes 
may be novel key cancer/leukemia genes.

In our results, the first-ranked gene MXI1, a transcriptional repressor of MYC, had been reported 
to be correlated with a poor clinical outcome in acute leukemia42 and the second-ranked gene FOS was 
reported as an important regulator and its increased expression was associated with adverse prognosis43. 
Furthermore, we used Kaplan-Meier curves and log-rank test to evaluate the effect of top-ranked genes 
on overall survival using 197 AML samples from The Cancer Genome Atlas (TCGA). There were seven 
genes (including MAX, JUN, NFYB, TBP, THAP1, SETDB1 and CTCF) among the 30 top-ranked genes 
showed statistically significant associations with survival (P-value <  0.05, log-rank test, Fig.  6D). We 
next assessed whether the top-ranked genes show cell-specific expression. A total of 180, 134, 88 and 88 
cell type-specific genes were identified in H1, GM12878, K562 and HepG2, respectively (see Methods). 
Among the top 1% genes, only three cell type-specific genes (NFE2, STEAP1B and TPD52L1) in K562, 
one (ETS1) in GM12878 and one (GPR176) in H1 were observed. These findings support that both 
chromatin states and structures of motifs are important for maintenance of the steady state of cells and 
highlight that combination of dysfunctional information about the alteration of chromatin states and 
structures of motifs in cancer may allow identifying cancer genes.

Discussion
Although roles of chromatin modification and TF binding in regulation of gene expression have been 
studied, from the perspective of network architecture-based integration, the insights into regulation are 
largely unknown. We performed a systematic analysis of the relationship between network motifs and 
chromatin states. We integrated a multitude of ChIP-seq and RNA-seq data from ENCODE project and 
chromatin states defined by multiple epigenetic marks to construct chromatin state-modified regulatory 
networks in four cell lines. Analysis of network motifs revealed that diverse motifs coupling chromatin 
state compositions were over-represented in all cell lines.

Our results showed that diverse chromatin state-modified FFLs were associated with maintenance 
of diverse functions. Especially, a poised state at the bottom position of FFL was observed exclusively 
in H1. Such chromatin state-modified FFL was primarily involved in development-related functions. 
Prior studies indicated that the poised state had the ability to rapidly respond to later transcriptional 
activation signal for differentiation44. Therefore, we suspected that the poised state might cooperate 
with FFL exclusively in H1 in order to generate a rapid response during differentiation by making 
information-processing more efficient.

We also found substantial changes in the FFL architecture and relatively few changes in chromatin 
states in cell comparisons. Notably, a set of immune-related genes exhibited chromatin state changes, 
which may be used to help to reprogram regulatory networks in differentiated cell lines. Moreover, chro-
matin state transitions, to some extent, showed specific patterns during comparisons of different cells, 
further supporting high cell specificity of chromatin state-modified motifs. It is supported by the recent 
observations of tissue specificity of regulatory network and epigenetic modification45,46. The specific chro-
matin state changes may be required to adapt specific cellular functions, consistent with previous reports 
of the complex relationship between dynamic epigenetic landscape and genomic function47. Chromatin 
modifications affect TF binding by altering the local chromatin structure or providing specific binding 
surfaces48. Distinct chromatin environments are related with specific combinatorial regulation of TFs3,49. 
Besides, context-specific regulation of chromatin regulators may be another explanation for specific epi-
genetic landscape and distinct functions. For example, tissue-specific subunits of the SWI/SNF complex, 
a switch in BAF45 and BAF53 subunit plays an important role in transiting neural stem cells into post-
mitotic neurons50. Therefore, a dynamic interplay of chromatin state and transcriptional regulation might 
contribute to cell-specific utilization of chromatin state-modified FFLs in our results. Distinct cellular 
microenvironments may be one of reasons for formation of cell-specific chromatin state-modified motifs, 
like dressing network motifs with diverse chromatin states in different cellular contexts. A previous study 
reported that similar lifestyle can shape similar regulatory interactions51. A possible explanation is that 
similar environments can generate similar epigenetic modification which may play an important role in 
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shaping network topology52, indicating that diverse chromatin states may provide an additional safeguard 
for maintaining or promoting ‘sign-sensitive delay’ or ‘pulse generator’ function of FFLs.

We used the fold enrichment method to characterize chromatin states of genes based on 200-base-pair 
intervals along the genome. Indeed, previous studies have proposed different methods to characterize 
epigenetic patterns. For example, by integrating multiple histone modifications, Larson and Yuan devel-
oped a hidden Markov model (HMM) approach to detect epigenetic patterns of genes, which can provide 
easily interpretable outcomes53. Therefore, we applied a four-state HMM approach to directly re-assign 
a chromatin state to each gene. In detail, a seven-dimensional histone modification profile correspond-
ing to the RPKM values of epigenetic marks over the promoter (for H3K4me1, H3K4me2, H3K4me3, 
H3K9me3, H3K27ac and H3K27me3) and coding region (for H3K36me3) was used to characterize 
chromatin states of each gene in four cell lines (ChIP-seq data from ENCODE project). We found that 
genes with different chromatin states showed differential expression in each cell line (P-values <  2.2e-12, 
Wilcoxon rank-sum test; Supplementary Fig. S9). Moreover, we found a high consistency, with an average 
of 74.99%, in the comparison between results from the HMM approach and those from the fold enrich-
ment method (82.55% for H1, 79.63% for GM12878, 64.97% for K562 and 72.82% for HepG2). Notably, 
recent studies highlighted that distal binding sites of TFs can also play important transcriptional regula-
tory roles54–56. Such distal binding sites often located in regions of open chromatin, detected as DNaseI 
hypersensitive sites (DHS)57 and showed enrichment for enhancer mark H3K4me158,59. Therefore, we 
sought to identify chromatin state-modified motifs in H1 cell line by considering distal binding sites 
based on chromatin states from the HMM approach (see Supplementary methods and Supplementary 
Fig. S10). We identified 14,918 distal enhancer-mediated regulatory interactions in H1 based on the 
method described in60. By comparing to random networks, a total of 21 chromatin state-modified motifs 
were identified (P-value <  0.05 and Nreal– Nrand >  0.05Nrand; Supplementary Fig. S11). Among these 
significant motifs, 85.71% are consistent with the above results. Moreover, differential expressions of 
targets were observed between different chromatin state compositions associated with FFLs. Also, func-
tional enrichment analysis showed a high consistency with the above results, such as development and 
differentiation functions enriched by FFLs (top and intermediate position with ‘strong activity’ states and 
bottom positions with ‘poised’ states). Similarly, we also observed a mutually exclusive pattern of chro-
matin states across different motif structures (Supplementary Fig. S11). These findings further support 
cell-specific functions of chromatin state-modified FFLs.

Together, we systematically examined regulatory networks coupled with chromatin states and iden-
tified significant chromatin state-modified network motifs in four cell lines. Our results highlight the 
importance of chromatin states in information-processing of network motifs, which will increase our 
understanding of cell-specific functions.

Material and Methods
Data source.  ChIP-seq.  A total of 269 ChIP-seq data sets for 140 human transcription factors (TFs) 
over four cell lines, including embryonic stem cells (H1-hESC), lymphoblastoid (GM12878), myeloge-
nous leukemia (K562) and liver carcinoma (HepG2), were used (Supplementary Table S4). Raw ChIP-Seq 
read data were obtained from the ENCODE Project Consortium (GSE32465 and GSE31477).

DNaseI hypersensitive sites.  For each cell line, genome-wide DNase I hypersensitive sites (DHSs), 
which were identified using the HotSpot and peak-finding algorithms described in Sabo et al. (2004), 
were directly extracted from UCSC genome browser (DNaseI Hypersensitivity by Digital DNaseI from 
ENCODE/University of Washington (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeUwDnase/)1.

RNA-seq.  We extracted RNA-seq data sets correspond to whole-cell long poly(A) +  RNA for these 
four cell lines from ENCODE Cold Spring Harbor Laboratory (76-bp paired-end reads, GSE26284)61.

Constructing transcriptional regulatory networks.  For each ChIP-seq data set, raw reads were 
aligned to the human reference genome (hg19) using Bowtie (version 0.12.2), allowing up to two mis-
matches in the first 28-bp seed of the reads. Duplicate reads were removed and uniquely aligned reads 
were retained. Peaks were then called using MACS (version 1.4.2, P-value <  10-5). The 40-bp regions 
centered on the summit of peaks were used as TF binding sites (TFBS). To identify regulatory interac-
tions, UCSC knownGene track (hg19) was downloaded from UCSC Genome Browser. Promoters were 
defined as a region of 1 kb around transcription start sites (TSS) with 0.5 kb upstream and 0.5 kb down-
stream.

Also, we obtained an average of 125,543 DHSs in the four cell lines. For each cell type, we filtered 
binding sites of each TF to those that followed into DHSs. A gene was considered as the target gene of a 
TF if at least one binding site of the TF located within the promoter region of the gene (Supplementary 
Table S5).

Characterizing chromatin states at gene promoters.  Genome-wide occupancy data for a set of 
multiple epigenetic marks were used to define 15 chromatin states based on recurrent combinations of 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/
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marks across nine cell types using a multivariate Hidden Markov Model (HMM).We grouped these 15 
states into four broad classes including strong activity, weak activity, poised state and repressed state.

Next, we characterized chromatin states at gene promoters through calculating fold enrichment 
between gene promoters and genomic regions with distinct chromatin states1 from the base level. Let as 
be the total number of bases in a given gene promoter with state s, b be the number of bases in the gene 
promoter, cs be the total number of bases with state s, and d be the total number of nucleic acid base pairs 
(bp) marked by a specific chromatin state (such as ‘poised state’). The fold enrichment between the gene 
promoter and the state s was calculated by (as/b)/(cs/d). By repeating the above procedure, we carried out 
fold enrichment calculation between the gene promoter and all of the four chromatin states, and chose 
the state with the maximum fold enrichment as the chromatin state of the promoter3.

Identifying chromatin state-modified network motifs.  For each transcriptional regulatory net-
work, we assigned the chromatin states to the nodes (i.e., TFs and genes) for forming the regulatory 
network coupled with chromatin states. We then used FANMOD algorithm62 to identify chromatin 
state-modified three-node network motifs. The randomized networks that were used to calculate the 
significance of three-node subgraphs were generated to keep the same number of appearances of all 
two-node subgraphs as in the real network, which can avoid assigning a high significance to a network 
pattern only because it contains a highly significant subpattern. A total of 500 random networks were 
generated by iterative interaction swapping such that, apart from the same in- and out-degrees of each 
node are preserved, the ‘state-modified’ degree distribution of targets for each TF is separately preserved 
as the real network63–65. identified overrepresented motifs using a threshold of P-value <  0.05. For each 
type of state-modified motif, we also used a P-value which is the probability that a motif appears in 
500 random networks an equal or greater number of times than in the real network, to evaluate the 
significance as previously proposed63–65. Subsequently, we identified significant state-modified network 
motifs according to the following criteria: (i) P-value <  0.05. (ii) The number of appearances in the real 
network (Nreal) larger than the average number of appearances in the random networks (Nrand): Nreal– 
Nrand >  0.05Nrand63–65.

Mutual exclusivity test.  To assess the significance of mutually exclusive distribution of chromatin 
state composition coupled with network motifs, we used a column permutation method described by 
Bredel et al.66. The permutation-based approach calculates the probabilistic fit for mutual exclusivity of 
distribution of chromatin state compositions. A binary matrix M represents a distribution of chromatin 
state compositions (row, i) across different motif structures (column, j). The mutual exclusivity of distri-
bution of appearance events within M was assessed based on a score SM:
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Where Si indicated whether the i-th chromatin state composition was coupled with only one motif struc-
ture. A set of 10,000 permutations were performed within the columns of the M to estimate the P-value. 
The P-value was determined as the fraction of permutations that lead to a greater or equal SM score than 
that observed on real data.

State transition test.  To assess the significance of the observed state transitions in each position of 
FFL, we divided all FFL instances in the source cell line into different groups according to the alterations 
of FFL structures (including edge gain, loss or no change). For FFL instances in a given group, we calcu-
lated the number of FFL instances with a specific type of state transitions in a specific position of FFLs. 
We performed a permutation analysis to calculate the significance levels. In detail, we assembled artificial 
FFL instances using randomly selected TFs and targets from the regulatory network, keeping the same 
number of TFs and targets as observed in the real FFL instances. This process was then repeated 1,000 
times to generate 1,000 artificial FFL instance sets in each comparison (H1 vs. GM12878 and GM12878 
vs. K562). For each position, we computed the percentage of artificial FFL instance sets that showed 
higher frequency of state transition than the real FFL instance set as the P-value.

Prioritization of candidate genes based on chromatin state and structure alterations of 
motifs.  For a candidate gene, we extracted all chromatin state-modified FFL instances referring to 
this gene in cancer or normal cell line (i.e., K562 or GM12878). First, we quantified the chromatin 
state changes, for three components of each motif instance, between cancer and normal cell lines using 
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a specific scoring matrix. A high score was given when chromatin state change seriously affected gene 
expression. Three criteria were used to produce the scoring matrix: I) ones with chromatin state changes 
from activation (e.g., strong and weak activity states) to repression (e.g., poised and repressed states) 
or vice versa were assigned the highest score of 10; II) ones with transition of the bivalent chromatin 
modification (that is, poised state) to the repressed state or vice versa were assigned a relatively low score 
of 5; III) ones with similar chromatin state transitions (e.g., strong and weak activity) were assigned the 
lowest score of 3. Next, a score of 5 was given if a motif showed structural changes (such as, gain or 
loss of edges) between cancer and normal cell lines. Third, the sum of scores (termed summary scores) 
from chromatin state and structural changes across all motif instances was used to assess the degree of 
changes, from the epigenetic and topological perspectives, between cancer and normal cell lines. The 
candidate genes with high summary scores indicate their potential effects on the development of cancer, 
relative to those with low scores. Finally, the summary scores were used to rank these candidate genes.

Cell type-specific score.  For a gene i in a specific cell line j, a cell type-specific score Sij is calculated 
as its expression level divided by the total expression across all cell lines67:
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where n is the number of cell lines and expij is the expression level of the i-th gene in j-th cell line. Genes 
with S >  0.85 were considered as cell type-specific genes68.

Functional enrichment analysis.  Gene Ontology (GO) analysis of genes was performed using GOstats 
package from Bioconductor. Significantly enriched GO terms were identified by hypergeometric test:
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where N represents the size of the background, n represents the size of a GO term, M represents the 
number of the genes of interest, k represents the number of genes annotated with the GO term. For 
different types of chromatin state-modified FFLs, we identified all instances in the regulatory networks, 
which should satisfy: 1) the FFL structure; 2) the specific chromatin state composition. Thus we used all 
genes in the regulatory networks as background to perform functional enrichment analysis. Only GO 
terms at levels below 4 were used. A FDR-corrected P of 0.05 was used as the threshold for significantly 
enriched GO categories.
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