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An optimization solution of a laser 
plane in vision measurement with 
the distance object between global 
origin and calibration points
Guan Xu1,2, Zhaobing Hao1, Xiaotao Li2, Jian Su1, Huanping Liu1 & Lina Sun1

Equation construction of a laser plane demonstrates a remarkable importance for vision 
measurement systems based on the structured light. Here we create a simple 1D target with a cone 
at the bottom and a checkered pattern on the top to calibrate the equation of the laser plane in the 
view field of a camera. A group of 2D coordinates of the intersection points are extracted from the 
images with the 1D target at different positions. The objective function is constructed to optimize 
the coefficients of the laser plane by minimizing the difference between the distance from the feature 
point to the the origin point and the length of the 1D target. The projective lines of the optimized 
laser plane on the 3D calibration board overlap the real intersection lines in the experimental images. 
Finally, the comparison work about the influences of the non-Gaussian noise and point number is 
investigated experimentally. The experiments show that the method of the distance optimal object 
from the feature point to the origin point provides an accurate and robust calibration for the laser 
plane in structured light measurement.

Vision measurement based on structured light is one of the most important methods to reconstruct 
the surfaces of 3D objects, which improves 3D shape measurement with non-contact process, moderate 
speed, high reliability, and informative data1–6. Capitalizing on these capabilities, structured-light-based 
applications are being explored in measurement fields, such as inspection of mechanical parts, recon-
struction of vehicle surface, and medical CAD/CAM7–12. A typical measurement system mainly includes 
a laser projector providing a laser plane on the object and a camera capturing the image with the bended 
laser line on the object13–15. The 2D coordinates of the laser line centers in the image are extracted and 
then transformed to 3D coordinates according to the calibration data of the laser plane. Therefore, it is 
the key point to precisely calibrate laser plane equation in the whole measurement task16,17. As the meas-
urement precision relies on the calibration result of the laser plane, determining the accurate equation of 
a laser plane in the world coordinate system is meaningful to the vision measurement system adopting 
structured light.

A nonlinear measurement model is developed to the laser line image considering the radial distor-
tion of the camera lens18. The way in which laser lines are extracted from the camera images is a nat-
ural formulation of the calibration problem as a nonlinear least squares problem. The nonlinear model 
reduces the errors in the generated 3D data by a precise camera model. A novel approach is proposed 
to generate the sufficient calibration points with high accuracy for structured light 3D vision19. The 
approach is based on a flexible 2D calibration target, composed of a photo-electrical aiming device, a 
3D translation platform and an improved algorithm of back propagation neural network. The approach 
with an active laser beam for triangulation measurement is outlined for modeling and calibration20. The 
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system works with the pattern of 2D beam-scanning illumination and one-dimensional slit-scanning 
detection with a photo-multiplier tube instead of a CCD camera. A procedure is proposed to calibrate 
a generic structured light system, including one camera and one projector21. The proposed procedure 
defines a unique coordinate system for both devices in the structured light system, and thus, a rigidity 
constraint is introduced into the transformation process. A method is proposed to easily determine all 
primitive parameters of a structured light vision sensor22,23. The technique requires the camera to observe 
a planar target shown at a few different orientations. A systematic method is explored for accurate and 
quick calibration of a 3D shape measurement system developed based on a structured light technique24. 
The key concept is to enable the projector to “capture” images like a camera, which makes the calibration 
of a projector the same as that of a camera. The calibration with corresponding system parameters, is 
proposed to effectively improve the measurement accuracy of 3D laser scanner for a large view depth25. 
A calibration object is able to move forwards and backwards precisely along the z direction of the world 
coordinate system. By planar fitting these points, the equation of the light stripe plane can be obtained. 
A technique is presented for intrinsic and extrinsic calibration of laser triangulation sensors integrated in 
a coordinate measuring machine26. This method performs calibration in a single step, which avoids the 
digitalization of a reference sphere in order to obtain the extrinsic parameters. An improved systematic 
calibration method is explained to enhance three key factors: calibration model, calibration artifact and 
calibration procedures27. The procedures calibrate the camera and projector simultaneously using the 
same reference points. A case study of radiometric calibration is presented for two phase-shift continuous 
wave terrestrial scanners28. Accordingly, it is important that the effects of distance and target reflectance 
should be carefully studied before using the intensity data from the terrestrial laser scanner. By using a 
criterion sphere, a calibration approach of a robot tool is introduced to calibrate the relation between the 
laser 3D scanner and the robot end-effector29. Meanwhile, by using the criterion sphere, an approach is 
provided to calibrate the pose of the robot relative to a turntable. A method is reported based on a novel 
algorithm30. The laser line position is obtained from the calibration algorithm, the high-speed CCD and 
the accurate determination of the laser marking location. The calibration method is built by the model 
of the geometrical relationship between the 3D coordinates of the laser stripe on the target and its dig-
ital coordinates in the image31. By this method, it is possible to calibrate the intrinsic parameters of the 
video system, the position of the image plane and the laser plane in a given frame in the same time. 
The calibration method with a 3D calibration board and a height gauge is proposed to calibrate the laser 
plane by the accurate known-position coordinates on the plane32. For producing the known-position 
coordinates, it is essential to move the height gauge on the horizontal plane of the 3D calibration board 
accurately. A simple method is presented for calibrating the laser plane by a 1D target with a mark on the 
top of the bar in the world coordinate system. The conical tip on the bottom of the target coincides with 
the origin point of the world coordinate system. The equation of the laser plane in the world coordinate 
system is calibrated by the optimal object of minimizing the difference of the real target length and the 
reconstructed target length with the laser plane equation. The position of the laser plane is determined 
by the distance object between the global origin of the world coordinate system and the calibration point 
on the end of the 1D target.

A flexible calibration method is explored in this paper, which reduces the cost of the calibration 
equipment and simplifies the calibration procedure. The rest of this paper is organized as follows: Section 
2 presents the calibration process of laser plane in the vision measurement using structured light. The 
method is proposed for the calibration of the laser plane equation with a 1D target and the optimal 
distance object between the global origin and the feature point on the 1D target. Section 3 introduces 
the construction and solution procedures of the calibration model. Section 4 performs the calibration 
experiments and discusses the influencing factors for the precision of the calibration results. Section 5 
summarizes this paper.

Calibration Process
In the process of vision measurement based on structured light, we need to globally calibrate the laser 
plane equation to achieve the position and posture of laser plane in the world coordinate system. A 
method is proposed for the calibration of the laser plane equation with a 1D target. The bottom of the 
1D target is located at the origin point of the 3D calibration board , the top of the 1D target is free and 
marked by a checkered pattern. Firstly, the 1D target is arbitrarily placed in the view filed of the camera. 
The bottom of the 1D target coincides with the origin point of the world coordinate system.The laser 
plane passes through the center of checkered pattern on the top of the target. A group of feature points 
are generated from the intersection points between the laser plane and the centers on the tops of the 1D 
target rod on different positions. Secondly, an optimal objective function is deduced to build the laser 
plane equation by the 2D coordinates of the feature points in the images and the transformation matrix 
of the camera calibration. Finally, the optimal coefficients are acquired according to the relationship 
between the coefficients of the laser plane equation and the value of the optimal objective function with 
multiple constraints. It is realized that the laser plane equation is solved by the optimization object of 
the distance from the origin point to a center of checkered pattern on the top of the 1D target in the 
world coordinate system.

The 3D board is established in the camera calibration in Fig. 1. The coordinates of each corner point 
on the calibration board are fixed in the world coordinate system. We assume that the camera has no 
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significant lens radial distortion or tangent distortion in this paper. The camera is modeled by the usual 
pinhole, which is represented as33

= ( )x Xs M 1

where X =  (X,Y,Z,1)’ are the world coordinates of the feature points on the 3D calibration board, 
x =  (x,y,1)’ are the image coordinates of the corresponding feature points, M is a 3 ×  4 transformation 
matrix, which shows the relationship between the 3D point X on the 3D calibration board and its 2D 
projection x in the camera image. s is a scaling factor. The elements of matrix M are worked out by the 
least square method.

Figure 1.  Calibration method of a laser plane using 1D target with a checkered pattern and a 3D 
calibration board. (a) 1D target position. The bottom of the 1D target rod is conical. The apex of the cone 
is positioned at the origin of the 3D calibration board. The top of the target is marked by a checkered 
pattern. (b) A feature point generated from the intersection point of the laser plane and the center of 
the checkered pattern on the top of the target. (c) The top of the 1D target moves to different positions 
where the laser plane intersects with the center of the checkered pattern. (d) A group of feature points are 
generated from the intersection points between the laser plane and the centers on the tops of the 1D target 
rod on different positions. (e) Spherical orbit of the 1D target top on different positions. (f) Annular orbit of 
the intersection feature points.



www.nature.com/scientificreports/

4Scientific Reports | 5:11928 | DOI: 10.1038/srep11928

The 1D target in Fig. 1a is adopted for the laser plane calibration. The bottom of the 1D target rod 
is conical. The apex of the cone is positioned at the origin of the 3D calibration board. The top of the 
1D target rod is free and marked by a checkered pattern. The method for achieving the image coordi-
nates of the feature points on the top of the 1D target is explained in Fig.  1b. The 1D target and the 
3D calibration board are placed in front of the camera. The apex of the conical bottom of the 1D target 
is set at the origin point of the 3D calibration board.The laser plane passes through the center of the 
checkered pattern on the top of the 1D target by adjusting the position of the top of the 1D target in 
the view filed of the camera. Then the center of the checkered pattern on the top of the 1D target is 
the common point between the laser plane and the top of the 1D target. Furthermore, the length of the 
1D target is a known quantity. Ai is the intersection point between the laser plane and the center of the 
checkered pattern. As the apex of the conical bottom of the 1D target coincides with the origin point 
of the 3D calibration board, the distance from the intersection point Ai to the origin point of the 3D 
calibration board is equal to the known length of the 1D target. The top of the 1D target moves to dif-
ferent positions where the laser plane intersects with the center of the checkered pattern . As a result, a 
group of feature points are obtained from the intersection points between the laser plane and the center 
of the checkered pattern as shown in Fig. 1c,d. Hence, as illustrated in Fig. 1e, the motion route of the 
feature points on the 1D target is a sphere that takes the length of the 1D target as the radius and the 
origin point as the center. The motion route of the intersection points between the laser plane and the 
center of the checkered pattern is an intersection circle between the sphere and the laser plane, as the 
yellow ring in Fig. 1f. Consequently, a couple of 2D coordinates are derived from the intersection point 
between the laser plane and the center of the checkered pattern in the corresponding image. A Group 
of 2D coordinates of the intersection points are provided by analyzing the images with the 1D target 
at different positions. According to the object that the distance from the feature point to the the origin 
point of the 3D calibration board is equal to the length of the 1D target, the laser plane equation in the 
world coordinate system is solved by optimizing the objective function.

Construction and Solution of Calibration Model
The laser plane passing through all the feature points on the 1D target can be considered as an ideal 
plane. The general equation of a laser plane is given by Eq. (2):

+ + + = ( )AX BY CZ D 0 2

where (Xi, Yi, Zi) are the 3D coordinates of the intersection points between the laser plane and the center 
of the checkered pattern on the top of the 1D target in the world coordinate system, A, B, C, D are the 
coefficients to be calibrated in the plane equation.

The expansion of Eq. (1) and the laser plane Eq. (2) are simultaneously given by

= ( )XH 0 3
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The distance from the center Ai(Xi, Yi, Zi) of the checkered pattern on the top of the 1D target to 
the origin point of the 3D calibration board is represented by the module of 3D coordinates X of the 
intersection points in the world coordinate system in Eq. (5):

= ( )XT 5ii

where Ti is the distance from the reconstructed coordinate Ai(Xi, Yi, Zi) to the origin point in the world 
coordinate system. Ai(Xi, Yi, Zi) is reconstructed by the 2D coordinates of the feature points in the images.

The length of the 1D target should be equal to the spatial distance from the origin point of the 3D 
calibration board to the intersection point between the laser plane and the center of the checkered pat-
tern on the top of the 1D target. Therefore, the optimization goal is the minimum difference between the 
sum of squared length of the 1D target and the sum of squared spatial distance from the feature point to 
the origin point of the 3D calibration board. The feature point is the intersection point between the laser 
plane and the center of the checkered pattern on the top of the 1D target. The optimal objective function 
f(A, B, C, D) with constraints is given by Eq. (6). The aim of the optimal objective function f(A, B, C, D) 
is the minimum difference of the spatial distance and the length of the 1D target:
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where l is the length of the 1D target. A, B, C, D are the coefficients of the laser plane equation. n is the 
number of the target images in the experiments. The spatial distance Ti from the intersection point to the 
origin point calculated by the coordinates of the reconstructed intersection points is equal to the length l 
of the 1D target. i.e., the corresponding A, B, C, D are the coefficients of the laser plane equation on the 
condition that the value of the function f(A, B, C, D) is close to zero. As there are only three independent 
coefficients among the coefficients A, B, C, D in the laser plane equation. When C =  1 is defined, the 
optimal objective function can be solved with the coefficients A, B, D. The constraints of the variables 
A, B, D can be preliminarily determined by the light projection on the 3D calibration board. In order to 
minimize the spatial distance, the variable D varies in its scope firstly. Then we obtain a series of binary 
functions related to A and B. Each function has a minimal value that is solved by Matlab function min 
in the constraint scopes of the variables A, B. We consider the smallest one among the minimal values 
of the series of binary functions as the the minimum. Finally, the A, B, D corresponds to the minimum 
are the optimal values.

Experiments and Discussions
The experimental system consists of a laser projector with 635 nm wave length, a camera 
(DH-HV3102UC-T) with 5 mm lens, a tripod, a 3D calibration board, a 1D target, and a computer with 
3.4 GHz processor, 4CPUs and 6 GB RAM. The size of the 3D calibration board is 500 ×  500 ×  500 mm. 
60 ×  60 mm chessboard-grids cover the 3D calibration board. The length of the 1D target is 430 mm. The 
image resolution is 2048 ×  1536.

For performing the global calibration of the laser plane, the relative positional relationship between the 
camera and the 3D calibration board should be determined firstly. The 3D calibration board is employed 
to calibrate the camera. The 3D calibration board is placed in front of the camera. The intersection point 
of the three planes of the 3D calibration board is considered as the origin point of the world coordinate 
system. 9 feature points are chosen on each plane of the 3D calibration board. The camera obtains the 
corresponding 2D coordinates of the 27 feature points on the 3D calibration board. The elements of the 
matrix M are calculated by the least square method. The transformation matrix M is obtained from two 
groups of experiments as illustrated in Table 1. The object can be measured after placing it in the view 
filed of the camera.

The 1D target in Fig.  2 is utilized in the laser plane calibration. The intersection line between the 
laser plane and the checkered pattern passes through the center of the checkered pattern by adjusting 
the position of the top of the 1D target in measuring space. Two group experiments are performed. 
Each experiment captures the images of the 1D target at twenty different positions. The feature point 
coordinates are obtained from the images respectively. The optimal objective function is calculated with 
the independent coefficients A, B, D in the laser plane equation when C is equal to 1. The coefficients 
A, B stand for the slopes of the intersection lines between the laser plane and the 3D board respectively. 
The coefficient D indicates the intercept at z axis of the intersection lines. The initial equation coefficients 

m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34

1 − 1.24 0.529 − 0.306 8.76 ×  102 1.41 ×  10-2 5.22 ×  10-2 − 1.32 7.63 ×  102 − 5.03 × 10-4 − 3.99 × 10−4 − 3.44 × 10−4 1

2 − 1.22 0.553 − 0.362 8.85 ×  102 5.37× 10-2 3.10 ×  10-3 − 1.32 7.60 ×  102 5.11 ×  10-4 3.43 × 10−4 3.73 × 10−4 1

Table 1.   Transformation matrices in two experiments.
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can be determined by the positions of the intersection lines in Fig. 3. In the first laser plane equation, 
the initial value of coefficients are A =  0.25, B =  − 0.55, C =  1, D =  − 185, the constraint scopes of the 
variables are 0.21 <  A <  0.29, − 0.62 <  B <  0.53, − 200 <  D <  − 170. In the second laser plane equation, 
the initial value of coefficients are A =  − 0.7, B =  − 0.05, C =  1, D =  − 115, the ranges of the variables are 
− 0.77 <  A <  − 0.67, − 0.11 <  B <  − 0.2, − 130 <  D <  − 100. Two optimal objective functions f1(A, B, D), 
f2(A, B, D) with constraints are constructed by Eq. (6).

The optimal objective functions are optimized for obtaining the laser plane equations which are indi-
cated in Eqs. (7), (8):

Figure 2.  The calibration experiments of the laser plane using a 1D target with a checkered pattern. (a) 
A sample picture in the first group. (b) A sample picture in the second group.

Figure 3.  The crossing laser lines between the laser plane and the 3D calibration board. (a) A sample 
picture in the first group. (b) A sample picture in the second group.

Figure 4.  The projected laser lines according to the laser plane equation. The green lines are the 
reconstructed laser lines based on the solutions of the objective function. The red ones are the constraint 
scope of the objective function. (a) The projected laser lines in the first group. (b) The projected laser lines 
in the second group.
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. − . + − = ( )X Y Z0 245 0 575 184 0 7

− . − . + − = ( )X Y Z0 725 0 07 113 0 8

To test and verify the validity of the calibration results, two equations of laser planes are projected to 
the xoz plane and the yoz plane of the 3D calibration board. Then two green lines are generated in Fig. 4. 
The red lines in Fig. 4 represent the scope boundaries of the projective laser lines reconstructed by the 
constraint scopes of the optimal objective functions. Comparing the two reconstructed lines with the 
real intersection lines between the laser plane and the 3D calibration board, the green projective lines of 
the laser plane on 3D coordinate system coincides with the two real projective lines of the laser plane on 
the 3D calibration board. According to the results above, it is evident that the accurate calibration of the 
laser plane is achieved by the method of single point positioning of the center of the checkered pattern 
and the optimization object of the distance from the origin point to a center of checkered pattern on 
the top of the 1D target.

We further analyzed the experiment results according to the optimal objective function. The images 
plotted by the first optimal objective function f1(A, B, D) are shown in Fig. 5. As the objective function is 

Figure 5.  Relationship between the objective function f(A, B, D) and the coefficients A, B of the plane 
equation in the first group experiments. The variation of the objective function is observed from the 
subfigures with a decreasing variable D. (a) D =  − 155. (b) D =  − 165. (c) D =  − 175. (d) D =  − 184. (e) 
D =  − 195. (f) D =  − 205.
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a function with three variables, A, B are taken as the x, y-axis while D =  − 155 as the starting point with 
a 10 interval in Fig. 5. We discuss the value of the optimal objective function varies with the parameters 
A, B, D, respectively.

The scope of the extreme points and the minimal value regularly varies with the decrease of D. 
The extremum of the surface is not obvious on the condition that D =  − 155 and D =  − 165. The mini-
mum of the surface is observed when the value of D is reduced from − 175 to − 195. When D =  − 175, 
f1(A, B, D) reaches its minimal value of 1.845 ×  103 in the scopes of 0.22 <  A <  0.24, − 0.62 <  B <  − 0.59. 
When D =  − 184, f1(A, B, D) gains the minimal value of 1.130 ×  103 in the scopes of 0.24 <  A <  0.26, 
− 0.59 <  B<  − 0.56. Furthermore, the minimum value of f1(A, B, D) diminishes with the reduction of D. 
When D =  − 195, f1(A, B, D) derives a minimal value of 2.1629 ×  103 in the scopes of 0.25 <  A <  0.27, 
− 0.55 <  B <  − 0.53. The minimal value increases with the diminution of D. When D =  − 205, the 
extremum of the surface vanishes. The minimum value augments while D declines. As stated above, when 
D =  − 184, f1(A, B, D) reaches its minimal value. The coefficients A, B are in the scopes of 0.24 <  A <  0.26, 
− 0.59 <  B <  − 0.56. A =  0.245, B =  − 0.575, D =  − 184 are the variables corresponding to the minimum 
value of the objective function f1(A, B, D). The variables of A, B, D here minimize the difference between 
the length of the 1D target and the distance from the feature point to the origin point. It agrees with the 
experiment results well.

The variation trends of f1(A, B, D) are different in the directions of A and B while D declines in Fig. 5. 
On the condition that D =  − 155 and D =  − 165, the value of f1(A, B, D) decreases when the value A is 
on the decline. The value of f1(A, B, D) diminishes in the direction of B while the value of B is reduced. 

Figure 6.  Relationship between the objective function f(A, B, D) and the coefficient s A, B of the plane 
equation in the second group experiments. The variation of the objective function is observed from  
the subfigures with a decreasing variable D. (a) D =  − 85. (b) D =  − 95. (c) D =  − 105. (d) D =  − 113.  
(e) D =  − 125. (f) D =  − 135.
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In the direction of A, the value of f1(A, B, D) reduces firstly, and then enlarges when the value of D 
is dropped from − 175 to − 195. In the direction of B, the value of f1(A, B, D) lessens firstly, and then 
becomes larger with the diminution of B. When D =  − 205, the extremum of the surface vanishes. The 
value of f1(A, B, D) increases in both directions of A and B with the attenuation of A and B, respectively.

The images of the second optimal objective function are illustrated in Fig. 6. The function takes A, B 
as the x, y-axis while D =  − 85 as the starting point with an interval of 10. We discuss the value of the 
optimal objective function varies with the parameters A, B, D, respectively.

The scope of the extreme points and the minimal value varies regularly with the reduction of D. The 
extreme point of the surface is not distinct on the condition that D =  − 85, D =  − 95. The minimums 
of the surface are evident when the value of D drops from − 105 to − 125. When D =  − 105, f2(A, B, D)  
reaches its minimal value of 1.236 ×  103 in the scopes of − 0.76 <  A <  − 0.74, − 0.09 <  B <  − 0.07. 
When D =  − 113, f2(A, B, D) gets the minimal value of 749.249 in the scopes of − 0.74 <  A <  − 0.71, 
− 0.08 <  B <  − 0.06. Meanwhile the minimum value of f2(A, B, D) decreases with the diminution of D. 
When D =  − 125, f2(A, B, D) develops a minimal value of 1.583 ×  103 in the scopes of − 0.7 <  A < − 0.68, 
− 0.06 <  B <  − 0.04. The minimum value increases while D drops down. When D =  − 135, the extremum 
of the surface vanishes. As described above, when D =  − 113, f2(A, B, D) reaches its minimal value. The 
coefficients A, B are in the scopes of − 0.74 <  A <  − 0.71, − 0.08 <  B <  − 0.06. A =  − 0.725, B =  − 0.07, 
D =  − 113 are the variables corresponding to the minimum value of the objective function f2(A, B, D). 
The coefficients A, B, D are satisfied with the optimized goal that the length of the 1D target is equal to 
the distance from the feature point on the top of the 1D target to the origin point and accords with the 
experiment results.

The variation trends of f2(A, B, D) are different in the directions of A and B while D decreases. On 
the condition that D =  − 85 and D =  − 95, the value of f2(A, B, D) decreases when the value A is on the 
decline. The value of f2(A, B, D) diminishes in the direction of B while the value of B is reduced. In the 
direction of A, the value of f2(A, B, D) reduces firstly, and then enlarges when the value of D is dropped 
from − 105 to − 125. In the direction of B, the value of f2(A, B, D) decreases first, and then becomes larger 
with the diminution of B. When D =  − 135, the extremum of the surface vanishes. The value of f2(A, B, 
D) increases in both directions of A and B with the decline of A and B, respectively.

Figure  7 shows the value variation of the objective function related to the laser plane coefficient D 
and the group number n of the 1D target experimental images. We can observe the value of the objective 
function varies with the change of the laser plane coefficient D and the group number n visually.

Figure 7a indicates the relationship between the value of f1(A, B, D), the laser plane coefficient D and 
the data group number n in the first experiment. In the direction of D, the value of f1(A, B, D) reduces at 
the beginning, and then enlarges when the value of D increases from − 300 to − 100. Along the direction 
of D, f1 (A, B, D) reaches its minimal value around D =  − 200. In the direction of n, the value of f1(A, B, 
D) gradually diminishes when the data group number n in the experiment enlarges from 0 to 20. If n is 
bigger than 15, the decrease trend for the value of f1(A, B, D) tends to flatten slowly. When n =  20 and 
D =  − 184, f1(A, B, D) gains its minimal value.

Figure 7b shows the relationship between the value of f2(A, B, D) , the laser plane coefficient D and 
the data group number n in the second experiment. In the direction of D, the value of f1(A, B, D) abates 
firstly, and then increases when the value of D augments from − 200 to 0. When n =  20 and D =  − 113, 
f1(A, B, D) reaches its minimal value. In the direction of n, the value of f1(A, B, D) gradually reduces 
when the group number n enlarges from 0 to 20. The results of these two experiments indicate that the 
optimal objective function can obtain the stable optimal solutions when the number of data group is 
close to 20 in the experiment.

Gaussian noise is added to the experimental images to analyze the influence of the noise on the 
experiment results. The original images in the first experiment are added with different Gaussian noise of 

Figure 7.  Relationship between the minimum of the objective function f(A, B, D), the equation 
coefficient D and the group number n. (a) The relationship in the first group. (b) The relationship in the 
second group.
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which the variance σ2 is equal to 0.01, 0.02, 0.05, 0.1, respectively, as shown in Fig. 8a–d. The relationship 
between the noise level, the data group number n and the relative error of the laser plane coefficients 
A and B are illustrated in Fig.  8e,f, respectively. It is more convenient to observe the noise data while 
Gaussian noise on the noise axis is expressed by the denary logarithm of the variance. In Fig. 8e,f, the 
relative errors of the laser plane coefficients A and B decrease when Gaussian noise is on the decline. In 
the direction of n, the relative errors of the laser plane coefficients A and B gradually diminish when the 
data group number n in the experiment enlarges from 0 to 20. The decrease trend tends to be smooth 
finally. As the coefficients A, B represent the slopes of the intersection lines between the laser plane and 
the 3D calibration board respectively. The slope of the intersection line between the laser plane and 
the xoz plane of the 3D calibration board is smaller than the slope of the intersection line between the 
laser plane and the yoz plane, i.e. |A| < |B|, as shown in Fig. 8a–d. The pixel offsets are generated when 
Gaussian noise is added to the images. The influence of the pixel offsets is identical when the noise 
with same intensity is added to the images. Therefore, the changes of the coefficients A, B are equal, i.e. 
Δ A= Δ B. Thus, |Δ A/A| > |Δ B/B|, the relative error of the laser plane coefficient A is larger than the 
relative error of the laser plane coefficient B, as depicted in Fig. 8e,f.

Figure 8.  The analysis of noise influence on the first experiment results. The original images in the 
experiment are added with different Gaussian noise. (a) The variance σ2 of Gaussian noise is equal to 0.01. 
(b) The variance σ2 of Gaussian noise is equal to 0.02. (c) The variance σ2 of Gaussian noise is equal to 
0.05. (d) The variance σ2 of Gaussian noise is equal to 0.1. (e) The relationship between the noise level lgσ2, 
the data group number n and the relative error of the laser plane coefficient |∆A|/|A|. (f) The relationship 
between the noise level lgσ2, the data group number n and the relative error of the laser plane coefficient 
|∆B|/|B|.
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The original images in the second experiment are added with different Gaussian noise of which the 
variance σ2 is equal to 0.01, 0.02, 0.05, 0.1, respectively, as shown in Fig.  9a–d. Figure  9e,f show the 
relationships between the noise value, the data group number n and the relative error of the laser plane 
coefficients A and B , respectively. In order to observe the noise data with the same interval, Gaussian 
noise on the noise axis is represented by the denary logarithm of the variance. In Fig. 9e,f, the relative 
errors of the laser plane coefficients A and B reduce when Gaussian noise weakens. In the axis of n, the 
relative errors of the laser plane coefficients A and B gradually diminish when the data group number n 
in the experiment augments from 0 to 20. The decrease trend tends to be flat finally. As the coefficients 
A, B represent the slopes of the intersection lines between the laser plane and the 3D calibration board, 
the slope of the intersection line between the laser plane and the xoz plane of the 3D calibration board 
is larger than the slope of the intersection line between the laser plane and the yoz plane, i.e. |A| > |B|, as 
shown in Fig. 9a–d. The pixels offset when Gaussian noise is added to the images. The effects of the pixel 
offsets are identical when the noise with same intensity is added to the images. Therefore, the variation 
of coefficients A, B are equal, i.e. Δ A= Δ B.则|Δ A/A| < |Δ B/B|, Thus, |Δ A/A| < |Δ B/B|, the relative 
error of the laser plane coefficient A is smaller than the relative error of the laser plane coefficient B, as 
depicted in Fig. 9e–f.

Figure 9.  The analysis of noise influence on the second experiment results. The original images in the 
experiment are added with different Gaussian noise. (a) The variance σ2 of Gaussian noise is equal to 0.01. 
(b) The variance σ2 of Gaussian noise is equal to 0.02. (c) The variance σ2 of Gaussian noise is equal to 0.05. 
(d) The variance σ2 of Gaussian noise is equal to 0.1. (e) The relationship between the noise level lgσ2, the 
data group number n and the relative error of the laser plane coefficient |∆A|/|A|. (f) The relationship between 
the noise level lgσ2, the data group number n and the relative error of the laser plane coefficient |∆B|/|B|.
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We further evaluate our calibration method by comparing its experimental results with the results 
of the calibration method presented by Hu34. The experimental framework is conducted as shown in 
Fig.  10. Two cameras and one laser level are adopted in the experiment. The laser level generates two 
laser planes that are vertical to each other. The binocular cameras and the laser level are used to simulate 
the measurement performance of the laser range finder. The crossing line of the laser planes is consid-
ered as the measurement laser line of the laser range finder. The crossing point between the crossing 
line and the 3D calibration board refers to the measurement point of the laser range finder. The 3D 
coordinates of the measurement point are reconstructed by the calibration results of two cameras. Then 
the laser plane is calibrated by Hu’s method. As we attach the world coordinate system on the 3D board, 
the normal vector of the calibrated laser plane in the world coordinate system can be obtained by the 
calibration. The noise magnitude and calibration precision should be investigated by the experiments35. 
Three direction angles α, β, γ and three magnitude components Disx, Disy, Disz of the normal vector 
from the origin point to the laser plane are used as the calibration outputs. The real values of the laser 
plane are measured by a precise vernier caliper. The comparison work is divided in two aspects: one is 
to compare the noise effects of the two methods. The other one is to evaluate the effects of the number 
of the feature points from the two methods.

As the laser range finders often have error modes that are highly non-Gaussian, the 
exponential-distribution noise is added to the image points of the camera that simulates the laser range 
finder. Gaussian noise is added to the image points of the other camera. In this experiment the laser 
plane calibration is carried using 48 points that are derived from the laser level. The image points are 
used as the calibration input after adding noise. Figure 11 shows the results of the three direction angles 
and three magnitude components of the plane normal vector, for increasing noise of the camera images. 
Compact result distributions and a few outliers show that the calibration method is stable. The error 
increases with the increasing amounts of noise smoothly. In most situations of β, γ, Disy, Disz, the data 
of our method are more concentrative than the other. The median results of β, γ, Disy, Disz also approach 
to the real values of our method. The results of α and Disx are more sensitive with the increasing noise. 
Figure 12 shows the relationship between the number of the points and the six evaluation items of the 
normal vector. The 48 points are divided in 4 groups. The data of α, β, γ, Disx, Disy, Disz in our method 
are converging with the increase of the number of points. The data are concentrated in a smaller range 
and have a few outliers. The median results of β, γ, Disy, Disz in our method are closer to the real values, 
which indicates the stability and accuracy of our method.

Conclusions
In this work we proposed a method for a convenient and flexible calibration process of the laser plane 
with a simple 1D target. The 1D target is arbitrarily placed in the view filed of the camera. The bottom 
of the 1D target is a cone. The apex of the cone coincides with the origin of the 3D calibration board. 
The top of the 1D rod is marked by a checkered pattern. The laser plane passes through the center of 
checkered pattern on the top of the target. A group of feature points are obtained from the intersection 
points between the laser plane and the centers on the tops of the 1D target on different positions. A 
group of 2D coordinates of the intersection points are extracted from the images with the 1D target at 
different positions. The optimal objective function is constructed on the condition that the distance from 
the feature point to the the origin point of the 3D calibration board is identical to the length of the 1D 
target. Two optimal objective functions are acquired from the experiments, respectively. In the first case, 

Figure 10.  Hu’s calibration method. Two cameras and one laser level are placed in front of the 3D 
calibration board. The laser level generates two laser planes that are vertical to each other. Two crossing 
lines are generated from the laser planes on the 3D calibration board. The calibration point is the crossing 
point between two crossing lines. The 3D coordinates of the measurement point are reconstructed by the 
calibration results of two cameras.
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when the equation coefficient of the laser plane D =  − 184, the first optimal objective function f1(A, B, 
D) reaches its minimal value of 1.130× 103. The coefficients A, B are in the scope of 0.24 <  A <  0.26, 
− 0.59 <  B <  − 0.56. This result is consistent with the optimized coefficients A =  0.245, B =  − 0.575, 
D =  − 184 of the laser plane equation. In the second experiment, when D =  − 113, f2 (A, B, D) gains its 
minimal value of 749.249 in the scope of − 0.74 <  A <  − 0.71, − 0.08 <  B <  − 0.06. This result agrees with 
the calculated coefficients A =  − 0.725, B =  − 0.07, D =  − 113 of the laser plane equation. Furthermore, 

Figure 11.  The analysis of noise influence on the three direction angles and three magnitude 
components of the plane normal vector in Hu’s method and our method. The horizontal axis refers to the 
noise magnitude with increasing amounts. The vertical axis refers to the measured three direction angles 
and three magnitude components of the normal vector respectively. (a) The relationship between the noise 
magnitude and the direction angle α. (b) The relationship between the noise magnitude and the direction 
angle β. (c) The relationship between the noise magnitude and the direction angle γ. (d) The relationship 
between the noise magnitude and the magnitude component Disx. (e) The relationship between the noise 
magnitude and the magnitude component Disy. (f) The relationship between the noise magnitude and the 
magnitude component Disz.
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we project the two equations of the laser planes to xoz plane and yoz plane of the 3D calibration board. 
The derived projective lines overlap the real intersection lines between the laser plane and the 3D cali-
bration board. Moreover, we observe the value of the objective function varies with the change of the 
group number n of the experimental images and the laser plane coefficient D. The results of these two 
experiments indicate that the optimal objective function inclines to the stable optimal solutions when the 
number of data group is close to 20 in the experiment. Finally, we add Gaussian noise to the experimental 

Figure 12.  The relationship between the number of the points and the six evaluation items of the 
normal vector in Hu’s method and our method. The horizontal axis refers to the number of the points. The 
vertical axis refers to the measured three direction angles and three magnitude components of the normal 
vector respectively. (a) The relationship between the number of the points and the direction angle α. (b) The 
relationship between the number of the points and the direction angle β. (c) The relationship between the 
number of the points and the direction angle γ. (d) The relationship between the number of the points and 
the magnitude component Disx. (e) The relationship between the number of the points and the magnitude 
component Disy. (f) The relationship between the number of the points and the magnitude component Disz.
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images to analyze the influence of the noise on the experiment results. The relative errors of the laser 
plane coefficients A and B reduce when Gaussian noise weakens and gradually diminish when the data 
group number n in the experiment increases from 0 to 20. The comparison work about the influences 
of the non-Gaussian noise and point number is also investigated in the experiments.The experiments 
demonstrate that the proposed method with the distance optimal object from the feature point to the 
origin point has the potential for enhancing the accuracy and robustness of the laser plane calibration 
in structured light measurement.
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